Practical Program Analysis of
Object-oriented Software
Part 1
Dr. Barbara 6. Ryder
Rutgers University
RUTGERS
PROLANGS

http://www.cs.rutgers.edu/~ryder
September 2006

Intl School SE, Salerno, Sept'06, B G Ryder-1 1

Outline
Part 1
* What is program analysis for OOPLs?
- Reference analyses
- Type-based
- Flow-based
* Flow sensitivity

* Field sensitivity

* Context sensitivity
- 1-CFA, Object-sensitive

Intl School SE, Salerno, Sept'06, B G Ryder-1 2

Outline

Part 2

* New results on accommodating
reflection in points-to analysis

- Applications of analysis in software
tools to increase programmer
productivity

- Using infeasibility analysis to enable better test
coverage for recovery code

- Combining static and dynamic analysis to report
change impact of edits

Intl School SE, Salerno, Sept'06, B G Ryder-1

What is program analysis?

+ Static program analysis extracts information
about program semantics from code, without
running it
- E.g., Def-use analysis for dependences

- Builds an abstract representation of the program
and solves the analysis problem

- Dynamic program analysis extracts
information from a program execution
- E.g., Profiling, dynamic slicing

+ Our focus: static reference analyses

Intl School SE, Salerno, Sept'06, B G Ryder-1

Object-oriented PL

* Characterized by data abstraction,
inheritance, polymorphism

- Allows dynamic binding of method calls
* Allows dynamic loading of classes

- Allows querying of program semantics
at runtime through reflection

Intl School SE, Salerno, Sept'06, B G Ryder-1

Reference Analysis

» Determines information about the
set of objects to which a
reference variable or field may
point during program execution

Intl School SE, Salerno, Sept'06, B G Ryder-1

Reference Analysis

- OOPLs need type information about objects
to which reference variables can point to
resolve dynamic dispatch

- Often data accesses are indirect to object
fields through a reference, so that the set
of objects that might be accessed depends
on which object that reference can refer at
execution time

* Need to pose this as a compile-time program
analysis with representations for reference
variables/fields, objects and classes.

Intl School SE, Salerno, Sept'06, B G Ryder-1

Reference Analysis enables...

» Construction of possible calling
structure of program

- Dynamic dispatch of methods based on runtime
type of receiver x.f():

» Understanding of possible dataflow in
program

- Indirect side effects through reference variables
and fields r.g=

Intl School SE, Salerno, Sept'06, B G Ryder-1

Uses of Reference Analysis
Information in Software Tools

* Program understanding tools (flow)
- Semantic browers
- Program slicers
- Software maintenance tools
(type,flow)
- Change impact analysis tools
- Testing tools (flow)

- Coverage metrics

Intl School SE, Salerno, Sept'06, B G Ryder-1

Example Analyses

- Type hierarchy-based
- CHA, RTA
* Incorporating flow
- FieldSens (Andersen-based points-to)
» Incorporating flow and calling context
- 1-CFA
- Object-sensitive

Intl School SE, Salerno, Sept'06, B G Ryder-1

cf Frank Tip, OOPSLA'00

Example

static void main(){ class A {
B bl = new B(); foo(){.-.}
A al = new A(); } A
£(bl); class B extends A{
} g(bl); y foo() {..}
static void f(A a2){ }1 B
a2.£00(); c afss (C) e{xt}ends B{ /
oo
o
static void g (B b2){ } C D
B b3 = b2; class D extends B{
b3 = new C(); foo(){..}
b3.foo ()% }
}
Intl School SE, Salerno, Sept'06, B G Ryder-1 11
cf Frank Tip, OOPSLA'00
static void main(){ I/' = \"clafss A {{ }
oo(){..

B bl = new B();
}

A al = new A();
class B extends A{

| A
£(bl); L Ly ‘
g(bl); v, foo() {..} |

} ! } B
D

static void f(A a2){ n class C extends B{

a2.foo(); l: ¢_~_~_____f_ _ foo() {..}
} ~ ~o / - -
tatic void g(B b2) {\ 7l\
B b3 = b2; L/ =
SS foo
b3 = new C(L == “‘} O {}

-

b3.foo();

| C
class D extends B{ ‘

Cone(Declared_type(receiver))

Intl School SE, Salerno, Sept'06, B G Ryder-1

CHA Characteristics

- Ignores program flow

Calculates types that a reference
variable can point to

- Uses 1 abstract reference variable
per class throughout program

Uses 1 abstract object to represent
all possible instantiations of a class

J. Dean, D. Grove, C. Chambers, Optimization of OO Programs Using Static
Class Hierarchy, ECOOP’95

Intl School SE, Salerno, Sept'06, B G Ryder-1 13

cf Frank Tip, OOPSLA'00

RTA Example

static void main(){
B bl = new B(); e
A al = new A();

£(bl); A
g(bl);
} 1 — foo() {..}
1 ’
static void f(A a2){ ’ } B
a2.foo(); 1 ,/ class C extends B{ //
Ny /
C

class A {
foo(){..}
}

I
I
: class B extends A{

-

~

} \‘;___z__’i — foo() {..}
static void g (B b2){ /
- / D
B b3 = b2; / class D extends B{
b3 = new C(); foo(){..}

b3.foo(); }

}

Intl School SE, Salerno, Sept'06, B G Ryder-1 14

RTA Characteristics

- Only analyzes methods reachable from
main(), on-the-fly

- Ignores classes which have not been
instantiated as possible receiver types

+ Uses 1 abstract reference variable per class
throughout program

+ Uses 1 abstract object to represent all
possible instantiations of a class

D. Bacon and P. Sweeney, * Fast Static Analysis
of C++ Virtual Function Calls”, OOPSLA’96

Intl School SE, Salerno, Sept'06, B G Ryder-1

Clients of CHA & RTA

* Call graph construction
- Estimate dynamic dispatch targets

- A pre-requisite for all static analyses of
OOPLs that trace interprocedural flow

* E.g., slicing, obtaining method coverage metrics
for testing, understanding calling structure of
legacy code, heap optimization, etc

Intl School SE, Salerno, Sept'06, B G Ryder-1

static void main(){
B bl = new B();
A al = new A();
f(bl);
g(bl);

}

static void f(A a2){
a2.foo();

}

static void g(B b2){
B b3 = b2;
b3 = new C();
b3.foo();

}

Intl School SE, Salerno, Sept'06, B G Ryder-1

FieldSens Example

al___ , o0,

b2 b3
Points-to Graph
summarizes
reference/object o

relationships

cf Frank Tip, OOPSLA'00

FieldSens Example

static void main(){

class A {
B bl = new B(); foo(){..}
A al = new A(); }
f(bl); 1
ey 0 og class B extends A{

static void f(A a2){ /i

} > foo() {..}
/
}
a2.foo(); /' class C extends B{

}

1
»static void g(B b2){;
/

B b3 = b2;
b3 = new C(); -
b3.foo(); --

}

Intl School SE, Salerno, Sept'06, B G Ryder-1

1

foo() {..}

}

class D extends B{
foo(){..}

cf Frank Tip, OOPSLA'00

FieldSens Characteristics
* Only analyzes methods reachable
from main()
+ On-the-fly call graph construction
* Keeps track of individual reference
variables and fields

* Groups objects by their creation site

* Incorporates reference value flow in
assignments and method calls

A. Rountev, A. Milanova, B. G. Ryder, “Points-to Analysis for
Java Using Annotated Constraints”. OOPSLA’01

Intl School SE, Salerno, Sept'06, B G Ryder-1

Some Clients of FieldSens

- Improving precision of call graphs with
truly polymorphic call sites

* Calculating object read/write’'s through
references

* Calculating objects escaping from their
creation environment (e.g., a thread)

Intl School SE, Salerno, Sept'06, B G Ryder-1

10

Rountev et.al, OOPSLA'O1

Experiments

+ 23 Java programs: 14 - 677 user classes, with
57K-1,070K bytecode
- Added the necessary library classes (JDK 1.1)
- Machine: 360 MHz, 512Mb SUN Ultra-60
+ Cost measured in time and memory

* Points-to algorithm presented as an inclusion
constraint solution problem
- Migrated Andersen'’s points-to analysis for C to Java
* Precision (wrt usage in client analyses and
transformations)
- Call graph construction
- Thread-local heap discovery
- Object read-write information

Intl School SE, Salerno, Sept'06, B G Ryder-1 21

Rountev et.al, OOPSLA'01

Analysis Time

400

Seconds

> 0 2 o] = X o ® x X olo o o 2 c 0
X o T = ;° o £ 8 & 583 00 9o 2 318 § & E O & o
o o 0O ® £ 5 = 0 8 8 & T 5|2 > 2 g 2 € @
[o = e ® — = 3 =5 2 8 & = w 3 >
e o S > = S 7|lw T o S £ &
£ © © o 2 e =

hd -— Q [o =

3 e E

£

Intl School SE, Salerno, Sept'06, B G Ryder-1 22

11

Rountev et.al, OOPSLA'O1

Resolution of Virtual Call Sites

20

80

70

60

50

40 -

30 +

20

% Resolved Call Sites

10

o -

M Points-to B RTA

Call sites all reported as polymorphic by CHA

Intl School SE, Salerno, Sept'06, B G Ryder-1 23

Rountev et.al, OOPSLA'01

Number of Objects Created

Program Objects Created

compress 456
db 154,325
mtrt 6,457,298
jlex 7,350
jack 1,340,919
jess 7,902,221
mpegaudio 2,025
sablecc 420,494
javac 3,738,777
javacc 43,265

Intl School SE, Salerno, Sept'06, B G Ryder-1 24

12

Rountev et.al, OOPSLA'O1

Thread & Method-local new()'s

120%

Thread-local B Method-local

99% 100%
100% -

85% 87%

80%

60%

40% -

20% -

0% -

a a 3 - - o 3 @ - [
] 5 o] o o o o
3 Ed x 2 @ 3 S]]
° Q [] 2] o
o o q 3
c
@ [
)
Intl School SE, Salerno, Sept'06, B G Ryder-1 25

Rountev et.al, OOPSLA'01

Object Read-Write Info

* Measured number of objects accessed
on average at indirect reads/writes

* More than 1/2 the accesses were to a single
object (the lower bound) and

* On average 81% were resolved to at most 3
objects

Intl School SE, Salerno, Sept'06, B G Ryder-1 26

13

1-CFA Analysis

Improves on FieldSens by keeping track
of calling context

static void main(){ } a4
B bl = new B();//0, bl—— % C3
A al = new A();//0, ‘\\\\\
A a2,a3; al _ , o0, a2
Cl: a2 = f(bl); /‘
C2: az2.foo();
C3: a3 = f(al); a3
C4: a3.foo();

}

Points-to Graph

public static A f(A a4){return a4;}

Intl School SE, Salerno, Sept'06, B G Ryder-1

at C2, main calls B.foo()
at C4, main calls A.foo()

27

1-CFA Characteristics

Only analyzes methods reachable from main()

* Keeps track of individual reference variables
and fields

* Groups objects by their creation site

* Incorporates reference value flow in
assignments and method calls

Differentiates points-to relations for
different calling contexts

Intl School SE, Salerno, Sept'06, B G Ryder-1

28

14

Ryder, CC'03

Dimensions of Precision

* Independent characteristics of a
reference analysis which determines its
precision

- Different combinations of these
dimensions have already been explored
in algorithms

* Need to understand what choices are
available to design new analyses of
appropriate precision for clients

Intl School SE, Salerno, Sept'06, B G Ryder-1 29

Dimensions of Precision

* Program representation - Call graph

- Use hierarchy-based approximation

+ Do reference analysis based on an already built
approximafe call graph - Palsberg'91, Chatterjee'99,

Sundaresan'00, Liang'01
- Lazy on-the-fly construction

* Only explore methods which are statically reachable from
the main() (especially library methods)
+ Interleave reference analysis and call graph construction

- Oxhoj'92, Razafimahefa'99, Rountev'01, Grove'01, Liang'01,
Milanova'02, Whaley'02

Intl School SE, Salerno, Sept'06, B G Ryder-1 30

15

Dimensions of Precision

- Object Representation

- Use one abstract object per class -
Hierarchy-based analyses: Dean'95, Bacon'96; Flow-based
analyses; Diwan'96, Palsberg'91, Sundaresan'00, Tip'00

- 6roup object instantiations by creation

site - Points-to analyses: Grove'O1, Liang'01, Rountev'O1,
Milanova'02. Whaley'02

- Finer-grained object naming - oxhoj92,
Plevyak'94, Grove'01, Liang'02, Milanova'02

Intl School SE, Salerno, Sept'06, B G Ryder-1

31

Dimensions of Precision

Field Sensitivity
* Field-independent(fi)

- Do not distinguish reference fields of an object, -
Rountev'O1, Lhotek & Hednren CC'03

* Field-based(fb)

* Use one abstract field per field name (across all
objects), -Lhotek & Hendren, CC'03

- Field-sensitive(fs)
* Use one abstract field per field per abstract object

(usually a creation site), -Rountev'01, Lhotek & Hednren
cco3

Intl School SE, Salerno, Sept'06, B G Ryder-1

32

16

Lhotek & Hendren, €C'03

Spark Experiments

* Precision measure incorporated unreachable
dereferences and unique object reference
targets
- Precision of fb:fs was 57.7:60.0 on average
- Time cost was very similar
- Space cost of fb:fs was 86.6:138.4 on average

* Lesson learned: sometimes less precision is
okay - need to know the client of the points-
to info

Intl School SE, Salerno, Sept'06, B G Ryder-1 33

Dimensions of Precision

 Reference representation

- Use one abstract reference per class - Dean'95, Bacon'96,
Sundaresan’00

- Use one abstract reference for each class per method -
Tip'00

- Represent reference variables or fields by their names
program-wide - Sundaresan'00, Liang'01, Rountev'01, Milanova'02

- XTA: example of one abstract reference for each
class per method

Intl School SE, Salerno, Sept'06, B G Ryder-1 34

17

XTA Analysis

Calculates set of classes that reach a
method, incorporating (limited) flow
Uses an on-the-fly constructed call
graph

Uses one abstract object per class with
distinct fields

Uses one abstract reference per class
in each method

F. Tip and J. Palsberg, “Scalable Propagation-based
Call Graph Construction Algorithms”, OOPSLA’00

Intl School SE, Salerno, Sept'06, B G Ryder-1 35

cf Frank Tip, OOPSLA'00

Example of XTA

{A.B}
tati id in(){ class A {
static void main -
B bl = new B(); ;7T T Tt} A
A al = new A(); : }
£(bl); . class B e{xt}ends A{
g(bl); 1 foo() {..
} \ {A.B} | i B
static void f(A a2){ class C extends B{ /
a2.foo(); <x—) £00() {..}
} B8/ .-+ CD
static void g(B b2){ “ class D extends B{
B b3 = b2; ! £00() {.}
b3 = new C(); ,I }
b3.foo(); 4

} =

Intl School SE, Salerno, Sept'06, B G Ryder-1 36

18

Dimensions of Precision

- Directionality

- How flow in reference assignments (r=s) is
interpreted by the analysis

+ Symmetric (Unification): r and s have same
Eomfs -to set after the assignment - Rruroo,
iang'01
+ Directional (Inclusion): r's points-to set includes

s's points-to set after the assi nmem‘ -
Sundarasen'00, Rountev'01, Liang'01, Milanova'02, Whaley'02

Intl School SE, Salerno, Sept'06, B G Ryder-1

37

Dimensions of Precision

- Flow sensitivity

- Analyses which capture the sequential
order of execution of program statements
= Diwan'96,Chatterjee'99, Whaley'02

- E.G. , flow-sensitive:

1. A s,t;
rer at 2., s refers to o,
2. s = new A();//o,
at 3., s,t refer to o,
3. £ =s; at 4., s refers to o
4. s = new A();//o, N 2

t refers to o,
flow-insensitive:
s,t refer to {0, 0,}

Intl School SE, Salerno, Sept'06, B G Ryder-1

38

19

Imprecision of Context
Insensitivity

class Y extends X{ .. }

class A{
X £;

s 4
void m(x q) / \\ I[\
\

} ’ l’\
A a =new A();//o, K \\\
a.m(new X());//o, 1 g \\

A aa = new A();//o;
aa.m(new Y());//o,

Intl School SE, Salerno, Sept'06, B G Ryder-1 39

Dimensions of Precision

- Context sensitivity

- Analyses which distinguish different calling
contexts - sharir/Pnuelial
* Call string - Palsberg'91,6rove'01
* Functional approach- plevyak'94, Agesen's5, Milanova'02
- 1-CFA, example of call string approach

- ObjSens, example of functional approach

Intl School SE, Salerno, Sept'06, B G Ryder-1 40

20

ObjSens Analysis
Based on Andersen's points-to for C

Uses receiver object to distinguish
different calling contexts

Groups objects by creation sites

Represents reference variables and
fields by name program-wide

* Flow-insensitive

A. Milanova, A. Rountev, B. G. Ryder, “Parameterized Object-sensitivity for
Points-to and Side-effect Analyses for Java” ISSTA’02.

A. Milanova, A. Rountev, B.G. Ryder, “Parameterized Object Sensitivity for
Points-to Analysis for Java”, in ACM Transactions on Software Engineering
Methodology, Volume 14, Number 1, pp 1-41, January 2005.

Intl School SE, Salerno, Sept'06, B G Ryder-1 41

ObjSens Analysis

- Shown to analyze to OO programming
idioms well

- Field encapsulation using set methods
this.f=x

- Superclass constructor setting subclass
object fields

- Uses of containers

Intl School SE, Salerno, Sept'06, B G Ryder-1 42

21

Side-effect Analysis:
Modified Objects Per Statement

Milanova, ISSTA'02

jb jess sablecc raytrace Average

B One 0OTwoorthree 0OFourtonine M More than nine

Intl School SE, Salerno, Sept'06, B G Ryder-1 43

Side Effect Analysis

Comparison Milanova, TOSEMO05
90%
Percentage of write statements
80% reporting number of objects shown, 78%

on average, as experiencing side effects.
ge, P! 9 72%

70%

60%

50%

40%

30%

20%

10%

0% -

Intl School SE, Salerno, Sept'06, B G Ryder-1 44

22

1-CFA more precise than

static void main(){ Objsens

D dl1 = new D();

if (..)Cl: (dl.f(new B())).g();
else C2: (dl.f(mew C())).g();
}

public class D
{ public A f(A al){return al;}
}

this, /o7

dl——— 9%

I

this; ¢/c,

Intl School SE, Salerno, Sept'06, B G Ryder-1

1-CFA

/I\

B
20 20 X(A)

OB‘\C\ al

O¢

45

1-CFA more precise than

ObjSens

static void main(){
D dl1 = new D();
if (..)Cl: (dl.f(new B())).g();

1-CFA

else C2: (dl.f(new C())).g();

at
public class D

Cl and C2;

1-CFA distinguishes the
} two calling contexts of D.f

At C1, B.g() called;

{ public A £(A al){return al;} |a¢ c2, C.g() called;

}

dl—— %

IR

this; ¢/c,

Intl School SE, Salerno, Sept'06, B G Ryder-1

OB‘\C\ al

CZ‘jTiEzﬂ;>
o/

c

46

23

1-CFA more precise than

static void main(){ Objsens

D dl1 = new D();

if (..)Cl: (dl.f(new B())).g();
else C2: (dl.f(mew C())).g();
}

public class D
{ public A f(A al){return al;}
}

this

O;\\\\i::::Z::;
dl Op

Intl School SE, Salerno, Sept'06, B G Ryder-1

ObjSens

/I\

B
20 20 X(A)

OB‘\\\\\\\al

ret, .
r/::;,/////>
o

c

47

1-CFA more precise than

ObjSens

static void main(){
D dl1 = new D();
if (..)Cl: (dl.f(new B())).g();
else C2: (dl.f(mew C())).g();
}
public class D
{ public A f(A al){return al;}
}

this
OB

dl——— %

Intl School SE, Salerno, Sept'06, B G Ryder-1

ObjSens

ObjSens groups the two
calling contexts of D.f
with the same receiver
at C1 and C2;

Both B.g(),C.g() are
called at C1 and C2;

48

24

ObjSens more precise than
1-CFA

public class A X g()

AN
A (X xa){ this.xx=xa;}

} Y B

public class B extends A g0 g0 ()

{ B (X xb){C3: super(xb);}

public X £() {return this.xx;} ObJSens

static void main(){

X x1,x2;
Cl: B bl = new B(new Y());//0Og,
C2: B b2 new B(new Z());//0g,

thisg,
XX «— Xag

e
bl — oy, o« xb,,

XX / xaBz

xb,,

b2 — o,

> o;
Intl School SE, Salerno, Sept'06, B 6 Ryder-1 _’ th i

Sga

49

ObjSens more precise than
public class A I-CFA

{ X xx;

X 20 A
A (X xa){ this.xx=xa;} / \ |
}

public class B extends A Y Z B
{ B (X xb){C3: super(xb);} g0 g0 fO
public X f() {return this.xx;}

static void main(){ thiSf 3

X x1,x2; - XX

Cl: B bl = new B(new Y());//oy, bl > Op; Oy

C2: B b2 = new B(new Z());//o,, /
x1=bl.f(); x1 xx

C4: x1.9(); b2——+o0.. " o
x2=b2.£(); B2 z

C5: x2.9(); this o, /
} x2

ObjSens

Intl School SE, Salerno, Sept'06, B G Ryder-1

50

25

ObjSens more precise than
public class A I'CFA

{ X xx; X g() A
A (X xa){ this.xx=xa;} / \ |

}

public class B extends A Y Z B

{ B (X xb){C3: super(xb);} g0 g0 f0)

public X f() {return this.xx;}
static void main(){

X x1,x2;
Cl: B bl = new B(new ¥());//o : :
C2: B b2 = new B(new Z());//oz: ObjSens finds
x1=bl.£(); C4 calls Y.g() and
Cd: x1.9(); C5 calls Z.g()
x2=b2.£();

C5: x2.g();
}

Intl School SE, Salerno, Sept'06, B G Ryder-1

51

ObjSens more precise than
public class A I'CFA

{ X xx; X 20 A
A (X xa){ this.xx=xa;} / \ |

} Y

public class B extends A

{ B (X xb){C3: super(xb);} gO gO fO

public X f() {return this.xx;}
static void main(){

X x1,x2;
Cl: B bl = new B(new Y());//0Og,
C2: B b2 = new B(new 2());//0g,

1-CFA

this

52

26

ObjSens more precise than
1-CFA

public class A

{ % xx; X0 A
A (X xa){ this.xx=xa;} / \ |

}

public class B extends A Y Z B

{ B (X xb){C3: super(xb);} g0 g0 fO
public X f() {return this.xx;}
static void main(){ I-CFA

X x1,x2;

Cl: B bl = new B(new Y());//oy,
C2: B b2 = new B(new Z());//og,
x1=bl.£f();

. . XX
C4: x1.9(); bl——0, ---7-- > 0oy
x2=b2.£(); oy 3 x1
} ,:_’::_3{_!5___;‘
b2 > Op2 XX o,
Intl School SE, Salerno, Sept'06, B 6 Ryder-1 53

ObjSens more precise than
1-CFA

public class A

{ X xx; X g() A
A (X xa){ this.xx=xa;} / \ |

}

public class B extends A Y Z B

{ B (X xb){c3: super(xb);} g0 20 ()

public X f() {return this.xx;}
static void main(){

X x1,x2;

Cl: B bl = new B(new Y());//oy,
C2: B b2 = new B(new Z());//og,

x1=bl.£f();
C4: x1.g9();
x2=b2.£f();
C5: x2.g();
}

Intl School SE, Salerno, Sept'06, B 6 Ryder-1

1-CFA finds
C4 calls Y.g(), Z.g() and
C5 calls Y.g(), Z.9()

27

Comparison Conclusion

* The call string and functional
approaches to context sensitivity are
incomparable!

* Neither is more powerful than the
other

- Recent papers show that object-
sensitive is effective in static analysis
of race conditions (aiken et. al, PLDI06)

Intl School SE, Salerno, Sept'06, B G Ryder-1 55

Difficult Issues

* Use of reflection and dynamic class
loading

- Need whole program for a safe analysis

- Java native methods
- Need to model possible effects

- Exceptions
* Incomplete programs
* Lack of benchmarks

Intl School SE, Salerno, Sept'06, B G Ryder-1 56

28

