
Finding and Removing
Performance Bottlenecks in
Large Systems
Glenn Ammons, IBM
Jong-Deok Choi, IBM
Manish Gupta, IBM
Nikhil Swamy, UMD

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 2

Background: “security” (in this talk)

• Permission checking (J2SE)
– “May this code perform this operation?”
– Keywords: checkPermission, doPrivileged, was.policy

• Global security (includes J2EE)
– Authentication; administration
– “May this user call this method?”

• What roles are permitted to call this method?
• What roles does the user play?

– Keywords: isGrantedAnyRole, credentials, subject, role

• NOT web services, ssh, firewalls, …

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 3

N o s e c u r i t y J2SE and global security
0

10

2 0

30

4 0

50

6 0

70

8 0

90

1 0 0

110

T r a d e 3 o n W e b S p h e r e

T
h
ro

u
g
h
p
u
t
(p

a
g
e
s
/s

e
c
o
n
d
)

Background: overhead of security

Stock trading
 buy, sell, quote, …

Checks perms by
 walking the stack

Administration
Authentication
Roles

Application server
for trans. proc.

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 4

Preview of results

• Found bottlenecks (14 for 83% of 30% overhead)
– Tough: 2 million LOC, 10000 classes, 800 J2SE security

call sites; deep call stacks (avg. 64 methods)

• Path-based approach to finding bottlenecks
– Bottleneck == path
– General: interface separates analysis from profile
– Overlap --> accurate speedup estimates
– Interactive, extensible tool; also helps validate opts

• Four simple optimizations (down to 15% overhead)
– Exploit redundancy

• Temporal (data) caching
• Spatial (code) specialization

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 5

Outline of the talk

• Finding bottlenecks
• Security optimizations
• Wrap it up

– Related work
– Future work

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 6

Finding bottlenecks

• Tough problem
• 2 million LOC, 10000 classes, 800 J2SE security call sites;

deep call stacks (avg. 64 methods)

• Need
– Repeatable deployment
– Accuracy

• Many small slowdowns, spread throughout the code

– Coverage
• Short executions were inconsistent
• Didn’t know where to look

– Context sensitivity
doPrivileged

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 7

Measurement tools

• Repeatable deployment: wrote scripts
• Used ArcFlow to collect call-tree profiles

– Accurate (instruction counts, not time)
– Records context
– Can profile over long execution intervals
– Some flaws: no time, no edge profile

cum 3, base 3
A

B C

cum 10, base 0
cum 7, base 7

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 8

Analyzing a call-tree with paths

S

B YB

G GG

M MM

Expensive sum, but cheap parts!

1

1 1 1

11010

10 101

SBG YM21 21 2 1 1

M21
G

G M42

YB

G M33 B
S

G M12

S
Y

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 9

The path-based approach

A
E
G

X
Y
Z

B
C
A

A few costly paths

ArcFlow (one tree or two)

Suggestion/Navigation interface

Profile interface

Basic paths
Grow/shrink paths
Query cost/overlap

Jinsight traces Dominator trees

Suggest initial paths
(for future smarts)

Grow/shrink paths
Query cost/overlap
Label paths
Zooming

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 10

An example

Set suggester to “by base”
Ask for first five suggestions

Result:
[0] getClassContext (22% of cost)
…

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 11

An example

After selecting getClassContext:
Current:

getClassContext (22% of cost)
Upwards extensions:

[0] execute (22% of cost)
 <passes through 5 boring calls>

Downwards extensions:

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 12

An example

After selecting checkMemberAccess:
Current:

execute (22% of cost)
setOutputProperties
doPrivileged
run
A.checkMemberAccess
B.checkMemberAccess
getClassContext

Upwards extensions:
(Four Trade3 actions)

Downwards extensions:
Trimming the top: discards 6 of 7
Trimming the bottom: discards 1 of 7

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 13

Cumulative costs in a call-tree profile

M

Y

D

A

DBFHE

B IG

A

X I C E E

Nodes have
Name
Base cost
Cum cost

Name -> nodes
Parent links

Aux. data structures:

Path: A

A

A

Path: D

D

D

A

A

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 14

Experiments with Bottlenecks

Notes:
•Time includes my think time (I am very fast).
•I knew biggest Trade3 bottlenecks already.
•SPECjAS2002 and XML app. were new to me.

App Nodes

(1000s) # % Cost Avg. len Minutes Cmds

Trade3 sec. 895 14 83% 14 32 151

SPECjAS2002 1096 13 36% 8.7 50 251

XML app. 24 13 89% 6.2 30 143

Bottlenecks Cost to find

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 15

Outline of the talk

• Finding bottlenecks
• Security optimizations
• Wrap it up

– Related work
– Future work

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 16

Throughput improvements

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 17

CheckRole (temporal)

Cost: 16% of 30% instruction-count overhead
Path:

preInvoke
calls performAuthorization
calls ejbCheckAuthorization
calls checkAccess

performAuthorization

methodInfo
inCreds

beanCookie

outCreds

Observation: decision is
(almost) deterministic

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 18

CheckRole, optimized with cache

performAuthorization
tbl = getTable(methodInfo)
if (tbl.hits(inCreds, beanCookie))

return tbl.value(inCreds, beanCookie)
else

creds = compute creds the slow way
tbl.add(inCreds, beanCookie, creds)
return creds

methodInfo
inCreds

beanCookie

outCreds

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 19

GetCred (spatial)

Cost: 13% of 30% instruction-count overhead
Path:

preInvoke
calls doPrivileged
calls run
calls get_credentials

preInvoke
doPrivileged // Expensive!

creds = get_credentials()
if (!isGrantedAnyRole(roles, creds))

Scream!

// In another class, far far away
public get_credentials()

// Expensive!
stack = getAccessContext()
checkPermission(stack, canReadCreds)
return creds

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 20

GetCred, optimized by specializing

private static boolean ok = false;
preInvoke

if (ok) creds = get_credentialsQuickly()
else doPrivileged // Expensive!

creds = get_credentials()
if (!isGrantedAnyRole(roles, creds))

Scream!

// In another class, far far away
public get_credentials()

// Expensive!
stack = getAccessContext()
checkPermission(stack, canReadCreds)
ok = true
return creds

public get_credentialsQuickly()
return creds

•Wide application
•Proposed for IBM JIT

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 21

Outline of the talk

• Finding bottlenecks
• Security optimizations
• Wrap it up

– Related work
– Future work

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 22

Related work

• Path profiling
[Ball+Larus;Ammons,Ball,Larus;Larus]

• Call-path refinement profiles [Hall]
– No overlap, call trees only, no comparison, nicer interface

• Hot-path browser [Ball,Larus,Rosay]
– Visualizer for Ball-Larus;union/intersection/difference

• Interaction cost [Fields,Bodik,Hill,Newburn]
– Microarch. bottlenecks;overlap=-1*interaction cost

• Paradyn/DeepStart
– For big, parallel systems; on-line; automated search

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 23

Future work

• Other users/problems
– look for natural experiments, like scaling problems

• Extensions to the tool
– More operations on profiles, including global ops.

• grouping methods by context (inserting holes in the tree)
• grouping methods by package/purpose/etc.

– More smarts
• a programmatic interface
• more expressive paths

• Other profilers
– For time
– For usability (for example, no kernel patches)
– For other domains (network logs, process trees, ...)

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 24

Backup Slides

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 25

DBReuse

Cost: 10% of 30% instruction-count overhead
Paths:

getConnection
calls <5 methods>
calls doPrivileged
calls <2 methods>
calls Subject.equals

getConnection
calls <2 methods>
calls getSubject
calls doPrivileged

getConnection
calls <7 methods>
calls Subject.hashCode

Optimization:
Cache results of
equals(), hashCode(),
getSubject()

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 26

Reflection

Cost: 25% of 30% instruction-count overhead
Path:

CacheableCommandImpl.execute
calls CacheableCommandImpl.setOutputProperties // uses reflection!
calls doPrivileged
calls run
calls checkMemberAccess

Optimization: avoid reflection by
overriding setOutputProperties

Finding and Removing Performance Bottlenecks in Large Systems, December 2, 2004. 27

Throughput improvements, by optimization

