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Outline
Part 1
* What is program analysis for OOPLs?
- Reference analyses
- Type-based
- Flow-based
* Flow sensitivity

* Field sensitivity

* Context sensitivity
- 1-CFA, Object-sensitive

Intl School SE, Salerno, Sept'06, B G Ryder-1 2




Outline

Part 2

* New results on accommodating
reflection in points-to analysis

- Applications of analysis in software
tools to increase programmer
productivity

- Using infeasibility analysis to enable better test
coverage for recovery code

- Combining static and dynamic analysis to report
change impact of edits

Intl School SE, Salerno, Sept'06, B G Ryder-1

What is program analysis?

+ Static program analysis extracts information
about program semantics from code, without
running it
- E.g., Def-use analysis for dependences

- Builds an abstract representation of the program
and solves the analysis problem

- Dynamic program analysis extracts
information from a program execution
- E.g., Profiling, dynamic slicing

+  Our focus: static reference analyses
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Object-oriented PL

* Characterized by data abstraction,
inheritance, polymorphism

- Allows dynamic binding of method calls
* Allows dynamic loading of classes

- Allows querying of program semantics
at runtime through reflection
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Reference Analysis

» Determines information about the
set of objects to which a
reference variable or field may
point during program execution
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Reference Analysis

- OOPLs need type information about objects
to which reference variables can point to
resolve dynamic dispatch

- Often data accesses are indirect to object
fields through a reference, so that the set
of objects that might be accessed depends
on which object that reference can refer at
execution time

* Need to pose this as a compile-time program
analysis with representations for reference
variables/fields, objects and classes.
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Reference Analysis enables...

» Construction of possible calling
structure of program

- Dynamic dispatch of methods based on runtime
type of receiver  x.f():

» Understanding of possible dataflow in
program

- Indirect side effects through reference variables
and fields r.g=
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Uses of Reference Analysis
Information in Software Tools

* Program understanding tools (flow)
- Semantic browers
- Program slicers
- Software maintenance tools
(type,flow)
- Change impact analysis tools
- Testing tools (flow)

- Coverage metrics
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Example Analyses

- Type hierarchy-based
- CHA, RTA
* Incorporating flow
- FieldSens (Andersen-based points-to)
» Incorporating flow and calling context
- 1-CFA
- Object-sensitive
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cf Frank Tip, OOPSLA'00

Example

static void main(){ class A {
B bl = new B(); foo(){.-.}
A al = new A(); } A
£(bl); class B extends A{
} g(bl); y foo() {..}
static void f(A a2){ }1 B
a2.£00(); c afss (C) e{xt}ends B{ /
oo
o
static void g (B b2){ } C D
B b3 = b2; class D extends B{
b3 = new C(); foo(){..}
b3.foo ()% }
}
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cf Frank Tip, OOPSLA'00
static void main(){ I/' = \"clafss A {{ }
oo(){..

B bl = new B();
}

A al = new A();
class B extends A{

| A
£(bl); L Ly ‘
g(bl); v, foo() {..} |

} ! } B
D

static void f(A a2){ n class C extends B{

a2.foo(); l: ¢_~_~_____f_ _ foo() {..}
} ~ ~o / - -
tatic void g(B b2) {\ 7l\
B b3 = b2; L/ =
SS foo
b3 = new C(L == “‘} O {}

-

b3.foo();

| C
class D extends B{ ‘

Cone(Declared_type(receiver))
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CHA Characteristics

- Ignores program flow

Calculates types that a reference
variable can point to

- Uses 1 abstract reference variable
per class throughout program

Uses 1 abstract object to represent
all possible instantiations of a class

J. Dean, D. Grove, C. Chambers, Optimization of OO Programs Using Static
Class Hierarchy, ECOOP’95
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cf Frank Tip, OOPSLA'00

RTA Example

static void main(){
B bl = new B(); e
A al = new A();

£(bl); A
g(bl);
} 1 — foo() {..}
1 ’
static void f(A a2){ ’ } B
a2.foo(); 1 ,/ class C extends B{ //
Ny /
C

class A {
foo(){..}
}

I
I
: class B extends A{

-

~

} \‘;___z__’i — foo() {..}
static void g (B b2){ /
- / D
B b3 = b2; / class D extends B{
b3 = new C(); foo(){..}

b3.foo(); }

}
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RTA Characteristics

- Only analyzes methods reachable from
main(), on-the-fly

- Ignores classes which have not been
instantiated as possible receiver types

+ Uses 1 abstract reference variable per class
throughout program

+ Uses 1 abstract object to represent all
possible instantiations of a class

D. Bacon and P. Sweeney, * Fast Static Analysis
of C++ Virtual Function Calls”, OOPSLA’96
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Clients of CHA & RTA

* Call graph construction
- Estimate dynamic dispatch targets

- A pre-requisite for all static analyses of
OOPLs that trace interprocedural flow

* E.g., slicing, obtaining method coverage metrics
for testing, understanding calling structure of
legacy code, heap optimization, etc
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static void main(){
B bl = new B();
A al = new A();
f(bl);
g(bl);

}

static void f(A a2){
a2.foo();

}

static void g(B b2){
B b3 = b2;
b3 = new C();
b3.foo();

}
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FieldSens Example

al___ , o0,

b2 b3
Points-to Graph
summarizes
reference/object o

relationships

cf Frank Tip, OOPSLA'00

FieldSens Example

static void main(){

class A {
B bl = new B(); foo(){..}
A al = new A(); }
f(bl); 1
ey 0 og class B extends A{

static void f(A a2){ /i

} > foo() {..}
/
}
a2.foo(); /' class C extends B{

}

1
»static void g(B b2){;
/

B b3 = b2;
b3 = new C(); -
b3.foo(); --

}
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1

foo() {..}

}

class D extends B{
foo(){..}

cf Frank Tip, OOPSLA'00




FieldSens Characteristics
* Only analyzes methods reachable
from main()
+ On-the-fly call graph construction
* Keeps track of individual reference
variables and fields

* Groups objects by their creation site

* Incorporates reference value flow in
assignments and method calls

A. Rountev, A. Milanova, B. G. Ryder, “Points-to Analysis for
Java Using Annotated Constraints”. OOPSLA’01
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Some Clients of FieldSens

- Improving precision of call graphs with
truly polymorphic call sites

* Calculating object read/write’'s through
references

* Calculating objects escaping from their
creation environment (e.g., a thread)

Intl School SE, Salerno, Sept'06, B G Ryder-1
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Rountev et.al, OOPSLA'O1

Experiments

+ 23 Java programs: 14 - 677 user classes, with
57K-1,070K bytecode
- Added the necessary library classes (JDK 1.1)
- Machine: 360 MHz, 512Mb SUN Ultra-60
+ Cost measured in time and memory

* Points-to algorithm presented as an inclusion
constraint solution problem
- Migrated Andersen'’s points-to analysis for C to Java
* Precision (wrt usage in client analyses and
transformations)
- Call graph construction
- Thread-local heap discovery
- Object read-write information
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Rountev et.al, OOPSLA'01
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Rountev et.al, OOPSLA'O1

Resolution of Virtual Call Sites
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Rountev et.al, OOPSLA'01

Number of Objects Created

Program Objects Created

compress 456
db 154,325
mtrt 6,457,298
jlex 7,350
jack 1,340,919
jess 7,902,221
mpegaudio 2,025
sablecc 420,494
javac 3,738,777
javacc 43,265
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Rountev et.al, OOPSLA'O1

Thread & Method-local new()'s
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Rountev et.al, OOPSLA'01

Object Read-Write Info

* Measured number of objects accessed
on average at indirect reads/writes

* More than 1/2 the accesses were to a single
object (the lower bound) and

* On average 81% were resolved to at most 3
objects
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1-CFA Analysis

Improves on FieldSens by keeping track
of calling context

static void main(){ } a4
B bl = new B();//0, bl—— % C3
A al = new A();//0, ‘\\\\\
A a2,a3; al _ , o0, a2
Cl: a2 = f(bl); /‘
C2: az2.foo();
C3: a3 = f(al); a3
C4: a3.foo();

}

Points-to Graph

public static A f(A a4){return a4;}

Intl School SE, Salerno, Sept'06, B G Ryder-1

at C2, main calls B.foo()
at C4, main calls A.foo()

27

1-CFA Characteristics

Only analyzes methods reachable from main()

* Keeps track of individual reference variables
and fields

* Groups objects by their creation site

* Incorporates reference value flow in
assignments and method calls

Differentiates points-to relations for
different calling contexts

Intl School SE, Salerno, Sept'06, B G Ryder-1
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Ryder, CC'03

Dimensions of Precision

* Independent characteristics of a
reference analysis which determines its
precision

- Different combinations of these
dimensions have already been explored
in algorithms

* Need to understand what choices are
available to design new analyses of
appropriate precision for clients

Intl School SE, Salerno, Sept'06, B G Ryder-1 29

Dimensions of Precision

* Program representation - Call graph

- Use hierarchy-based approximation

+ Do reference analysis based on an already built
approximafe call graph - Palsberg'91, Chatterjee'99,

Sundaresan'00, Liang'01
- Lazy on-the-fly construction

* Only explore methods which are statically reachable from
the main() (especially library methods)
+ Interleave reference analysis and call graph construction

- Oxhoj'92, Razafimahefa'99, Rountev'01, Grove'01, Liang'01,
Milanova'02, Whaley'02
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Dimensions of Precision

- Object Representation

- Use one abstract object per class -
Hierarchy-based analyses: Dean'95, Bacon'96; Flow-based
analyses; Diwan'96, Palsberg'91, Sundaresan'00, Tip'00

- 6roup object instantiations by creation

site - Points-to analyses: Grove'O1, Liang'01, Rountev'O1,
Milanova'02. Whaley'02

- Finer-grained object naming - oxhoj92,
Plevyak'94, Grove'01, Liang'02, Milanova'02

Intl School SE, Salerno, Sept'06, B G Ryder-1
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Dimensions of Precision

Field Sensitivity
* Field-independent(fi)

- Do not distinguish reference fields of an object, -
Rountev'O1, Lhotek & Hednren CC'03

* Field-based(fb)

* Use one abstract field per field name (across all
objects), -Lhotek & Hendren, CC'03

- Field-sensitive(fs)
* Use one abstract field per field per abstract object

(usually a creation site), -Rountev'01, Lhotek & Hednren
cco3

Intl School SE, Salerno, Sept'06, B G Ryder-1
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Lhotek & Hendren, €C'03

Spark Experiments

* Precision measure incorporated unreachable
dereferences and unique object reference
targets
- Precision of fb:fs was 57.7:60.0 on average
- Time cost was very similar
- Space cost of fb:fs was 86.6:138.4 on average

* Lesson learned: sometimes less precision is
okay - need to know the client of the points-
to info

Intl School SE, Salerno, Sept'06, B G Ryder-1 33

Dimensions of Precision

 Reference representation

- Use one abstract reference per class - Dean'95, Bacon'96,
Sundaresan’00

- Use one abstract reference for each class per method -
Tip'00

- Represent reference variables or fields by their names
program-wide - Sundaresan'00, Liang'01, Rountev'01, Milanova'02

- XTA: example of one abstract reference for each
class per method
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XTA Analysis

Calculates set of classes that reach a
method, incorporating (limited) flow
Uses an on-the-fly constructed call
graph

Uses one abstract object per class with
distinct fields

Uses one abstract reference per class
in each method

F. Tip and J. Palsberg, “Scalable Propagation-based
Call Graph Construction Algorithms”, OOPSLA’00
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cf Frank Tip, OOPSLA'00

Example of XTA

{A.B}
tati id in(){ class A {
static void main -
B bl = new B(); ;7T T Tt} A
A al = new A(); : }
£(bl); . class B e{xt}ends A{
g(bl); 1 foo() {..
} \ {A.B} | i B
static void f(A a2){ class C extends B{ /
a2.foo(); <x— ) £00() {..}
} B8/ .-+ CD
static void g(B b2){ “  class D extends B{
B b3 = b2; ! £00() {.}
b3 = new C(); ,I }
b3.foo(); 4

} =

Intl School SE, Salerno, Sept'06, B G Ryder-1 36
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Dimensions of Precision

- Directionality

- How flow in reference assignments (r=s) is
interpreted by the analysis

+ Symmetric (Unification): r and s have same
Eomfs -to set after the assignment - Rruroo,
iang'01
+ Directional (Inclusion): r's points-to set includes

s's points-to set after the assi nmem‘ -
Sundarasen'00, Rountev'01, Liang'01, Milanova'02, Whaley'02

Intl School SE, Salerno, Sept'06, B G Ryder-1
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Dimensions of Precision

- Flow sensitivity

- Analyses which capture the sequential
order of execution of program statements
= Diwan'96,Chatterjee'99, Whaley'02

- E.G. , flow-sensitive:

1. A s,t;
rer at 2., s refers to o,
2. s = new A();//o,
at 3., s,t refer to o,
3. £ =s; at 4., s refers to o
4. s = new A();//o, N 2

t refers to o,
flow-insensitive:
s,t refer to {0, 0,}

Intl School SE, Salerno, Sept'06, B G Ryder-1
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Imprecision of Context
Insensitivity

class Y extends X{ .. }

class A{
X £;

s 4
void m(x q) / \\ I[ \
\

} ’ l’\
A a =new A();//o, K \\\
a.m(new X());//o, 1 g \\

A aa = new A();//o;
aa.m(new Y());//o,

Intl School SE, Salerno, Sept'06, B G Ryder-1 39

Dimensions of Precision

- Context sensitivity

- Analyses which distinguish different calling
contexts - sharir/Pnuelial
* Call string - Palsberg'91,6rove'01
* Functional approach- plevyak'94, Agesen's5, Milanova'02
- 1-CFA, example of call string approach

- ObjSens, example of functional approach

Intl School SE, Salerno, Sept'06, B G Ryder-1 40
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ObjSens Analysis
Based on Andersen's points-to for C

Uses receiver object to distinguish
different calling contexts

Groups objects by creation sites

Represents reference variables and
fields by name program-wide

* Flow-insensitive

A. Milanova, A. Rountev, B. G. Ryder, “Parameterized Object-sensitivity for
Points-to and Side-effect Analyses for Java” ISSTA’02.

A. Milanova, A. Rountev, B.G. Ryder, “Parameterized Object Sensitivity for
Points-to Analysis for Java”, in ACM Transactions on Software Engineering
Methodology, Volume 14, Number 1, pp 1-41, January 2005.
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ObjSens Analysis

- Shown to analyze to OO programming
idioms well

- Field encapsulation using set methods
this.f=x

- Superclass constructor setting subclass
object fields

- Uses of containers

Intl School SE, Salerno, Sept'06, B G Ryder-1 42
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Side-effect Analysis:
Modified Objects Per Statement

Milanova, ISSTA'02

jb jess sablecc raytrace Average

B One 0OTwoorthree 0OFourtonine M More than nine
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Side Effect Analysis

Comparison Milanova, TOSEMO05
90%
Percentage of write statements
80% reporting number of objects shown, 78%

on average, as experiencing side effects.
ge, P! 9 72%

70%

60%

50%

40%

30%

20%

10%

0% -
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1-CFA more precise than

static void main(){ Objsens

D dl1 = new D();

if (..)Cl: (dl.f(new B())).g();
else C2: (dl.f(mew C())).g();
}

public class D
{ public A f(A al){return al;}
}

this, /o7

dl——— 9%

I

this; ¢/c,

Intl School SE, Salerno, Sept'06, B G Ryder-1

1-CFA

/I\

B
20 20 X(A)

OB‘\C\ al

O¢

45

1-CFA more precise than

ObjSens

static void main(){
D dl1 = new D();
if (..)Cl: (dl.f(new B())).g();

1-CFA

else C2: (dl.f(new C())).g();

at
public class D

Cl and C2;

1-CFA distinguishes the
} two calling contexts of D.f

At C1, B.g() called;

{ public A £(A al){return al;} |a¢ c2, C.g() called;

}

dl—— %

IR

this; ¢/c,

Intl School SE, Salerno, Sept'06, B G Ryder-1

OB‘\C\ al

CZ‘jTiEzﬂ;>
o/

c
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1-CFA more precise than

static void main(){ Objsens

D dl1 = new D();

if (..)Cl: (dl.f(new B())).g();
else C2: (dl.f(mew C())).g();
}

public class D
{ public A f(A al){return al;}
}

this

O;\\\\i::::Z::;
dl Op

Intl School SE, Salerno, Sept'06, B G Ryder-1

ObjSens

/I\

B
20 20 X(A)

OB‘\\\\\\\al

ret, .
r/::;,/////>
o

c
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1-CFA more precise than

ObjSens

static void main(){
D dl1 = new D();
if (..)Cl: (dl.f(new B())).g();
else C2: (dl.f(mew C())).g();
}
public class D
{ public A f(A al){return al;}
}

this
OB

dl——— %

Intl School SE, Salerno, Sept'06, B G Ryder-1

ObjSens

ObjSens groups the two
calling contexts of D.f
with the same receiver
at C1 and C2;

Both B.g(),C.g() are
called at C1 and C2;

48
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ObjSens more precise than
1-CFA

public class A X g()

AN
A (X xa){ this.xx=xa;}

} Y B

public class B extends A g0 g0 ()

{ B (X xb){C3: super(xb);}

public X £() {return this.xx;} ObJSens

static void main(){

X x1,x2;
Cl: B bl = new B(new Y());//0Og,
C2: B b2 new B(new Z());//0g,

thisg,
XX «—  Xag

e
bl — oy, o« xb,,

XX / xaBz

xb,,

b2 — o,

> o;
Intl School SE, Salerno, Sept'06, B 6 Ryder-1 \_’ th i
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ObjSens more precise than
public class A I-CFA

{ X xx;

X 20 A
A (X xa){ this.xx=xa;} / \ |
}

public class B extends A Y Z B
{ B (X xb){C3: super(xb);} g0 g0 fO
public X f() {return this.xx;}

static void main(){ thiSf 3

X x1,x2; - XX

Cl: B bl = new B(new Y());//oy, bl > Op; Oy

C2: B b2 = new B(new Z());//o,, /
x1=bl.f(); x1 xx

C4: x1.9(); b2——+o0.. " o
x2=b2.£(); B2 z

C5: x2.9(); this o, /
} x2

ObjSens

Intl School SE, Salerno, Sept'06, B G Ryder-1
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ObjSens more precise than
public class A I'CFA

{ X xx; X g() A
A (X xa){ this.xx=xa;} / \ |

}

public class B extends A Y Z B

{ B (X xb){C3: super(xb);} g0 g0 f0)

public X f() {return this.xx;}
static void main(){

X x1,x2;
Cl: B bl = new B(new ¥());//o : :
C2: B b2 = new B(new Z());//oz: ObjSens finds
x1=bl.£(); C4 calls Y.g() and
Cd: x1.9(); C5 calls Z.g()
x2=b2.£();

C5: x2.g();
}

Intl School SE, Salerno, Sept'06, B G Ryder-1
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ObjSens more precise than
public class A I'CFA

{ X xx; X 20 A
A (X xa){ this.xx=xa;} / \ |

} Y

public class B extends A

{ B (X xb){C3: super(xb);} gO gO fO

public X f() {return this.xx;}
static void main(){

X x1,x2;
Cl: B bl = new B(new Y());//0Og,
C2: B b2 = new B(new 2());//0g,

1-CFA

this

52
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ObjSens more precise than
1-CFA

public class A

{ % xx; X0 A
A (X xa){ this.xx=xa;} / \ |

}

public class B extends A Y Z B

{ B (X xb){C3: super(xb);} g0 g0 fO
public X f() {return this.xx;}
static void main(){ I-CFA

X x1,x2;

Cl: B bl = new B(new Y());//oy,
C2: B b2 = new B(new Z());//og,
x1=bl.£f();

. . XX
C4: x1.9(); bl——0, ---7-- > 0oy
x2=b2.£(); oy 3 x1
} ,:_’::_3{_!5___;‘
b2 > Op2 XX o,
Intl School SE, Salerno, Sept'06, B 6 Ryder-1 53

ObjSens more precise than
1-CFA

public class A

{ X xx; X g() A
A (X xa){ this.xx=xa;} / \ |

}

public class B extends A Y Z B

{ B (X xb){c3: super(xb);} g0 20 ()

public X f() {return this.xx;}
static void main(){

X x1,x2;

Cl: B bl = new B(new Y());//oy,
C2: B b2 = new B(new Z());//og,

x1=bl.£f();
C4: x1.g9();
x2=b2.£f();
C5: x2.g();
}

Intl School SE, Salerno, Sept'06, B 6 Ryder-1

1-CFA finds
C4 calls Y.g(), Z.g() and
C5 calls Y.g(), Z.9()
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Comparison Conclusion

* The call string and functional
approaches to context sensitivity are
incomparable!

* Neither is more powerful than the
other

- Recent papers show that object-
sensitive is effective in static analysis
of race conditions (aiken et. al, PLDI06)
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Difficult Issues

* Use of reflection and dynamic class
loading

- Need whole program for a safe analysis

- Java native methods
- Need to model possible effects

- Exceptions
* Incomplete programs
* Lack of benchmarks
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