Dynamic Metrics for Java

Bruno Dufour, Karel Driesen, Laurie Hendren and Clark Verbrugge
McGill University

Presented by:

Kiran Nagaraja
Rutgers University

Motivation

Compiler optimization techniques span different aspects of program behavior
Compile time

Total runtime
In-memory size

Optimization techniques work on specific characteristics of programs
Numeric or compute intensive
Memory intensive
Pointer intensive
High concurrency

Need representative benchmarks to test the particular optimizations

Basic question: How do u characterize program behavior? Are there a small set of
representative metrics that can be defined and measured for a quantitative
analysis?

Secondary question: How do u guide compiler optimization? (\Which technique to
apply?)

Kiran Nagaraja, Rutgers University Vivo Project

Approach

Intuitive qualitative techniques are not good enough

Static analysis of programs may not capture dynamic behavior well

Conservative
Certain behavior cannot be estimated at compile time
E.g., memory allocation behavior

So, measure dynamic metrics to capture dynamic behavior
Pros: measures ‘relevance’

Cons: optimistic

Use quantitative metrics to characterize what we qualitatively know
about them

Kiran Nagaraja, Rutgers University Vivo Project

Desired Properties for Dynamic Metrics

Unambiguous

Dynamic
E.g. not affected by dead code

Robust
E.g., Anything which is O(n) is not a good metric!

Discriminating

Machine independence
Can be published with secondary information...

Kiran Nagaraja, Rutgers University Vivo Project

Kinds of Metrics

Value metrics
Single values such as average, median, total

Percentiles

X% of characteristic A accounts for Y% of B, rather than count(A)
and count(B), for example.

Defines the distribution of contributions

Bins
Classes of behavior of special interest

Continuous metrics

Time series data of dynamic characteristic
Visual inspection - qualitative

Kiran Nagaraja, Rutgers University Vivo Project

Comparison with Systems Benchmarking
Approaches

Static analysis across multiple components is incredibly hard
Analytical models for single-tier systems possible
Empirical approaches increasing in popularity

Goals: Resource utilization, performance/availability prediction,
bottleneck evaluation

Behavior can vary significantly with workloads

Metrics: CPU, memory allocation, Disk/NW bandwidth

Kiran Nagaraja, Rutgers University Vivo Project

Benchmark Programs

An array of standard programs qualitatively different in behavior

See paper for list
Import ones are: CA, COEFF, EMPTY, Volano, COMP, JAVAC

Try to quantitatively compare their behaviors along the following:
Program size and control structure
Data structure
Polymorphism
Memory use
Concurrency and synchronization

Kiran Nagaraja, Rutgers University Vivo Project

Program Size and Structure

| Melric [EMPTY | HELLO | Omst | TPACK | Operm | COEFF [COMP | SOOT | JAVAC |
size.apploadedClasses.value I I O I [0 0 22 531 175 |
size.appload.value 3 7 727 1036 863 2374 6355 | 45101 | 43664
size.appRun.value 0 3 GO0 749 783 975 SOSE | 25606 | 26267
size.appHot.value 0 - [75 39 393 37 396 2549 2759
size.appHot.percentile na [0 29% 8% 0% 6% 8% [0°% 1%
size loadedClasses value 275 275 281 278 285 286 310 NE 171
size load.value TISIS TIS21 | 76302 TTU32 | 76438 NO292 | 90762 | 126566 | 133172
SiZe.run.value 7343 7793 | 10112 069 9991 2880 | 14514 | 378352 | 37830
s1ze. hot.value 1014 [038 86 15 398 [15 396 3097 2258
size.hot.percentile [4%% [3% 2% [474 [3% 8% [

Metrics which include libraries are not discriminating

Bytecode level metrics are less ambiguous

‘Actual use’ metrics are most characterizing — robust to optimizations
‘Hot’ metrics are less robust to varying input

Kiran Nagaraja, Rutgers University Vivo Project

Program Control Structure

Measuring instructions that change the control flow
Example: (if, switch, invoke virtual)

Control density(value): total number of control byte codes touched

Changing control density(value):
byte codes change direction / # of control byte code touched

Changing control rate (value)
Most dynamic — Measures actual change in direction

Kiran Nagaraja, Rutgers University Vivo Project

Data Structures

Metric COEFF | LPACK CA Obh Opow | SBLCC | EMPTY
data.appArrayvDensity.value || 160.404 | 157.775 | 139.890 | 105.947 | 97.433 38.868 n/a
data.appCharArrayDensity.value 0.0 0.0 15.494 0.0 0.0 0.0 n/a
data.appNumArrayDensity.value 79.486 | 148.385 | 124.33¢ 97.577 | 96.487 11.209 n/a
data.appReftArrayDensity.value 80.713 9.389 0.015 4.383 0.162 13.274 n/a
data.arrayDensity.value || 150.939 [152.170 30.881 | 105.891 | 93.418 | 43.551 73.496
data.charArrayDensity.value 1.513 2.077 10.208 0.012 0.016 6.547 32.549
data.numArrayDensity.value 75.033 | 140.929 14.603 97.513 | 92.491 9.416 35.025
data.refArrayDensity.value 73.772 8.890 0.400 4.380 0.156 15.636 1.874

Array intensive: Tracking array access bytecodes

Problems: Accesses within libraries; Multidimensional arrays

Metrics normalized by kbc (kilo bytecode), hence the numbers for

EMPTY

Kiran Nagaraja, Rutgers University

Vivo Project

Polymorphism

[app]CallSites (value):Total number of different call sites executed

Skew: does not include static invoke instr.

[applinvokeDensity (value):
executed invokevirtual or invokeinterface / kbc

Metric EMPTY | COEFF | COMP | JAVAC
polymorphism.invokeDensity.value 15 61 17 39
polymorphism.applnvokeDensity.value n/a 66 17 72

Kiran Nagaraja, Rutgers University

Vivo Project

11

Polymorphism

polymorphism.[app]targetArity.bin:
measures the percentage of all call sites which have 1,2 or 3

different target methods:

Similar bin metric of receiver

Metric EMPTY | COEFF | COMP | JAVAC
polymorphism.targetArity.bin(1) 98.4% 98.8% | 98.3% 91.2%
polymorphism.targetarity.bin(2) 1.4% 1.0% 1.5% 3.4%

polymorphism.targetarity.bin(3+) 0.2% 0.1% 0.2% 5.4%
polymorphism.apptargetarity.bin(1) nfa | 100.0% | 98.1% 89.7%
polymorphism.apptargetarity.bin(2) n/a 0.0% 1.9% 3.8%

polymorphism.apptargetarity.bin(3+) n/a 0.0% 0.0% 6.5%

Kiran Nagaraja, Rutgers University

Vivo Project

12

Memory Use

Allocated byte density:
of allocated bytes / kbc

Metric

EMPTY

COEFF

COMP

JAVAC

memory.byteAllocationDensity.value

1750

109

11

132

Kiran Nagaraja, Rutgers University

Vivo Project

13

Concurrency and Synchronization

Concurrency lock percentile:

of locks in 90% of locking operations / kbc

Metric EMPTY | COEFF | COMP | JAVAC

concurrency.lock.percentile 66.7% 10.3% | 56.7% 6.2%

Kiran Nagaraja, Rutgers University Vivo Project

Guiding Compiler Optimizations

Metric Orig Inline PT+CSE
base.executedInstructions.value || 445.13 M | 287.86 M | 282.08 M
size.appRun.value 1008 1449 1425
poly.applnvokeDensity.value 116.17 10.84 11.06
poly.appTargetArity.bin(1) 1 1 1
pointer.appFieldAccessDensity.value 126.7 196.1 177.8
Executing VM Orig Inline PT+CSE
Interpreter (sec) 51.40 33.38 32.17

JIT-noinlining (sec) 11.06 8.61 8.64

JIT (sec) 8.81 8.21 8.23

Applying optimizations requires knowledge about program

characteristic

Kiran Nagaraja, Rutgers University

Vivo Project

J* Framework

*J Trace Generator

‘ ‘ . | *J
*JIVMPI Compiled *J g *J Event
Agent Event Spec File S%eg"]f]'gﬁg?n Specification
; ; | *J Event I *J Trace | “J XML *J DB
- Java VM : Trace Analyzer Metrics File]"" Interface

L. *J Trace Analyzer

E Java Program

Metrics
Database

PHP-Enabled
Web Server

Browser

]
' Client HTTP

*J Web Interface

Kiran Nagaraja, Rutgers University Vivo Project

Conclusions

Uniform presentation of the set of dynamic metrics that can be
used to characterize the qualitative properties of programs used
as benchmarks

Can be used to quantitatively compare program behavior

Can be used as a guide for applying compiler optimization
techniques

17
Kiran Nagaraja, Rutgers University Vivo Project

Thank you!

Questions?

For more information
http://vivo.cs.rutgers.edu

