
Efficient Path Profiling
Thomas Ball James R. Larus
Bell Laboratories Univ. of Wisconsin

(now at Microsoft Research)

Presented by
Ophelia Chesley

Overview

Motivation
Path Profiling vs. Edge Profiling
Path Profiling Algorithm
Arbitrary Control Flow
Experimental Results
Summary

Motivations
Identify heavily executed paths for performance
tuning (cache misses, page faults, etc.)

Profile-directed compilation to focus optimization on
frequently executed paths

Software test coverage

Edge/Block Path
Could be expensive

Potential acyclic paths is
exponential to program size

More accurate

Induce edge profile

Increments registers (for
small # of paths, hash table
otherwise)

Inexpensive

Inaccurate in predicting
frequencies of overlapping
paths

Blocks/Edges are finite and
linear to program size

Increments memory (?)

Path versus Edge Profiling

C

F

120

100

110

150

250

160

A Path Prof1 Prof2

ACDF 90 110
B ACDEF 60 40

270 ABCDEF 100 10020

D

E
160

Algorithm for Intra-Procedural Path Profiling

Assign unique path sum
Select edges with minimal
instrumentation
Compute increments for these edges
Instrumentation
Use profiled data to derive paths

Path Representation

CFG DAG with EXIT and ENTRY

v = vertex; e = edge;

NumPaths(v) = # of paths from v to EXIT

NumPaths(leaf vertex) = 1

Path Sum
ENTRY

(0)->(2)->(6)A

C

D (0) -> (1) -> (2)

01

(0) -> (2)

0

0

2

02

R
ev

er
se

 T
op

ol
og

ic
al

 O
rd

er

(0)->(2)->(4) B (NumPaths(v))
Val(e)

(1)(0) -> (1) E F
0

EXIT

Path Sum
ENTRY

A Path (sum of all edges) Unique Encoding

C

D

01

0

0

2

02
ACDF 0

B ACDEF 1

ABCDF 2

ABCDEF 3

ABDF 4

ABDEF 5

E F
0

Index an array of counters
EXIT

Path Sum
ENTRY

(6) Vertex v NumPaths(v)A

C

D (2)

A 6
(4) (2)B B 4

C 2

D 2

E 1

F 1

(1) (1)E F

EXIT

Event Counting

Needs to determine the minimal cost set for
instrumentation

Use Event Counting Algorithm (previous research):
Compute weight (execution frequency) for each
edge
Identify the maximum spanning tree wrt edge
weights
Use cords (edges not in MST) for instrumentation

Event Counting
ENTRY

Max Spanning
tree edge wrt
edge weights

C

F
160

110

250

120

270

A

B Min Spanning tree
chord (least
travelled edges)

D

E

Event Counting
dummy edge

C

D

F

01

0

0

2

02

C

D

F

1

2

4

0

A A

B B

Event
Counting
Algorithm –
moves Val(e)
to the chord
edges

E E
0

Path Instrumentation

Tasks:
Allocate and initialize
an array of counters:
count[]
Initialize and counter
increment at each
chord c:
count[Inc(c)]++
count[r+Inc(c)]++
at last chord

C

D

F

1

2

4

0

A

B

Inc(c)

E

Path Instrumentation

Tasks:
Allocate and initialize
an array of counters:
count[]
Initialize and counter
increment at each
chord c:
count[Inc(c)]++
count[r+Inc(c)]++
at last chord
count[r]++ at EXIT

C

D

F

r=0

r=2

count[r+1]++ count[r]++

A

B

r=4

E

Path Instrumentation

Inc(c) is the counter’s address in the array
located in the path register at run time

Inc(c) is limited by the instruction’s
immediate field

During path sum calculation, visit the
successor with the largest NumPath last
Val(e) is minimized minimized Inc(c)

Regenerating Paths

Find out which path using its path value
(R) and Val(edge) computed earlier

Start with v = ENTRY
Select an outgoing edge v w with largest
Val(edge) <= R
R = R-Val(v w); v = w

Path Regeneration
ENTRY R = 3

v = ENTRY
Select A B
v = B; R = 3-2 = 1
Select B C
v = C; R = 1-0 = 1
Select C D
v = D; R = 1-0 = 1
Select D E
v = E; R = 1-1 = 0
Select E F
ABCDEF

A
2 0

0

2 0

B C

D

1 0

E F
0

EXIT

Arbitrary Control-Flow

Existence of backedges
Existence of self loops
Algorithm for DAG does not work
Multiple paths could be assigned the
same path value

Arbitrary Control-Flow

Solutions for backedges:
Identify backedges w v
Add dummy edge ENTRY v
Add dummy edge w EXIT
Eliminate the backedges
Perform value assignment and chord
increments as before

Arbitrary Control-Flow

Path Values
AF 0
ABCEF 1
ABCE 2
ABDEF 3
ABDE 4
BCEF 5
BCE 6
BDEF 7
BDE 8

D

B

C

E

A

F

B

C D

6 8

ENTRY
-4

A

E

F

-1

EXIT

Arbitrary Control-Flow

Self-loop:
Cannot remove the edge or else there is
no edge to instrument
Add a counter along the self loop to
record the number of times they execute

Implementation
Uses a profiling tool, PP builts on EEL(Executable Editing
Library)

EEL finds dead registers or spill the least used register for
path profiling

For more than 4000-6000 paths, PP replaces the array of
counters with hash table

When > 100,000,000 paths reachable from a node, PP
removes outgoing edges before returning to value
computation.

Experimental Results
Compare PP to QPT2 (edge profiling tool built with EEL
also)

PP’s average overhead 31%, as compare to QPT2’s 16%

In general, small programs have comparable overhead

Comparable overhead for programs with long paths and
path increments execute infrequently

PP Overhead

Minimal hashing
Hashing but infrequent path increments

Path Profiling versus Edge Profiling

Edge profiling predicts shorter paths
Fraction of paths predicted by edge profiling

ref versus train datasets

Summary
Presented a path profiling algorithm with comparable
cost to edge profiling

Compact encoding of paths
Minimal instrumentation

Identify longer paths with more instructions than
edge profiling

Short training dataset can cover most of the paths

Potential to improve profile driven compilation

	Efficient Path Profiling
	Overview
	Motivations
	Edge/Block Path
	Path versus Edge Profiling
	Algorithm for Intra-Procedural Path Profiling
	Path Representation
	Path Sum
	Path Sum
	Path Sum
	Event Counting
	Event Counting
	Event Counting
	Path Instrumentation
	Path Instrumentation
	Path Instrumentation
	Regenerating Paths
	Path Regeneration
	Arbitrary Control-Flow
	Arbitrary Control-Flow
	Arbitrary Control-Flow
	Arbitrary Control-Flow
	Implementation
	Experimental Results
	PP Overhead
	Summary

