Role-Based Exploration of
Object-Oriented Programs

Brian Demsky, Martin Rinard

MIT
Presented by Xiaoxia Ren

Introduction

* An object’s referencing relationships

determine important aspects of its purpose
In the computation.

e As program runs, each object transits
through a sequence of states.

* help developers discover and understand

— the different states of objects in the
computation

— the referencing relationships between objects
In different states, and

— How states and actions interact)

Role Separation Criteria

 How to automatically infer an appropriate
set of object states for a given program?

* Define a set of predicates to classify
objects into roles
— Evaluate predicates on each object

— ODbjects with the same values for the
predicates be considered in the same state

— Call each state a role

P,(0))=T
P,(0)=T
Ps(0)=T

An Example

*
*
*
*
*
’0
*

P,(0,)=F
P,(0,)=T
P5(0,)=T

*
*
4
*
*
* n
*
*
’0
*

P,(03)=F
P,(03)=T
P5(03)=T

State

0, 0. Objects

P,(0,)=T
P,(0,)=F
P5(0,)=T

P,(05)=T
P,(0s)=F
P3(05)=T

Copied from Demsky & Rinard’s Slides

Choosing Predicates

The key of effectively relating the object states to
Important properties of a program

Each predicate should capture some aspect of
the object’s referencing relationships

One obvious category of predicates is the
predicates that capture the class of the object

— For each class A, P,(0) = true if object o is an
Instance of class A

How about others?

— to capture important distinctions between objects of
the same class

Heap Alias Predicate

* The functionality of an object often
depends on the object that refer to it.

e Separate objects with different kinds of
heap aliases into different roles

e Defined for each field of each class

— P, +(0) Is true If o has a reference from the f
fleld of an instance of class A.

Heap Alias Predicate

Course c

ta Student s2

Student s1

Pcourse a(S1) = true Pcourse ta(S2) = false

Reference-to Predicate

* The functionality of an object often
depends on the objects to which it refers

o Separate objects in different roles If they
differ in which fields contain null values

e Defined for each field of a class

— PY(0) is true if o has a non-null field of f, false
otherwise.

Reference-to Predicate

Professor p

advisor Student s2

Student s1

padviser(s1) = true padviser(g2) = false

Other Role Separation Criteria

 Reachabillity
— For key local and global variables v:
P,(0) = true if object o is reachable from v

e |dentity
— For each pair of fields f,g:
P;4(0) = true if object o has the cyclic path o.f.g=0
e History
— For key methods m and parameters n:

Pm.n(0)= true If object o has been parameter n of
method m

10

Role Subspaces

 Different activities require exploration at varying
levels of detall

— Initially need very coarse information then later
explore certain aspects in greater detail

— Find certain details distracting and coarsen aspects of
objects orthogonal to the developer’s current interest

* Role subspaces provide a way to manage role
separation criteria

— Developers specify a role subspace by specifying a
subset of role separation criteria

11

Role Subspaces -- example

Role Subspace { Pstudent(0)
Class: Student padviser(o)
Non-null Fields: advisor Pcourse.ta(0)

}

peourses(q)

InitialStudent

1st arg of
Department.assignAdvisor

A
Student w/ adviser

Dynamic Role Inference

* Instrument the program to generate
execution traces.

« Uses trace to reconstruct the heap,
dynamically compute
— Roles that each object plays
— Transitions between roles
— Roles of methods’ parameters

* Present to user for interactive exploration

13

When to Evaluate Roles

* Evaluates the roles of objects at method
boundaries

— Evaluating the roles of objects after each
statement would often observe objects in
transient states

— ODbjects are likely to have consistent states at
method entry and exit points

 The developer can modify this default
policy

14

Presenting the Results

« Uses a graphical web-based interface to
support interactive exploration

* The tool presents:
— Role transition diagrams for each class
— A role relationship diagram

— Links from the diagrams to the appropriate
* role descriptions
* enhanced method interfaces

15

Role Transition Diagrams

For class JhttpWorker

this arz of Ohject.<init=

this arg of ThitpWorker <init=

. String Tokenizer hashlore Tokens

ThttpWorker

. - thiz arg of ThitpWorker method
with method T ype

T, String.equalz

+ ThttpServer. start Worker

> .

Role Definitions

Role: JhttpWorker with filename
Class: Jht t p\Wor ker

Heap alilases: none

non-null fields:
htt pVersion, fil eNane,

net hodType, client
identity relations: none

17

Enhanced Method Interfaces

 enhanced method interfaces provide:
— the roles of the parameters
— the role changes that the method performs

* this information Is useful for understanding
— assumptions that methods make

— effects of a method on objects it accesses
(read, write or role transition)

18

Enhanced Method Interfaces

Method: SocketinputStream.<init>(this,plainsocket)
Call Context: {
this: Initial InputStream -> InputStream w/impl,
plainsocket: PlainSocket w/fd ->PlainSocket w/input }
Write Effects:
this.impl=plainsocket
this.temp=NEW
this.fd=plainsocket.fd
Read Effects:
plainsocket
NEW
plainsocket.fd
Role Transition Effects:
plainsocket: PlainSocket w/fd -> PlainSocket w/input
this: Initial InputStream -> InputStream w/fd
this: InputStream w/fd -> InputStream w/impl

19

Role Relationship Diagrams

Multiple Object Data Structures

value

1
)

impl impl impl

Multiple Object Data Structures

irmpl impl imp]

Portion of role relationship diagram for JhttpServer after part object abstraction

22

User Interface

e The developer can:
— Define multiple role subspaces

— View projections of role transition diagrams
and role relationship diagrams onto the
defined role subspaces

— Declare methods atomic to hide internal role
changes or utilizing the multiple object
abstraction feature

23

Exploration Strategy

Begin with role transition diagrams of each
class

Find opportunities to simplify the role
transition diagrams

Browse enhanced method interfaces to
discover important constraints on the
parameters

Observe the role relationship diagram

24

Experience -- JhttpServer

Role Transition Diagram for Socket

..... Initial Socket

Socket |4
Socket w/ address
...... E::-.......
o
Socket w/fd

ServerSocket

N

ServerSocket w/fd

31 Garbage

\

Socket w/o output

this arg of bindl

bound ServerSocket

Socket w/ input

A

Socket w/o fd
Socket w/ output

this arg of listen 1

listening ServerSocket

25

Copied from Demsky & Rinard’s Slides

Experience -- Jess
Role Transition Diagram for NodelTELN

this arg of Ohjacl <inits

this arg of Model TELRM.<init=,
this arg of Mode<init=.
this arg of MNoda, <init=

26

Role Description

Role Node pointed to by Succesor.node
Class: NodelTELN

Heap Aliases: Successor.node

Non-null Fields: engine, succ

Role Node w/ succ
Class: NodelTELN
Heap Aliases: Successor.node
Non-null Fields: engine, succ

27

Experience -- Jess

 Most nodes have exactly one Successor
object referring to them

 The Node2 class has exactly two
Successor objects referring to it

e No other kinds of nodes

28

Experience — Direct-To

Role Transition Diagram for Flight

Initial Flight

v

Flight w/
flightID

v

Flight in
flightlist

Flight w/
fPlan

l

Flight w/
track

l

v

Flight w/
aircraftType

Flight
w/ trajectory with nextFix

v

Flight w/
flightType

l

Flight
w/ trajectory

29

Copied from Demsky & Rinard’s Slides

Experience — Direct-To

Role Transition Diagram for Point4d

Initial Point4d

g f
currentPos Velocity.vector
Point4d Point4d
[Track.pos
Point4d

Point4d in arraq

it ey 30

Copied from Demsky & Rinard’s Slides

Applications

Program Understanding - help discover
— different conceptual roles

— Important referencing relationships between objects
playing different roles

— Constraints between roles and actions of program
Maintenance

Verifying expected Behavior

Documentation

Design

31

Related Works

e Design formalisms
— The concept of abstract object states

 Program understanding tools

— Properties of the objects that programs
manipulate

e Static analyses

— Automatically discovering or verifying
properties of linked data structures

32

Conclusions

—~0cus on changing object states — roles
Role separation criteria

Role subspaces

Graphical role exploration

33

Questions?

All examples in “Experience” are small
examples

Dynamic analysis only based on some
specific executions

Cost

Scalablility (No. of roles nodes, the
relationship diagrams, ...)

34

