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Background: “security” (in this talk)

• Permission checking (J2SE)
– “May this code perform this operation?”
– Keywords: checkPermission, doPrivileged, was.policy

• Global security (includes J2EE)
– Authentication; administration
– “May this user call this method?”

• What roles are permitted to call this method?
• What roles does the user play?

– Keywords: isGrantedAnyRole, credentials, subject, role

• NOT web services, ssh, firewalls, …
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N o  s e c u r i t y J2SE and global security
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Background: overhead of security

Stock trading
  buy, sell, quote, …

Checks perms by
 walking the stack

Administration
Authentication
Roles

Application server
for trans. proc.
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Preview of results

• Found bottlenecks (14 for 83% of 30% overhead)
– Tough: 2 million LOC, 10000 classes, 800 J2SE security

call sites; deep call stacks (avg. 64 methods)

• Path-based approach to finding bottlenecks
– Bottleneck == path
– General: interface separates analysis from profile
– Overlap --> accurate speedup estimates
– Interactive, extensible tool; also helps validate opts

• Four simple optimizations (down to 15% overhead)
– Exploit redundancy

• Temporal (data)  caching
• Spatial (code)  specialization
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Outline of the talk

• Finding bottlenecks
• Security optimizations
• Wrap it up

– Related work
– Future work
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Finding bottlenecks

• Tough problem
• 2 million LOC, 10000 classes, 800 J2SE security call sites;

deep call stacks (avg. 64 methods)

• Need
– Repeatable deployment
– Accuracy

• Many small slowdowns, spread throughout the code

– Coverage
• Short executions were inconsistent
• Didn’t know where to look

– Context sensitivity
doPrivileged
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Measurement tools

• Repeatable deployment: wrote scripts
• Used ArcFlow to collect call-tree profiles

– Accurate (instruction counts, not time)
– Records context
– Can profile over long execution intervals
– Some flaws: no time, no edge profile

cum 3, base 3
A

B C

cum 10, base 0
cum 7, base 7
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Analyzing a call-tree with paths
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The path-based approach
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A few costly paths

ArcFlow (one tree or two)

Suggestion/Navigation interface

Profile interface

Basic paths
Grow/shrink paths
Query cost/overlap

Jinsight traces Dominator trees

Suggest initial paths
(for future smarts) 

Grow/shrink paths
Query cost/overlap
Label paths
Zooming
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An example

Set suggester to “by base”
Ask for first five suggestions

Result:
[0] getClassContext (22% of cost)
…
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An example

After selecting getClassContext:
Current:

getClassContext (22% of cost)
Upwards extensions:

[0] execute (22% of cost)
      <passes through 5 boring calls>

Downwards extensions:
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An example

After selecting checkMemberAccess:
Current:

execute (22% of cost)
setOutputProperties
doPrivileged
run
A.checkMemberAccess
B.checkMemberAccess
getClassContext

Upwards extensions:
(Four Trade3 actions)

Downwards extensions:
Trimming the top: discards 6 of 7
Trimming the bottom: discards 1 of 7
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Cumulative costs in a call-tree profile
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Experiments with Bottlenecks

Notes:
•Time includes my think time (I am very fast).
•I knew biggest Trade3 bottlenecks already.
•SPECjAS2002 and XML app. were new to me.

App Nodes

(1000s) # % Cost Avg. len Minutes Cmds

Trade3 sec. 895 14 83% 14 32 151

SPECjAS2002 1096 13 36% 8.7 50 251

XML app. 24 13 89% 6.2 30 143

Bottlenecks Cost to find
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Outline of the talk

• Finding bottlenecks
• Security optimizations
• Wrap it up

– Related work
– Future work
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Throughput improvements
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CheckRole (temporal)

Cost: 16% of 30% instruction-count overhead
Path:

preInvoke
calls performAuthorization
calls ejbCheckAuthorization
calls checkAccess

performAuthorization

methodInfo
inCreds

beanCookie

outCreds

Observation: decision is
(almost) deterministic
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CheckRole, optimized with cache

performAuthorization
tbl = getTable(methodInfo)
if (tbl.hits(inCreds, beanCookie))

return tbl.value(inCreds, beanCookie)
else

creds = compute creds the slow way
tbl.add(inCreds, beanCookie, creds)
return creds

methodInfo
inCreds

beanCookie

outCreds
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GetCred (spatial)

Cost: 13% of 30% instruction-count overhead
Path:

preInvoke
calls doPrivileged
calls run
calls get_credentials

preInvoke
doPrivileged // Expensive!

creds = get_credentials()
if (!isGrantedAnyRole(roles, creds))

Scream!

// In another class, far far away
public get_credentials()

// Expensive!
stack = getAccessContext()
checkPermission(stack, canReadCreds)
return creds
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GetCred, optimized by specializing

private static boolean ok = false;
preInvoke

if (ok) creds = get_credentialsQuickly()
else doPrivileged // Expensive!

creds = get_credentials()
if (!isGrantedAnyRole(roles, creds))

Scream!

// In another class, far far away
public get_credentials()

// Expensive!
stack = getAccessContext()
checkPermission(stack, canReadCreds)
ok = true
return creds

public get_credentialsQuickly()
return creds

•Wide application
•Proposed for IBM JIT
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Outline of the talk

• Finding bottlenecks
• Security optimizations
• Wrap it up

– Related work
– Future work
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Related work

• Path profiling
[Ball+Larus;Ammons,Ball,Larus;Larus]

• Call-path refinement profiles [Hall]
– No overlap, call trees only, no comparison, nicer interface

• Hot-path browser [Ball,Larus,Rosay]
– Visualizer for Ball-Larus;union/intersection/difference

• Interaction cost [Fields,Bodik,Hill,Newburn]
– Microarch. bottlenecks;overlap=-1*interaction cost

• Paradyn/DeepStart
– For big, parallel systems; on-line; automated search
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Future work

• Other users/problems
– look for natural experiments, like scaling problems

• Extensions to the tool
– More operations on profiles, including global ops.

• grouping methods by context (inserting holes in the tree)
• grouping methods by package/purpose/etc.

– More smarts
• a programmatic interface
• more expressive paths

• Other profilers
– For time
– For usability (for example, no kernel patches)
– For other domains (network logs, process trees, ...)
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Backup Slides
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DBReuse

Cost: 10% of 30% instruction-count overhead
Paths:

getConnection
calls <5 methods>
calls doPrivileged
calls <2 methods>
calls Subject.equals

getConnection
calls <2 methods>
calls getSubject
calls doPrivileged

getConnection
calls <7 methods>
calls Subject.hashCode

Optimization:
Cache results of
equals(), hashCode(),
getSubject()
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Reflection

Cost: 25% of 30% instruction-count overhead
Path:

CacheableCommandImpl.execute
calls CacheableCommandImpl.setOutputProperties // uses reflection!
calls doPrivileged
calls run
calls checkMemberAccess

Optimization: avoid reflection by
overriding setOutputProperties
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Throughput improvements, by optimization


