Benefits of Peer-led Team Learning in CS

Dr. Barbara G. Ryder
J. Byran Maupin Professor of Engineering
Head - Dept. of Computer Science
Virginia Tech

Work at Rutgers in collaboration with Pradip Hari, CS1 coordinator and undergraduate Peer Leaders from AY 2005-2008. Funded by NSF grant ITWF-0420433
Outline

• What is PLTL?
• How program was organized in CS1 at Rutgers (RESCS)?
• Experiences of 8 schools in collaborative NSF grant for PLTL in CS
 - Organization
 - Lessons learned
• What results did we achieve?
 Observations, quantitative and qualitative
• What you need to know to start a PLTL program in CS?
• Summary
What is PLTL?

• Student-led learning groups as integral part of a course
 - Started at CUNY for STEM,
 • http://www.pltl.org/
 • Offer training for faculty in how to use PLTL in class

• Main idea: give students collaborative problem-solving experience, *guided* by peer mentors
 - Trained peer mentors steer solution process, they are not tutors
Peer Leaders Facilitate

• Help explain the problems to the students
• DO NOT SOLVE THE PROBLEM FOR THE STUDENTS
• Keep the students from taking a long tangent away from a possible solution with a small suggestion
• Draw out the quieter students to give their solution ideas
• Make sure that students take turns at recording the algorithm on the board
Rutgers RESCS Curriculum

- Established Rutgers Emerging Scholars in CS (RESCS)
- Developed new problem solving exercises involving conceptual material from CS1 in Java
- Logical thinking exercises—mostly borrowed
- Games of strategy (e.g., NIM3)
- Typical meeting was 4-5 problems
- Planned extracurricular events
 - Pizza party (social)
 - Career Nights w CS alumni
Sample Exercises

Logic Deduction – Bad Coin Problem

a. Assume that you have 8 coins, and you know that 7 are ‘okay’ but one is ‘bad’. You know that the bad coin has a different weight than the good coins, but you don’t know whether it is heavier or lighter. Figure out how, using only a balance scale, you can find out which is the bad coin using just 3 weighings.

 (Hint: Find a way to determine that half of the coins are ‘okay’ with just 1 weighing.)

b. Now do the same thing assuming that you have 9 coins, one of which is bad. (Still use just 3 weighings to find the bad coin.)

c. And now for a real challenge, do the same thing, assuming that you have 13 coins.
Sample Exercises

Using Objects to Simulate Real Life
Think about simulating a car (and its systems) by an object-oriented program. Have one student portray the Car object itself.

Another student should suggest an operation that could be performed on (or by) a car and act it out. Try to think of at least 5 operations for your Car object. Write each operation on the board.

Now think of properties or attributes that a Car object might have. Using post-it notes, label the car with its properties (e.g., color).

Finally, think of sequences of operations that ‘test’ that your Car runs properly; write them on the board. Did some of your operations require you to define more properties for your Car object?
Sample Exercises

Loops to draw different shapes.

a. Describe a nested loop that will draw a square on output by printing m lines of m stars (*) on the page.
 - Draw a flow chart or pseudo-code of your nested loop.
 - Code your loop in Java and run it to see if it ‘works’.
 - How would the algorithm change if you wanted to draw a ‘hollow’ square?
 • How would the algorithm change if you wanted to draw a rectangle that is m by k instead of a square?

b. What if you wanted to draw a triangle? How would you have to change the program for a rectangle to draw a triangle?

c. Now consider drawing a circle using a nested loop. How would you do this task? (Hint: you may need to use your knowledge of geometry and some specialized functions in the Java library)
Sample Exercises

Recursion and 2D Arrays

A maze consists of certain types of cells:

0 - empty cell is denoted by " . "
1 - wall cell is denoted by " * "
2 - your position is denoted by " X "
3 - visited cell is denoted by " V "

For example, a maze with starting position denoted by “X” can look like this:

There are no “island” walls in the maze.

Assume we move only up, down, left, right. Write an algorithm to escape the maze.
How We Became Involved?

- Formed an 8 school consortium
 - U Wisc (Madison, Milwaukee), Rutgers, GaTech, Duke, Beloit, Loyola (Baltimore), Purdue
- **Goal**: Attracting and retaining underrepresented groups in CS
- 3 year ITWF grant for applying PLTL to CS
 - Funded in Fall 2004 for 4 years
 - U Wisc (Madison) started in Fall 2004, rest of schools one year later
Project Plan

• Hypothesis: most women and minority students might like CS, if they tried it
 - Use active recruiting to attract students and peer-led team learning to address their needs
 - Each school uses variations on two themes: active recruiting and peer-led team learning.
 • Different approaches to recruiting
 • Associated with different kinds of intro courses
 • Different team-learning activities
 • Different “extra” activities

• Evaluation for all schools by professional social scientists using surveys and interviews
Coordination

• All PI’s encouraged to get PLTL training
 • Sessions held at universities in summer

• Coordination and communication
 - Annual multi-day spring meetings included Peer Leader training sessions (hosted by participating schools)
 - Regular conference calls and e-mail
 - Website for easy sharing of group-learning activities, http://www.pltlcs.org/index.php
 - Developed database of PLTL CS1 exercises grouped by programming language and keywords
Benefits for PLTL Participants

- Better & deeper understanding of material
- Lower drop rates, better grades
- Learn to work together and use everyone’s strengths to solve problems
- Learn to see things from different perspectives
- More comfort discussing ideas because of informality and small group size
Special Benefits

- Participants formed natural study groups, for later CS classes
- Had fun learning
- Gained a wonderful new set of friends!
Benefits for Peer Leaders

• Better understanding of the material
• Increased confidence to continue in CS
• Appreciation for different teaching & learning styles
• Improved leadership skills
• Collegial relationship with CS faculty
Benefits for Peer Leaders

• Personal rewards of fostering student learning and of giving back to University community

• Chance to try out educator role to see if it suits them

• Learned to explain new concepts in many ways

• It’s fun!
Consortium Report

Environment—Rutgers University

- Public Research I university
- State University of New Jersey
 - ~35,000 grad and undergrad students in New Brunswick on multiple campuses
 - ~100 CS majors per year (class of 2008)
- CS in Faculty of Arts and Sciences with B.S. and B.A. degrees
 - 17 courses in B.S., starts with CS1
- Called our PLTL course: Rutgers Emerging Scholars in CS (RESCS)
Rutgers CS1 course

• One intro CS course: *Intro to Computer Science* (in Java) req’d for CS majors and all science/math students

• Lectures (3 hr/wk) & hands-on, programming labs supervised by TAs (1 hr/wk)

• RESCS students took that course plus one session (2 hrs) per week of peer-led team learning

 - RESCS session was P/F, grade based on attendance and participation
Recruitment

- Targeted incoming freshman
 - Presentations at on-campus pre-registration meetings
 - Postcards sent to home addresses
 - Follow-up emails
 - Worked with advisors and minority counselors to suggest program participation, especially Dean of freshmen
 - Webpage
 - In-class recruiting
Recruitment

• Peer Leaders
 - Solicited from among good students in class in previous term(s)
 - Trained peer leaders through annual workshop and weekly meetings with instructors
 - Always gave peer leaders questions and worked out answers
Administrative Details

- Worked with deans and scheduling to obtain conference room setting for sessions
- DCS Associate Chair allowed RESCS to be 1 credit P/F independent study w Ryder
 - Grade decoupled from CS1 course; based solely on attendance and participation in sessions
- Obtained DCS buy-in from Dept Chair, Associate Chair, Deans in Office of Undergrad Academic Affairs
- Reporting participation with Registrar’s support; needed EEOC categories on students
Adding Value to DCS

• Peer leaders chosen primarily from target population
 - Leadership and personal growth opportunity
 - Allowed exploration of an educational career

• Career Nights
 - Recent DCS Alumni returned to campus to talk about their experiences
 - Every term, well attended by 30-40 students
 - Evening event proceeded by pizza/soda
 - Recording of audio available afterwards on Web
Observations

• Quantitative data for Rutgers alone often was not sufficient for statistically significant conclusions
 - RESCS often has lower drop rate than CS1
 - RESCS overall has shift to higher grades over CS1, although some RESCS students receive F’s

• Data from entry/exit surveys showed
 - RESCS was considered helpful by students
 - Students seemed to gain confidence in programming Java and understanding Java programs through RESCS
 - Students enjoyed the RESCS type of learning environment
Gender and Ethnicity of Participants

Number of RESCS Students

- Asian/Pacific Islander
- African-American
- Hispanic
- Puerto Rican
- White
- Other/Not reported

SEES 11/2012, B.G. Ryder
Grades: RESCS vs non-RESCS

Percentage of all graded students

<table>
<thead>
<tr>
<th>Grade</th>
<th>RESCS</th>
<th>CS111</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>B+</td>
<td>25%</td>
<td>15%</td>
</tr>
<tr>
<td>B</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>C+</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>C</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>D</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>F</td>
<td>0%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Fall 2005
Grades: RESCS vs non-RESCS

<table>
<thead>
<tr>
<th>Grade</th>
<th>RESCS</th>
<th>non-RESCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>25%</td>
<td>20%</td>
</tr>
<tr>
<td>B</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>B+</td>
<td>10%</td>
<td>7%</td>
</tr>
<tr>
<td>C</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td>C+</td>
<td>0%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Percentage of all graded students

Fall 2006
Measures of Success for Entire Grant Population

• Higher grades & Lower drop rates than non-PLTL students (stat.sig.)
 - Even better grades results for female students
• Increased interest in computer science for participants and Peer Leaders
• Enrollment in additional CS courses
• Attitudinal changes measured in the surveys
Participant Comments

- This class was awesome, because the informal setting allowed me to participate actively, and actually enjoy computer science.
- I thought this course was very beneficial to my learning of java, especially since I had never programmed before in any language.
- The stuff we did was cool and I learned a lot!!!
- This class is very helpful. I am doing better in CS 111 because of it.
- Today's exercises were hard, but interesting. I enjoyed playing NIM3 and the magic squares were very complicated.
- I really liked today's exercises because they reinforced what we did in class. They were good practice, and had a little twist to them.
Survey Feedback

- Why enroll in CS1 & RESCS?
 - Women
 - Wanted to see if they enjoyed programming or CS
 - Responded to email invitation
 - Because of parental advice
 - Men
 - Course was required for major
 - Already interested in being CS/CE major
Survey Feedback

• Why RESCS students did not major in CS?
 - Don’t want to sit in front of a computer all day
 - Had decided before taking CS1 on another major
 - Programming isn’t ‘thrilling’
 - Want to work with people
Survey Feedback

• **F2006:**
 - Some indication that RESCS students entered with slightly less confidence to perform Java programming tasks and gained more perceived ability compared to the non-RESCS students.
 - 40% RESCS students expressed concern about outsourcing

• **S2007:**
 - Self-perceived ability to read a Java program (stat. sig)
 - RESCS students showed significant increase in being comfortable about asking another student for help
 - RESCS students showed strong agreement that working in teams has benefits over working individually
Since Spring 2008….

- Starting in Fall 2008
 - Offered RESCS as recitation mode in CS1 course to ALL students
 - Group learning seems to support students across the ‘talent divide’ well
 - Use of peer leaders was welcomed by students and worked well
 - Challenge getting/training enough undergrad peer leaders (between 11-32 per semester w 3-10 students per group)

- Positive outcome
 - “Created CS community that undergrads wanted to be a part of”
 - “improved the atmosphere of our undergrad program”
 - Were able to get 3 hours/week/per peer leader funding from Dean
How to Start a PLTL Program: Critical Components

• **Admin support**
 - $$ for peer-leader salaries
 - “Credit” for program supervisor

• **Course instructor closely involved**
 - Reviews materials, suggests topics & problems
 - Attends weekly meetings, mentors peer leaders

• **Need appropriate physical environment**
 - Not desks in rows!
Critical Components

• Trained and closely supervised leaders
 - Pre-semester training
 - Weekly meetings
 - Meeting feedback from students

• Small groups (5-8 students); attendance required

• Appropriate materials
 - Good fit with course material; relevant!
 - Engaging; appropriately challenging
 - Variety of styles
 - Suitable for groups
Summary

• RESCS, an experiment with PLTL in CS that continues:
 - Aimed at underrepresented groups
 • Somewhat successful in attracting target population
 • Need to attract more women both to CS1 and to RESCS
 - Considered useful by students who participated
 - Survey results, drop rates, and grades difficult to interpret, due to small numbers of students
 • Could only get info over aggregate of all participants
 - We are convinced the program is a good pedagogical tool, but not sufficient to address the underrepresentation problem
Questions?