
Dynamic Metrics for Java

Bruno Dufour, Karel Driesen, Laurie Hendren and Clark Verbrugge
McGill University

Presented by:
Kiran Nagaraja
Rutgers University

Kiran Nagaraja, Rutgers University Vivo Project
2

Motivation

Compiler optimization techniques span different aspects of program behavior
Compile time
Total runtime
In-memory size

Optimization techniques work on specific characteristics of programs
Numeric or compute intensive
Memory intensive
Pointer intensive
High concurrency

Need representative benchmarks to test the particular optimizations

Basic question: How do u characterize program behavior? Are there a small set of
representative metrics that can be defined and measured for a quantitative
analysis?
Secondary question: How do u guide compiler optimization? (Which technique to
apply?)

Kiran Nagaraja, Rutgers University Vivo Project
3

Approach

Intuitive qualitative techniques are not good enough

Static analysis of programs may not capture dynamic behavior well
Conservative
Certain behavior cannot be estimated at compile time

E.g., memory allocation behavior

So, measure dynamic metrics to capture dynamic behavior
Pros: measures ‘relevance’
Cons: optimistic

Use quantitative metrics to characterize what we qualitatively know
about them

Kiran Nagaraja, Rutgers University Vivo Project
4

Desired Properties for Dynamic Metrics

Unambiguous

Dynamic
E.g. not affected by dead code

Robust
E.g., Anything which is O(n) is not a good metric!

Discriminating

Machine independence
Can be published with secondary information…

Kiran Nagaraja, Rutgers University Vivo Project
5

Kinds of Metrics

Value metrics
Single values such as average, median, total

Percentiles
X% of characteristic A accounts for Y% of B, rather than count(A)

and count(B), for example.
Defines the distribution of contributions

Bins
Classes of behavior of special interest

Continuous metrics
Time series data of dynamic characteristic
Visual inspection - qualitative

Kiran Nagaraja, Rutgers University Vivo Project
6

Comparison with Systems Benchmarking
Approaches

Static analysis across multiple components is incredibly hard
Analytical models for single-tier systems possible
Empirical approaches increasing in popularity

Goals: Resource utilization, performance/availability prediction,
bottleneck evaluation
Behavior can vary significantly with workloads

Metrics: CPU, memory allocation, Disk/NW bandwidth

Kiran Nagaraja, Rutgers University Vivo Project
7

Benchmark Programs

An array of standard programs qualitatively different in behavior
See paper for list
Import ones are: CA, COEFF, EMPTY, Volano, COMP, JAVAC

Try to quantitatively compare their behaviors along the following:
Program size and control structure
Data structure
Polymorphism
Memory use
Concurrency and synchronization

Kiran Nagaraja, Rutgers University Vivo Project
8

Program Size and Structure

Metrics which include libraries are not discriminating
Bytecode level metrics are less ambiguous
‘Actual use’ metrics are most characterizing – robust to optimizations
‘Hot’ metrics are less robust to varying input

Kiran Nagaraja, Rutgers University Vivo Project
9

Program Control Structure

Measuring instructions that change the control flow
Example: (if, switch, invoke virtual)

Control density(value): total number of control byte codes touched

Changing control density(value):
byte codes change direction / # of control byte code touched

Changing control rate (value)
Most dynamic – Measures actual change in direction

Kiran Nagaraja, Rutgers University Vivo Project
10

Data Structures

Array intensive: Tracking array access bytecodes
Problems: Accesses within libraries; Multidimensional arrays

Metrics normalized by kbc (kilo bytecode), hence the numbers for
EMPTY

Kiran Nagaraja, Rutgers University Vivo Project
11

Polymorphism

[app]CallSites (value):Total number of different call sites executed
Skew: does not include static invoke instr.

[app]invokeDensity (value):
executed invokevirtual or invokeinterface / kbc

Kiran Nagaraja, Rutgers University Vivo Project
12

Polymorphism

polymorphism.[app]targetArity.bin:
measures the percentage of all call sites which have 1,2 or 3

different target methods:

Similar bin metric of receiver

Kiran Nagaraja, Rutgers University Vivo Project
13

Memory Use

Allocated byte density:
of allocated bytes / kbc

Kiran Nagaraja, Rutgers University Vivo Project
14

Concurrency and Synchronization

Concurrency lock percentile:

of locks in 90% of locking operations / kbc

Kiran Nagaraja, Rutgers University Vivo Project
15

Guiding Compiler Optimizations

Applying optimizations requires knowledge about program
characteristic

Kiran Nagaraja, Rutgers University Vivo Project
16

J* Framework

Kiran Nagaraja, Rutgers University Vivo Project
17

Conclusions

Uniform presentation of the set of dynamic metrics that can be
used to characterize the qualitative properties of programs used
as benchmarks
Can be used to quantitatively compare program behavior

Can be used as a guide for applying compiler optimization
techniques

Thank you!

Questions?

For more information
http://vivo.cs.rutgers.edu

