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Motivations
Identify heavily executed paths for performance 
tuning (cache misses, page faults, etc.)

Profile-directed compilation to focus optimization on 
frequently executed paths

Software test coverage



Edge/Block       Path
Could be expensive

Potential acyclic paths is 
exponential to program size

More accurate

Induce edge profile

Increments registers (for 
small # of paths, hash table 
otherwise)

Inexpensive

Inaccurate in predicting 
frequencies of overlapping 
paths

Blocks/Edges are finite and 
linear to program size

Increments memory (?)



Path versus Edge Profiling
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Algorithm for Intra-Procedural Path Profiling

Assign unique path sum
Select edges with minimal 
instrumentation
Compute increments for these edges 
Instrumentation
Use profiled data to derive paths



Path Representation

CFG DAG with EXIT and ENTRY

v = vertex; e = edge;

NumPaths(v) = # of paths from v to EXIT

NumPaths(leaf vertex) = 1



Path Sum
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(0)->(2)->(6)A

C

D (0) -> (1) -> (2)

01

(0) -> (2)

0

0

2

02

R
ev

er
se

 T
op

ol
og

ic
al

 O
rd

er

(0)->(2)->(4) B (NumPaths(v))
Val(e)

(1)(0) -> (1) E F
0

EXIT



Path Sum
ENTRY
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Path Sum
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Event Counting

Needs to determine the minimal cost set for 
instrumentation

Use Event Counting Algorithm (previous research):
Compute weight (execution frequency) for each 
edge
Identify the maximum spanning tree wrt edge 
weights
Use cords (edges not in MST) for instrumentation



Event Counting
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Event Counting
dummy edge
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Path Instrumentation

Tasks:
Allocate and initialize 
an array of counters: 
count[]
Initialize and counter 
increment at each 
chord c: 
count[Inc(c)]++
count[r+Inc(c)]++ 
at last chord

C

D

F

1

2

4

0

A

B

Inc(c)

E



Path Instrumentation

Tasks:
Allocate and initialize 
an array of counters: 
count[]
Initialize and counter 
increment at each 
chord c: 
count[Inc(c)]++
count[r+Inc(c)]++ 
at last chord
count[r]++ at EXIT

C

D

F

r=0

r=2

count[r+1]++ count[r]++

A

B

r=4

E



Path Instrumentation

Inc(c) is the counter’s address in the array 
located in the path register at run time

Inc(c) is limited by the instruction’s 
immediate field

During path sum calculation, visit the 
successor with the largest NumPath last 
Val(e) is minimized minimized Inc(c)



Regenerating Paths

Find out which path using its path value 
(R) and Val(edge) computed earlier

Start with v = ENTRY
Select an outgoing edge v w with largest 
Val(edge) <= R
R = R-Val(v w); v = w



Path Regeneration
ENTRY R = 3

v = ENTRY
Select A B
v = B; R = 3-2 = 1
Select B C
v = C; R = 1-0 = 1
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Arbitrary Control-Flow

Existence of backedges
Existence of self loops
Algorithm for DAG does not work
Multiple paths could be assigned the 
same path value



Arbitrary Control-Flow

Solutions for backedges:
Identify backedges w v
Add dummy edge ENTRY v
Add dummy edge w EXIT
Eliminate the backedges
Perform value assignment and chord 
increments as before



Arbitrary Control-Flow
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Arbitrary Control-Flow

Self-loop:
Cannot remove the edge or else there is 
no edge to instrument
Add a counter along the self loop to 
record the number of times they execute



Implementation
Uses a profiling tool, PP builts on EEL(Executable Editing 
Library)

EEL finds dead registers or spill the least used register for 
path profiling

For more than 4000-6000 paths, PP replaces the array of 
counters with hash table

When > 100,000,000 paths reachable from a node, PP 
removes outgoing edges before returning to value 
computation.



Experimental Results
Compare PP to QPT2 (edge profiling tool built with EEL 
also)

PP’s average overhead 31%, as compare to QPT2’s 16%

In general, small programs have comparable overhead

Comparable overhead for programs with long paths and 
path increments execute infrequently



PP Overhead

Minimal hashing
Hashing but infrequent path increments



Path Profiling versus Edge Profiling

Edge profiling predicts shorter paths
Fraction of paths predicted by edge profiling



ref versus train datasets



Summary
Presented a path profiling algorithm with comparable 
cost to edge profiling

Compact encoding of paths
Minimal instrumentation

Identify longer paths with more instructions than 
edge profiling

Short training dataset can cover most of the paths

Potential to improve profile driven compilation
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