Efficiently Verifiable Escape
Analysis

Matthew Q. Beers, Christian H. Stork,

and Michael Franz

School of Information and Computer Science
University of California, Irvine

Presented by
Irantha Suwandarathna



Agenda

-+ Motivation
-+ Optimizations with Escape analysis

-+ Analysis

- Class transformation
- Rtt constraints
- Esc constraints

-+ Evaluation

- Captured allocations
- Verification speed



Motivation

<+ Mobile ,JIT compilers can’t afford
time consuming optimizations

- Annotate class files with the
analysis results

- Annotations are unsafe

-+ So need efficient verification



What they achieved

-+ Linear time analysis

-+ Significant analysis precision
+Very low annotation overhead
-+ Easy to verify

-+ Support dynamic class loading
<+ Only a conservative assumption ??



Optimizations with Escape
Analysis

-+ Stack allocation
-+ Remove synchronization
- Object inlining

--Dead store removal



Analysis

<+ Find captured variable instead of

objects

<-Never returned
--Passed only to captured parameters
<+ Never assigned to a escaping variables

-+-Assume all field references escape
-+ Array elements always escape

-+ Multi-dimension array is captured in
the first dimension



Analysis Steps

- Source program transformation
-+ Runtime type constrains

--Escape constraints



Source Code
Transformations



Run-Time Type Constraints

<+ For each variable calculate rtt(v)

- uninitialized (-1),initialized but unknown
(T),class C

+Initialize with rtt(v) >= -

-+-Linear time Solution with standard



Escape Constraints

-+ For each variable define Escape
constraint
+-esc(v) = T if true, esc(v) = - if false



Escape Constraints ...

- Class hierarchy and rtt(v) to find invocable
methods



Annotations / Verification

-+ Generation of constraint equations
at run time

-+ Verify with annotated solutions
-+ Can’t notice suboptimal solutions

-+ Library method parameter should
be annotated

<+ Revert to everything escape



Evaluation

-+ Compared with most precise know
analysis
-+-Whaley - and Rinard

+Section 2 and 3 of JavaGrande and
a subset of SPECjvm98

-+ string concatenations
<+ String s = s1 + s2;

<+ String s = new
StringBuffer(s1).append(s2).toStrinqg();



Captured Allocation sites
(static allocation)

-+ Difference
in Source &
bytecode

-+ Same
methods were
analysed



Captured allocation sites
within loops(closed world)

- better capture
of inside loop

<+ Due to used
benchmarks

-+ Short lived
--high dynamic
captured
allocations



Why not Dynamic
allocations?

-+ Lack of infrastructure

-+ Non-trivial to modify VM allocation
strategy

-+ Annotations to guarantee bounded
stack

<+ 1/3 of allocations need dynamic
stack frame



Verification Time

<+ Can be
integrated with
another pass

-+ Each method
separately



Annotation Size

- As attribute_info for methods
-+ esc(v) takes 1 bit
<+ rtt(v) as

<4 byte reference to constant pool
<1 bit boolean predicate



Encoding rtt(v) as a boolean
predicate

-+ Run-time type equal to declared
type(D) or not

<+ 1f C I= D then replace the declared
type with C

- If rtt(v) = - replace v with null






