
1

ACACES-4 July 2007 © BG Ryder 1

Advanced Program Analyses
for Object-oriented Systems

Dr. Barbara G. Ryder
Rutgers University

http://www.cs.rutgers.edu/~ryder
http://prolangs.rutgers.edu/

July 2007

ACACES-4 July 2007 © BG Ryder 2

Lecture 4 - Outline
• Empirical results from dynamic sampling
analysis

• Optimizations for OO programs
• Method inlining w & w/o guards

– Pre-existence
• Control-flow path splitting
• Method specialization
• Object layout for better cache performance
• JIKES RVM online FDO experiments

2

ACACES-4 July 2007 © BG Ryder 3

Dynamic Analysis - Experiences
• Empirical experience in IBM’s Jalapeno JVM
• 10 benchmarks

– SPECjvm98(input size 10), Volano, pBob, opt-compiler
– Running times from 1.1-4.8 seconds
– Class file sizes from 10K-1,517K bytes
– Machine 333Mz IBM RS/6000 powerPC 604e with 2096Mb

RAM running AIX 4.3

• Instrumented all methods in applications and
libraries

Arnold & Ryder, PLDI’01
Arnold, Hind, Ryder, OOPSLA’02

ACACES-4 July 2007 © BG Ryder 4

Instrumentation

• Call-edge
– Collect caller, callee, call-site within

caller at method entry
– One counter per call edge

• Field-access
– One counter per field of each class
– Each putfield, getfield access

instrumented

Arnold & Ryder, PLDI’01
Arnold, Hind, Ryder, OOPSLA’02

3

ACACES-4 July 2007 © BG Ryder 5

Exhaustive Instrumentation
Overhead

Checking
Code

Duplicated
(Instrumented)

Code

Low Overhead High Overhead

On average, 88% call-edge and 60% field-access

Arnold & Ryder, PLDI’01
Arnold, Hind, Ryder, OOPSLA’02

ACACES-4 July 2007 © BG Ryder 6

Time Overhead(Full-Dup)

0

2

4

6

8

10

12

c
o
m
p
re
s
s

je
s
s

d
b

ja
v
a
c

m
p
e
g
a
u
d
io

m
tr
t

ja
c
k

o
p
t-
c
o
m
p
il
e
r

p
B
o
b

V
o
la
n
o

a
v
e
ra
g
e

P
e
rc
e
n
t

4.99%

Arnold & Ryder, PLDI’01
Arnold, Hind, Ryder, OOPSLA’02

4

ACACES-4 July 2007 © BG Ryder 7

Cost + Accuracy

100%99% 29%10

83%71%5%100,000

94%82%5%10,000

97%94%6%1,000

99%98% 10%100

100%100%182%1

Field-access
Accuracy

Call-edge
Accuracy

Overhead
(Full-Dup)

Sample
Interval

Arnold & Ryder, PLDI’01
Arnold, Hind, Ryder, OOPSLA’02

ACACES-4 July 2007 © BG Ryder 8

OO Opts Using Dynamic Analysis

• Guarded inlining with dynamic dispatch
• Path splitting
• Method specialization
• Object layout for locality
• Adaptive compilation with FDO

5

ACACES-4 July 2007 © BG Ryder 9

 Optimizing Dynamic Dispatch

• Early optimizations-how to do lookup quickly?
– Use observed profiling information about calls, to

predict most likely methods called
• Encode method call as guarded inlining
if (shape instanceof Circle)//inline code for Circle.area()
else if (shape instanceof Square) //inline code for

Square.area()
else shape.area();//regular dynamic dispatch

• Also can encode as runtime method selection
if (shape instanceof Circle)//call Circle.draw()
else if (shape instanceof Square)//call Square.draw()
else shape.draw();//regular dynamic dispatch

ACACES-4 July 2007 © BG Ryder 10

Guarded Inlining for C++

• C++ source-to-source compiler
changed virtual method calls to
guarded inlined method calls

• Most frequent class represents 40% of
receivers at call site

• Optimize call sites that account for over
0.1% of calls in run

• Results: profiling feedback more
successful than CHA-based analysis,
but gains varied over benchmarks

Aigner and Holzle, “Eliminating Virtual
Function Calls in C++ Programs”, ECOOP96

6

ACACES-4 July 2007 © BG Ryder 11

Tradeoffs
• Need to balance costs versus benefits

– Can increase cost of dynamic dispatch for
classes not in the tests

– Can decrease overall cost of dynamic dispatch if
the tested classes occur frequently enough and
if further optimizations are possible in the
inlined code
• Example, in Vortex research compiler

– Do guarded inlining if there are a small (<=3)
number of candidate classes and all methods can
be inlined

– Devised a quick run-time type test for objects

J. Dean, G. DeFouw, D. Groave, V. Litvinov, C. Chambers,
“Vortex: An Optimizing Compiler for OO Languages”, OOPSLA’96.

ACACES-4 July 2007 © BG Ryder 12

Speculative Guarded Inlining

• In JikesRVM
– Can be in response to CHA or profiling
– Guard with class/method test
– May avoid test with pre-existence

void f(A a){ … a.m();…)

if object referred to by a can be shown to have
been created prior to when f is invoked, then it
is valid when executing the inlined code.

7

ACACES-4 July 2007 © BG Ryder 13

Using Pre-existence

• Eliminates the need for a run-time guard on
inlined method code

• Applies to call sites that are currently
monomorphic, but might become polymorphic
due to future class loading
– Want to inline target method safely wrt classes

being loaded
– Find call sites where receiver is guaranteed to

have been created prior to invocation of f(); can
apply inlining safely for them

ACACES-4 July 2007 © BG Ryder 14

Pre-existence
At runtime the order of events goes like this:
1) f() is invoked and is on the stack
2) Class loading occurs and extends some classes that

affect f()'s call sites
3) f() is recompiled so that new invocations of f() are

guaranteed to execute correctly.
4) Existing invocations of f() contain code that is

technically incorrect, but will be ok due to pre-
existence. If a call site was directly inlined based
on pre-existence, it is known that receiver objects
at those sites *preexist* the invocation of f(), and
thus preexist the class loading, so they cannot be
of an unsafe type.

8

ACACES-4 July 2007 © BG Ryder 15

Path Splitting

• Idea: to avoid redundant tests and increase
extent of code for which types of some
objects are known

• To avoid redundant type tests, split control flow path
between merge following one occurrence of a class
test and the next occurrence of same class test
– Duplicates code

• Vortex does this lazily
• Feedback-directed splitting in adaptive JikesRVM

ACACES-4 July 2007 © BG Ryder 16

Example
x1.class == Rectangle?

t1:=x1.len;
t2:=x1.wid;

x1.class==Circle?

t3:=x1.radius
t4:=t3*t3*pi

x2:=area(x1);

.

.

.x1.class == Rectangle?

x5:=x1; x1.class==Circle?

t5:= x1.center; x3:=bb(x1);

9

ACACES-4 July 2007 © BG Ryder 17

Example
x1.class == Rectangle?

t1:=x1.len;
t2:=x1.wid;
x5:=x1;

x1.class==Circle?

t3:=x1.radius
t4:=t3*t3*pi;
t5:= x1.center;

x2:=area(x1);
x3:=bb(x1);

.

.

.
know type of x1 at compile-time here

ACACES-4 July 2007 © BG Ryder 18

Method Specialization
• Factoring shared code into base classes which

contain virtual calls to specialized behavior in
subclasses hurts run-time performance (SELF)
– Compiler must undo effects of factorization

• At compile-time translating a customized
version of code, assuming known type
information (e.g., receiver type)

• Drawbacks
– Overspecialization - multiple specialized versions

may be too much alike; can lead to code bloat
– Under-specialization - methods may only be

specialized on receiver type, when could use other
parameters

10

ACACES-4 July 2007 © BG Ryder 19

Vortex Profile-guided Specialization

• Idea: given weighted call graph derived from
profile data, eliminate heavily traveled,
dynamically dispatched calls by specializing to
particular patterns in their parameters

• Pass-through call sites use formals of caller
as arguments to callee, specializable call
sites
– f(A a,B b,C c){…a.s(c)….} can specialize s() for

set of known static types of a and c

J. Dean, G. DeFouw, D. Groave, V. Litvinov, C. Chambers,
“Vortex: An Optimizing Compiler for OO Languages”, OOPSLA’96.

ACACES-4 July 2007 © BG Ryder 20

Questions asked in Vortex
• How is set of classes which enable

specialization of pass-through arc calculated?
• How should specializations for multiple call

sites to same method be combined?
• If a method f is specialized, how can we avoid

converting statically bound calls to f into
dynamically bound calls?

• When is an arc important to specialize?

J. Dean, G. DeFouw, D. Groave, V. Litvinov, C. Chambers,
“Vortex: An Optimizing Compiler for OO Languages”, OOPSLA’96.

11

ACACES-4 July 2007 © BG Ryder 21

Object Layout for Locality
• Idea: want good cache performance so profile

usage of object fields; rearrange object
storage, so frequently used fields occupy
same cache line, where possible
– Avoids cache misses
– Affects data layout in storage

• Structure splitting for Java objects to
improve cache performance of objects
comparable to or larger than a cache block

T. Chilimbi, B. Davidson, J.R. Larus,
“Cache-conscious Structure Definition”, PLDI’99

ACACES-4 July 2007 © BG Ryder 22

Structure Splitting
• Idea:

• Profile use of fields of objects to identify some
as hot (frequently used) vs cold (seldom used);

• Automatically split class to associate cold fields
of an object with another class only accessed
indirectly

• Change all existing references to the new
structure

• Payoff: all the hot fields are cache-resident
• Performance improvements of 18-28%, with

22-66% of improvement coming from class
splitting

T. Chilimbi, B. Davidson, J.R. Larus,
“Cache-conscious Structure Definition”, PLDI’99

12

ACACES-4 July 2007 © BG Ryder 23

Benchmarks

Chilimbi et al, PLDI’99

ACACES-4 July 2007 © BG Ryder 24

Experimental Procedure

• Analyzed and instrumented bytecode to
collect field info (type, size) from application

• Execute instrumented code to obtain field
access frequencies and numbers/kinds of
objects created

• Split classes, choosing based on static +
dynamic data

• Java bytecode recompiled to reflect splitting
decisions

Chilimbi et al, PLDI’99

13

ACACES-4 July 2007 © BG Ryder 25

Sizes of Live Java Objects

Observations: sizes of live objects after a GC
averaged over execution; note smaller size than
64byte cache block

Chilimbi et al, PLDI’99

ACACES-4 July 2007 © BG Ryder 26

Findings

• Measured class splitting potential with 2
inputs per benchmark

• 17-46% of all accessed classes are candidates with 26-
100% having field access profiles that justify splitting

– Claim the splitting algorithm is insensitive to input data used
to profile (measured between the 2 inputs)

• Split classes account for 45-64% total number of
program field accesses

– Temperature differentials high (77-99%) indicating strong
differences between hot and cold field accesses

– Modest additional memory needs (13-74KB)

Chilimbi et al, PLDI’99

14

ACACES-4 July 2007 © BG Ryder 27

Optimization Results

Chilimbi et al, PLDI’99

ACACES-4 July 2007 © BG Ryder 28

Dynamic Compilation w FDO

• Idea: only optimize performance-critical
sections of code
– Reduces compilation delays and time cost

• Adaptive optimization: discover and optimize
hot spots in the code
– Idea: use online profile info to optimize methods

• IBM’s Jikes RVM for Java explored many of
the ideas initially presented in SELF compilers
and is refining the methodology of adaptive
optimization, using online profiling and FDO

15

ACACES-4 July 2007 © BG Ryder 29

Online FDO Experiments

• Embed full duplication framework in Jikes
Research VM for adaptive optimization trials
– Insert instrumentation at highest optimization level

(O2) so see optimization effects in profile
– Instrumentation is intraprocedural edge counters
– Optimizations used: splitting, code positioning (for

code locality), loop unrolling, adaptive inlining

Arnold, et. al
OOPSLA’02

ACACES-4 July 2007 © BG Ryder 30

Online Profiling Strategy

Unopt JIT Opts

Hot
Profile(1) Hot

Profile(2)

Instru.
Sampling Profile-guided Opts

Sufficient
instrumentation
collected

Re-evaluation
(phase shift)

Arrows represent recompilation steps in the 2-phased
profiling

Arnold, et. al
OOPSLA’02

16

ACACES-4 July 2007 © BG Ryder 31

Splitting

• Splitting is tail duplication of code to
eliminate merges that cause dataflow
info to be lost

10 1000

505 505

10 1000

5
5

500
500

Arnold, et. al
OOPSLA’02

ACACES-4 July 2007 © BG Ryder 32

How to measure performance?

• Factors
– Overhead of instrumentation
– Effectiveness of FDO’s
– Underlying adaptive optimization system

• Measure steady-state performance of
SpecJvm98 codes
– Requires running benchmarks in harness
multiple times (to total time of 4 minutes
on size 100)

Arnold, et. al
OOPSLA’02

17

ACACES-4 July 2007 © BG Ryder 33

Peak Performance Gains

4.3

7.1

4.8

1.1 .9

5.8

16.9

8.0

FDO vs Adaptive VM
 w/o online profiling

Arnold, et al
OOPSLA’02

ACACES-4 July 2007 © BG Ryder 34

SPECjbb2000
Arnold, et al
OOPSLA’02

18

ACACES-4 July 2007 © BG Ryder 35

ACACES-4 July 2007 © BG Ryder 36

Measuring Precision

• Run sampling framework to record call
edges

• Run perfect profile recording every call
• Compare percentage of sample collected
attributed to a particular call edge to
corresponding percentage in the perfect
profile.

19

ACACES-4 July 2007 © BG Ryder 37

Measuring Accuracy

• Overlap is minimum of these two percentages
• Overlap percentage is sum of overlaps for all

edges (Feller 98)
– Any sample will be less than or equal to 100%
– A sample identical to perfect profile has 100%

overlap
– If sampling overestimates the percentage for

some call site then it must underestimate the
percentage for another call site

ACACES-4 July 2007 © BG Ryder 38

Sample & Perfect Profiles (Javac)

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Call site ID

P
e

rc
e

n
ta

g
e

Perfect Profile Sampled Profile

Javac
 93.8% overlap

20

ACACES-4 July 2007 © BG Ryder 39

Setup
T. Chilimbi, B. Davidson, J.R. Larus,
“Cache-conscious Structure Defn”, PLDI’99

ACACES-4 July 2007 © BG Ryder 40

Details

• Tradeoffs
– Pack more hot class instances into cache block

• Cost of additional reference from hot to cold portion; Code
growth; More objects in memory overall; Extra indirection for
each cold field access

• Heuristics to choose classes
• Only split live classes with total field accesses exceeding a

threshold: A_k ≥ LS / (100*C)
– A_k: #fields accesses in class k; LS: total # field accesses; C:

total number of classes with at least one field access
Plus larger than 8 bytes with 3 or more fields.

21

ACACES-4 July 2007 © BG Ryder 41

Details

• Heuristics to choose fields
• Cold fields accessed no more than A_k/(2*F_k) times where F_k is #

fields in class k
• To split requires at least 8 bytes cold
• Use heuristics to avoid overly aggressive splitting

• Split class transformation
• Hot classes and their accesses are same

– Additional new field per object refers to new cold class
– Need to alter constructors to create new cold class instance and assign it to

the new field
• Cold field counterpart class created with public fields, inherits from

Object, only method is constructor
• Change accesses to cold fields to indirect accesses through new field

