
Efficiently Verifiable Escape
Analysis

Matthew Q. Beers, Christian H. Stork,
and Michael Franz

School of Information and Computer Science
University of California, Irvine

Presented by
Irantha Suwandarathna

Agenda
Motivation

Optimizations with Escape analysis

Analysis
Class transformation
Rtt constraints
Esc constraints

Evaluation
Captured allocations
Verification speed
Annotation overhead

Motivation

Mobile ,JIT compilers can’t afford
time consuming optimizations

Annotate class files with the
analysis results

Annotations are unsafe

So need efficient verification

What they achieved

Linear time analysis

Significant analysis precision

Very low annotation overhead

Easy to verify

Support dynamic class loading
Only a conservative assumption ??

Optimizations with Escape
Analysis

Stack allocation

Remove synchronization

Object inlining

Dead store removal

Analysis

Find captured variable instead of
objects

Never returned
Passed only to captured parameters
Never assigned to a escaping variables

Assume all field references escape

Array elements always escape

Multi-dimension array is captured in
the first dimension

Static variables escape

Analysis Steps

Source program transformation

Runtime type constrains

Escape constraints

Source Code
Transformations

Run-Time Type Constraints

For each variable calculate rtt(v)
uninitialized (,initialized but unknown

(T),class C

Initialize with rtt(v) >=

Linear time Solution with standard
worklist algorithm

Escape Constraints
For each variable define Escape

constraint
esc(v) = T if true, esc(v) = if false

Escape Constraints ...
Class hierarchy and rtt(v) to find invocable

methods

Annotations / Verification

Generation of constraint equations
at run time

Verify with annotated solutions

Can’t notice suboptimal solutions

Library method parameter should
be annotated

Revert to everything escape

How to verify ???

Evaluation

Compared with most precise know
analysis

Whaley - and Rinard

Section 2 and 3 of JavaGrande and
a subset of SPECjvm98

string concatenations
String s = s1 + s2;
String s = new

StringBuffer(s1).append(s2).toString();

Captured Allocation sites
(static allocation)

Difference
in Source &
bytecode

Same
methods were
analysed

Captured allocation sites
within loops(closed world)

better capture
of inside loop

Due to used
benchmarks

Short lived
high dynamic

captured
allocations

Why not Dynamic
allocations?

Lack of infrastructure

Non-trivial to modify VM allocation
strategy

 Annotations to guarantee bounded
stack

 1/3 of allocations need dynamic
stack frame

Difficulties with dynamic stacks

Verification Time
Can be

integrated with
another pass

Each method
separately

Annotation Size
As attribute_info for methods

 esc(v) takes 1 bit

 rtt(v) as
4 byte reference to constant pool
1 bit boolean predicate

Encoding rtt(v) as a boolean
predicate

Run-time type equal to declared
type(D) or not

If C != D then replace the declared
type with C

If rtt(v) = replace v with null

