
1

Role-Based Exploration of
Object-Oriented Programs

Brian Demsky, Martin Rinard
MIT

Presented by Xiaoxia Ren

2

Introduction
• An object’s referencing relationships

determine important aspects of its purpose
in the computation.

• As program runs, each object transits
through a sequence of states.

• help developers discover and understand
– the different states of objects in the

computation
– the referencing relationships between objects

in different states, and
– How states and actions interact

3

Role Separation Criteria

• How to automatically infer an appropriate
set of object states for a given program?

• Define a set of predicates to classify
objects into roles
– Evaluate predicates on each object
– Objects with the same values for the

predicates be considered in the same state
– Call each state a role

4

An Example

�����

������	

�
�
�

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�� �� �� �� ��

Copied from Demsky & Rinard’s Slides

5

Choosing Predicates

• The key of effectively relating the object states to
important properties of a program

• Each predicate should capture some aspect of
the object’s referencing relationships
� One obvious category of predicates is the

predicates that capture the class of the object
� For each class A, PA(o) = true if object o is an

instance of class A

• How about others?
– to capture important distinctions between objects of

the same class

6

Heap Alias Predicate

• The functionality of an object often
depends on the object that refer to it.

• Separate objects with different kinds of
heap aliases into different roles

• Defined for each field of each class
– PA.f(o) is true if o has a reference from the f

field of an instance of class A.

7

Heap Alias Predicate

Student s1

Course c

ta

PCourse.ta(s1) = true

Student s2

PCourse.ta(s2) = false

8

Reference-to Predicate

• The functionality of an object often
depends on the objects to which it refers

• Separate objects in different roles if they
differ in which fields contain null values

• Defined for each field of a class
– Pf(o) is true if o has a non-null field of f, false

otherwise.

9

Reference-to Predicate

Student s1

Professor p

Padviser(s1) = true

Student s2

Padviser(s2) = false

advisor

10

Other Role Separation Criteria

• Reachability
– For key local and global variables v:

Pv(o) = true if object o is reachable from v

• Identity
– For each pair of fields f,g:

Pf,g(o) = true if object o has the cyclic path o.f.g=o

• History
– For key methods m and parameters n:

Pm,n(o)= true if object o has been parameter n of
method m

11

Role Subspaces

• Different activities require exploration at varying
levels of detail
– initially need very coarse information then later

explore certain aspects in greater detail
– Find certain details distracting and coarsen aspects of

objects orthogonal to the developer’s current interest

• Role subspaces provide a way to manage role
separation criteria
– Developers specify a role subspace by specifying a

subset of role separation criteria

12

Role Subspaces -- example

��������	������

���		 ����!�"�

#�"$"�����%��!	 ��!&%	�

'

����!�"���

��!&%	�
��

����
	�(�����

)

Pcourses(o)

*"%�%�����!�"�

���!�"��+,��!&%	�

�	���
-��.�
/���
�0�"�(�		%-"1!&%	�

13

Dynamic Role Inference

• Instrument the program to generate
execution traces.

• Uses trace to reconstruct the heap,
dynamically compute
– Roles that each object plays
– Transitions between roles
– Roles of methods’ parameters

• Present to user for interactive exploration

14

When to Evaluate Roles

• Evaluates the roles of objects at method
boundaries
– Evaluating the roles of objects after each

statement would often observe objects in
transient states

– Objects are likely to have consistent states at
method entry and exit points

• The developer can modify this default
policy

15

Presenting the Results

• Uses a graphical web-based interface to
support interactive exploration

• The tool presents:
– Role transition diagrams for each class
– A role relationship diagram
– Links from the diagrams to the appropriate

• role descriptions
• enhanced method interfaces

16

Role Transition Diagrams
For class JhttpWorker

17

Role Definitions

• Role: JhttpWorker with filename
• Class: JhttpWorker
• Heap aliases: none

• non-null fields:
httpVersion, fileName,

methodType, client

• identity relations: none

18

Enhanced Method Interfaces

• enhanced method interfaces provide:
– the roles of the parameters
– the role changes that the method performs

• this information is useful for understanding
– assumptions that methods make
– effects of a method on objects it accesses

(read, write or role transition)

19

Enhanced Method Interfaces
Method: SocketInputStream.<init>(this,plainsocket)

Call Context: {
this: Initial InputStream -> InputStream w/impl,
plainsocket: PlainSocket w/fd ->PlainSocket w/input }

Write Effects:
this.impl=plainsocket
this.temp=NEW
this.fd=plainsocket.fd

Read Effects:
plainsocket
NEW
plainsocket.fd

Role Transition Effects:
plainsocket: PlainSocket w/fd -> PlainSocket w/input
this: Initial InputStream -> InputStream w/fd
this: InputStream w/fd -> InputStream w/impl

20

Role Relationship Diagrams

21

Multiple Object Data Structures

22

Multiple Object Data Structures

Portion of role relationship diagram for JhttpServer after part object abstraction

23

User Interface

� The developer can:
� Define multiple role subspaces
� View projections of role transition diagrams

and role relationship diagrams onto the
defined role subspaces
� Declare methods atomic to hide internal role

changes or utilizing the multiple object
abstraction feature

24

Exploration Strategy

• Begin with role transition diagrams of each
class

• Find opportunities to simplify the role
transition diagrams

• Browse enhanced method interfaces to
discover important constraints on the
parameters

• Observe the role relationship diagram

25

*"%�%������2��

��
&�
���2��

��
&�
���2���+,.!

���"!���
&�
���2��

�%	��"%"-���
&�
���2��

���2��

���2���+,��!!
�		

���2���+,.!

���2���+,�%"���

���2���+,�������

���2���+,��.!

���2���+,��������

3�
��-�

Experience -- JhttpServer

Copied from Demsky & Rinard’s Slides

Role Transition Diagram for Socket

��
&�
���2��

��
&�
���2���+,.!

���"!���
&�
���2��

�%	��"%"-���
&�
���2��

�4%	��
-��.��%"!

�4%	��
-��.��%	��"

���2��

���2���+,��!!
�		

���2���+,.!

���2���+,�%"���

���2���+,�������

���2���+,��.!

���2���+,��������

3�
��-�

26

Experience -- Jess
Role Transition Diagram for Node1TELN

27

Role Description
Role Node pointed to by Succesor.node
Class: Node1TELN
Heap Aliases: Successor.node
Non-null Fields: engine, succ

Role Node w/ _succ
Class: Node1TELN
Heap Aliases: Successor.node
Non-null Fields: engine, _succ

28

Experience -- Jess

• Most nodes have exactly one Successor
object referring to them

• The Node2 class has exactly two
Successor objects referring to it

• No other kinds of nodes

29

Experience – Direct-To

*"%�%�����%-4�

��%-4��+,
.�%-4�*/

��%-4��%"
.�%-4��%	�

��%-4��+,
�%
�
�.��5��

��%-4��+,
.�%-4��5��

��%-4��+,
.���"

��%-4��+,
�
��2

��%-4�
+,��
������
5�+%�4�"�6��%6

��%-4�
+,��
������
5

Role Transition Diagram for Flight

Copied from Demsky & Rinard’s Slides

*"%�%�����%-4�

��%-4��+,
.�%-4�*/

��%-4��%"
.�%-4��%	�

��%-4��+,
�%
�
�.��5��

��%-4��+,
.�%-4��5��

��%-4��+,
�
��2

��%-4�
+,��
������
5�+%�4�"�6��%6

��%-4�
+,��
������
5

30

*"%�%�����%"��!

�
��2(��	�
��%"��!

7����%�5(&����

��%"��!

��

�"���	
��%"��!

��%"��!�%"��

�5

3�
��-�

Experience – Direct-To
Role Transition Diagram for Point4d

��

�"���	
��%"��!

��%"��!�%"��

�5

��

�"���	
��%"��!

��%"��!�%"��

�5

7����%�5(&����

��%"��!

3�
��-�

�
��2(��	�
��%"��!

Copied from Demsky & Rinard’s Slides

31

Applications

• Program Understanding - help discover
– different conceptual roles
– Important referencing relationships between objects

playing different roles
– Constraints between roles and actions of program

• Maintenance
• Verifying expected Behavior
• Documentation
• Design

32

Related Works

• Design formalisms
– The concept of abstract object states

• Program understanding tools
– Properties of the objects that programs

manipulate

• Static analyses
– Automatically discovering or verifying

properties of linked data structures

33

Conclusions

• Focus on changing object states – roles
• Role separation criteria
• Role subspaces
• Graphical role exploration

34

Questions?

• All examples in “Experience” are small
examples

• Dynamic analysis only based on some
specific executions

• Cost
• Scalability (No. of roles nodes, the

relationship diagrams, …)
• ……

