
5/3/2005 CS674 Components, BGR 1

Component-based Software
Engineering

References:
1. C.Szyperski, “Component Technology -- What, Where,

and How?”, ICSE’03 (from keynote talk)
2. E. Weyuker, “Testing Component-based Software: A

Cautionary Tale”, IEEE Software Sept/Oct 1998
3. J. Voas, “Maintaining Component-based Systems”, IEEE

Software July/Aug 1998
4. J. Voas, “Certifying Off-the-shelf SW Components”,

IEEE Computer, June 1998, Vol 31, No 6
5. N. Talbert, “The Cost of COTS”, an interview with John

McDermid in IEEE Computer, June 1998, Vol 31, No 6



5/3/2005 CS674 Components, BGR 2

Motivations for Components
• Development time: architectural, design,

source code artifacts
• Build time: reusing partial design and

implementation fragments
• Deployment time: allows last customization

before installation
– Deployment - act of readying a component for

installation in a specific environment
• Evolution: dynamic servicing, upgrading,

extension, integration into already deployed
systems

Cf 1. Szyperski



5/3/2005 CS674 Components, BGR 3

What’s a SW component?
• A unit of deployment

– An executable deliverable for a (virtual)
machine; executes w/o human intervention

• A unit of versioning and replacement
– Remains invariant (code and data) as is installed

• May have static dependences, assumptions
about environment
– On platform
– On other components



5/3/2005 CS674 Components, BGR 4

Complications

• Naming w/o collisions
• Versioning

– Need version in the name
– Side-by-side existence of diff versions
of same component sometimes needed
• Interferes with cross-component integration
• Varies with degree of coupling



5/3/2005 CS674 Components, BGR 5

Testing
• Need for testing a component in its new

context
– Ariane 5 disaster

• Reuse of COTS, commercial off-the-shelf
components, requires new approaches to
testing to avoid this
– Testing techniques cannot require source code

• Not available in legacy codes nor off-the shelf comps

Cf 2. Weyuker



5/3/2005 CS674 Components, BGR 6

Phases of Testing
• Unit test - individual components
• Integration test - integrating
individually tested components to test
as an entity

• System test - entire system tested
as one entity

• Additional - performance test, stress
test, reliability tests



5/3/2005 CS674 Components, BGR 7

Testing Component-based
SW

• Difficult to construct test suites
• Testing for reuse

– Possibility of executing different parts of the
component may lead into untested or lightly
tested code

– Even COTS components need retesting in situ
– Debugging much more difficult w/o developer

knowledge
– W/o source code how to correct defects found?



5/3/2005 CS674 Components, BGR 8

Components
• In-house

– Test various uses for
component

• Cannot envision all
scenarios

– Debugging and code
modification difficult

– Validation of quality
difficult

– Rethink repository design
to include specs,
modifics, test suite with
ptrs to corresponding
parts of code

• COTS
– Lack of source code

precludes modification
for debugging or
extension

– Lack of detailed
knowledge of design

– No control over
maintenance or support



5/3/2005 CS674 Components, BGR 9

Maintenance
• Longest stage in SW life cycle
• Components to be maintained are
essentially black boxes

• Claim that OOPLs and componentn-
based SE, turn SW development into
SW manufacturing
– Principle task: design & integration, not
coding

Cf 3. Voas



5/3/2005 CS674 Components, BGR 10

Problems Maintaining COTS
• Frozen functionality - no further vendor

support
• Implement yourself; obtain code and modify; get

elsewhere

• Incompatible upgrades - customization
• Build wrapper around incompat behavior or uninstall

component

• Trojan horses - covertly malicious
component

• Avoidance may be impossible; detection is difficult



5/3/2005 CS674 Components, BGR 11

Problems Maintaining COTS
• Unreliable components - no standards for

reliability certification
• Wrappers - middleware that limits a

components functionality
• Middleware: SW that joins together, mediates

between, or enhances 2 separate SW packages
• Restricts input or output info
• Reasonable approach to incompatibility, Trojan horses,

dependability problems
• Not foolproof



5/3/2005 CS674 Components, BGR 12

Shareware/Freeware
• Often useful, but can be used for
malicious purposes

• Licensing restrictions can exist
• If SW in executable format, then
like COTS

• If SW is source code, then may need
domain knowledge for maintenance



5/3/2005 CS674 Components, BGR 13

Proprietory Repositories

• Functional structure
– All source together, all analysis
together, all designs together, all tests
together

• Information class structure
– Each component has source, analysis,
design, tests stored together (easier to
maintain)



5/3/2005 CS674 Components, BGR 14

Challenges
• Problem: ensuring that modifications are

compatible with all clients
– Control change process

• Can add access rules about modification, but file
locking creates problems for maintaining the
applications using components

• If do not lock, then change merging becomes a problem

– Use promotion approach - levels of confidence in
SW stability, managed by a person

• Development/maintenance (low), test, release (high)



5/3/2005 CS674 Components, BGR 15

Voas’ Advice
• Avoid using components for small systems
• Keep reqs documentation on each

component; do not add too many features
• Use information class repository with

promotion
• Allow 2 versions of component to be in

repository when necessary for needs of 2
clients



5/3/2005 CS674 Components, BGR 16

Certifying Components
• Use of off-the-shelf (OTS) components

require developer to know
• Is component reliable?
• Will system tolerate the component?

• Key questions:
• Does component C fit the need?
• Is the quality of component C high enough?
• What impact will component C have on the system?

• Composing highly reliable components may
not yield a reliable system!

Cf 4. Voas



5/3/2005 CS674 Components, BGR 17

Scenarios

N/AN/ANo5

NoNoYes4

YesNoYes3

NoYesYes2

YesYesYes1

Fit the need? High quality? Positive impact?



5/3/2005 CS674 Components, BGR 18

How to certify a component?

• Black-box component testing to
ascertain if quality is high enough

• Cannot use white-box approach w/o code
• Use test suite distributed with component
• Problems

– Need an accurate oracle
– May not execute enough of the code (e.g., possible

malicious functionality -- Trojan horse)



5/3/2005 CS674 Components, BGR 19

How to certify a component?

• System-level fault injection to see if
system can tolerate component failure

• IPA - Interface Propagation Analysis -
perturbs the state propagated through
component interface

– Can simulate failure of predecessor component
– Modify data randomly



5/3/2005 CS674 Components, BGR 20

How to certify a component?
• Operational system testing to see if system

works well with component
• Embed the component in the system and can see

component failure in place
• Problem - can take extensive testing to see failure

happen
• Solution - wrap component to limit its actions and

modify its functionality
– Can keep inputs from reaching component
– Can keep outputs from reaching component clients



5/3/2005 CS674 Components, BGR 21

COTS vs Custom Alternatives
• John McDermid, safety critical
systems expert, Univ of York, UK
– COTS- “standard commercial software
developed w/o any particular application
in mind”

– Why use? To save money and allow
interoperability and lessen risk

– Mostly are providing GUIs, O/S, DBs

Cf 5. Talbert



5/3/2005 CS674 Components, BGR 22

How to evaluate COTS SW?
• Stability of COTS SW and prior usage
• Need to learn what COTS SW does

• Extensive testing

• Determine which fcns are safe for client use
• Examine reliability

• Gather historical data (look at/analyze code if can get
it)

• Demonstrate some certainty that SW
cannot execute unwanted functionality

• Use wrappers or code analysis or both



5/3/2005 CS674 Components, BGR 23

Cost of COTS SW
• Initial acquisition cost
• Keeping up with upgrades
• Problem:

– What if vendor goes out of business?
• SW escrow accounts - 3rd party keeps copy of SW to

be turned over in event of disaster

– What to do about bad support?
– How to ensure safety of code?

• Need to look at/analyze code which may be difficult
• May need to deal with unwanted functionality


