Static Conflict Analysis for
Multi-Threaded Object Oriented
Programs

Christoph von Praun
and Thomas Gross

Presented by Andrew Tjang

Authors

® \Von Praun
— Recent PhD
— Currently at IBM (yorktown heights)
— Compilers and runtime systems for OOP

® (5ross
— Stanford Graduate
— CMU faculty
— Compilers, software construction

Introduction

® How to get info about object use/sharing

INn Mu
® [ntroc

® Provic
— O/W

ti threaded environments?
ucing Object Use Graphs (OUG)

es info to compiler for optimizations
compiler makes assumptions

® Check for race conditions in programs (for
SW engineers)

® Analysis done at compile time!

Background and Problems

® Escape analysis produce Heap Shape
Graphs (HSG)
— Classifies objects according to properties

e [nfo valid for whole program
— Accesses in 2 threads cause obj to be shared

® How to get finer granularity?

OUGs

® OUG constructed to determine the “happened
before” relationship

e Refines HSG's escape info
— Recognizes structural, temporal, and lock protections

® OUG foundation to concurrence aware compiler
systems

e Distinguish effects of different threads on
abstract objects

Terminology

e Abstract thread, abstract object
— Compiler entities
— Conservative approximate runtime entities

e Runtime thread, runtime object

— Actual objects and threads that exist in a
program’s execution

Example HSG

class Shared {
int 1i;
Shared () { i
}

class Example extends Thread {
static Shared s_field;

static Object lock_ = new Object();

static void main(String[] args) {
Shared s_local = new Shared();
s_local.i++;

s_field = s_local;
s_field.i++;

Thread t = new Example();
t.start();

synchronized(lock_) {
s_field.i++;
}

t.join();
s_field.i++;

}

void run() {
synchronized(lock_) {
s_field.i++;

(2),(3)
4), ()

(8)

(7),(8),(9)

(10)

(11),(12),(13)

(14)
(15),16),17)
(22)

(23),(24),(25)
(26)

"jnm]angThmad
=3

Figure 2:

(> ubetmact abject
.Thread
Jmhnn O ro of user thesad
[D root of Ink or main threed
— Mwid adge

HSG for the example program.

Modeling Object Uses

® Nodes in OUG = events
® Fdges = “happened before” relation

® Nodes:
— Get/Put, Load/Store/Escape, Tstart/Tjoin,
Entry/Exit, Call
® Nodes have attributes

— Abstract thread, program site, host object,
accessed field, set of locks, etc...

OUG Edges

e Control-flow ordering
— Order of events in threads (can be cyclic)
e Reference flow ordering

— Restriction — object used after object creation
or sharing

® Thread-relation ordering
— Edges to/from TStart/Tjoin nodes

Conflicting vs. Safe

® Objects are conflicting if:
— No ordering between events
— Events from different threads
— At least one event is a Put
— Accesses are not done under locks

e Safe otherwise
® OUGs may have false positives

OUG Construction

® Determine abstract threads
® Build HSG

e Build OUGs from symbolic execution of
abstract threads

® Analyze OUG for conflicting events

Determining Abstract Threads

® Represented by: T := (tid, (mO...mn), kind, multi)
® Tid= unique id for thread

e MO-mn = entry methods for thread
e Kind = (init, main, or user)

e Mult = unique vs multiple

® Threads characterized by methods
executed from call graph rooted @ entry
methods

Computing the HSG

® Flow insensitive of data and reference relations

® Compositional

— Metgods are analyzed independantly, and summaries
use

e Summary has context (parameters return
values, etc)

— Reference vars id’d by alias set
e AS:=(fieldmap, props, tidmask)
¢ Fieldmap = field names to alias set (reachable)
® Props=properties
® Tidmask =abstract threads that access

More on HSGsS

e Alias sets for class & abstract threads become
root nodes

® Reachable from root (transitively) = global =>
global, could be multi thread accessible

® Method summary
— MS[m] = ((f0...fn),ret, except,alloc, reads, writes)
— FO...fn = local variables
— Collection of alias sets
— Abstract thread id noted at all object access sites

Symbolic Execution

e Narrows classification into conflicting and
non conflicting

® This is where OUGSs are constructed
e Maps onto the HSG

® Follows the program execution through
the nodes (objects)

MOUGS

® Models relevant events at method level

e Control graph where actions that do not
involve the object are pruned

® Created through single flow sensitive
method traversal

® Relevant events are local variable 10-In, or
global alias set if class

| ENTRY |
)
@ | NEW |

¥
(3} | CALL [Shared::<init] |
4

(4}| GET [Shared::[] |

(19) | ENTRY |
¥
{20)[PUT[Shared:] |

{21 EXIT |

(b}
MOUG[Shwred: :<init>, {1,]

+
class Shared { (6} | PUT [Stured:i] | ml ENTRY |
int i; + T
¥
o [oo] ——
class Example extends Thread { I <+ | 24 loci={L})
static Shared s_field; (B} GET [Shared::]]
static Object lock_ = new Object(); ! sy | PUT[Shared:]]
. ‘ ' ‘ () | PUT [Shared:] | '"'i L
static void main(String(] args) { 1 {3‘“| AT |
Shared s_local = new Shared(); (2),(3) (w}l BTART T3] |
s_local.i++; (4),(5) I ()
. o I LOAD (3] | NOUG[Exampila: :rum, {1,}]
s_field = s_local; (8) |
s_field.i++; (7),(8),(9) a2) QET [Ghared:] [27]' ENTRY |
b
Thread t = new Example(); I T NEW
t.start(); (10) an | T Wﬂi 2 @ | T |
synchronized(lock_) { x &) FALL[I kﬁb‘
 s_field.it+; (11),(12), (13) ag| oNmd | ¥
y o S 1 (%0)| STARTM, |
o9 [oA])
t.join(); (14) + - n | JOIN [Ts] |
s_field.i++; (15), (16), (17) (18) | GET mhared:l] _ | L
) I {a2) | EXIT |
(17| PUT Shared:] |

void run() { (22) A
synchronized(lock_) { {18) I EXIT
s_field.i++; (23),(24),(25)

=}
(26) MOUG[Exsmple::main, (L}

I MOUG [Elultlg}lu:nuln. Ly

Figure 5: Example MOUGs.

Optimization

e @ Compile time, all execution paths =
expensive traversals

® Save some time by avoiding equivalent
method, thread, and locking context

® Use site context sc:=(m,(a0...an),tid, lockset)

e Avoid descent into methods that have no
effect on shared data

Conflict Analysis

® Fvents between new and escape safe

e Events before TSTART are safe if issued
by a unique thread?

— Unless thread is started multiple times
o [f only Get events left, obj is read-only
e F|se check if lock protected

¢ F|se check readonlyness/lock protected of
individual fields

Benchmarks

|| philo | elevator | mtrt | sor | tsp | hedc | mold | ray | monte

program characteristics

appl loc

él[)l)l ('Izl.\.\t'.\

lib classes

methods in call graph
bytecodes 1n call graph
user threads

method spec

compilation resources

shape analysis [s]

S

2
129
192
3605
2

($1e)

5]
142
311
6820
2
|18

112098
3
158
722

300

132
205
183
3
16

706

|
111
302

28209
1S
208
1025
24375

)

3653

1402
11
129
224
6031
2

111

1972
19
131
270

5082

)

150

36741
19
146
111
8161

symb exec |[s]
meth sites proc
meth sites reused
meth sites noeffect

]I)‘.;()
1640

855

123.6
29251
60233
29123

contlict analysis [s]

n) r\-

e

133.8

memory |MB]

Table 1:

14.7

263.5

Benchmark characterization and compilation properties.

Characteristics

["ohilo [elevator | mtrt | “sor | tsp | hedc | mol | ray | monts

165
inst . ; 79
inst unique
shared
shared readonly
shared lock-protected
shared l]lix-])l'ul(-('h,-(l
shared conflicting
OUGs
nodes max 217 327 | 1618 | 286 | . 83052 | 537
nodes median 50 05 7| 116 99 17 99
edges max 135 630 | 6083 | 410 | 640 | 206456 | 616
edges median 67 172 111 | 221 163 748 | 145

classification of HSG nodes

('lkl.\.\

Table 2: Characteristics of HSG and OUGs (no arrays).

How well does it do?

|| philo | elevator | mtrt | sor tsp hedc | mol | ray | monte
global
abstract objects 13 38 91 14 30 201 25 39 54
allocation sites 18 55 117 18 12 256 27 56 59
access sites 135 526 1002 288 78 1954 963 166 399
r/w shared
abstract objects 7 10 59 5 Y 107 14 24 20
allocation sites 12 17 8Y | 13 130 19 13 29
access sites 111 246 956 197 337 IS818 399 108 252
oOUG ,"‘.‘TU('/\‘ ‘”]’l)il'l'."l.“f.'.,-’
abstract objects 2 T S 5 G 76 S 18 20
allocation sites 2 9 19 | 5 163 7 31 29
access sites 21 168 165 155 190 1387 751 254 216
OUG (all)
abstract objects | | 5 1 3 36 | S 5
. improvement () 86 6O 91 80 67 63 71 67 75
allocation sites 1 6 16 2 3 129 5 16 15
. improvement (%) 02 65 82 50 77 28 74 63 1S
access sites 11 113 121 75 58 1110 529 144 118
. improvement () a0 54 87 62 83 38 11 65 53
avg/max alloc sites per obj. 1.0/1 1.5/2 1.0/9 2.0/2 1.0/1 | 4.1/63 1.3/2 2.0/4 3.8/9
conflicting fields 2 12 20 11 G 198 50 19 19
avg/max acc sites per field 5.5/8 09.3/20 | 5.7/23 | 6.8/11 | 9.7/14 | 4.8/33 | 10.6/127 5/13 | 5.9/23
conflict types
all writes locked 0 2 1 0 2 11 0 0 2
object local to thread | 1 1 1 | 2 1 1 0
one lock but not unique 0 1 2 0 0 8 0 0 2
no common lock 0 0 1 0 0 15 3 T 1

Table 3: Static

conflict detection (no arrays).

How useful?

philo | elevator | mtrt < monte

shared
allocated : 10011 21039: 20020
actually shared 7 : 15 375 ! 34! 20013
conflict
allocated : 3.) : 5002 205 2103667 | 20007
actually conflict 163 . 69 |

Table 4: Allocation of objects with their compile-time classification and the actual situation at runtime.

How fast?

mtrt

no istrumentation
]'li'lht,'
optimized!
object race checking
.\lil('k-l'.\('ill)(’
global
shared r/w
ouaG
OUG optimized

Table 7: Runtime in seconds and overhead of the

23.8
23.8
23.9
10.3 (169%)
10,1 (149%)

61.0
65.5

65.4

66.0 (220%)

38.4 (869%)

116.1
111.5
110.9
82.7 (6T%)
73.0 (58%)

monte

11.5
11.3
12.0
10.9 (7590
10.4 (79%)

s program instrumentation (array access not instrumented).

Limitations

e Initializer and finalizer threads not
considered

® \Whole Program Knowledge
— Reflection/dynamic class loading

® Naive (conservative) thread ordering
assumptions

Conclusion

® OUGs can provide finer grained analysis
of shared objects

® Fewer accesses are classified as
conflicting (incorrectly)

® OUGs solid foundation for reporting
accesss conflicts and optimize
synchronization operation placement

