
Static Conflict Analysis forStatic Conflict Analysis for
Multi-Threaded Object OrientedMulti-Threaded Object Oriented

ProgramsPrograms

ChristophChristoph von von PraunPraun
and Thomas Grossand Thomas Gross

Presented by Andrew TjangPresented by Andrew Tjang

AuthorsAuthors

•• Von Von PraunPraun
–– Recent PhDRecent PhD
–– Currently at IBM (Currently at IBM (yorktownyorktown heights) heights)
–– Compilers and runtime systems for OOPCompilers and runtime systems for OOP

•• GrossGross
–– Stanford GraduateStanford Graduate
–– CMU facultyCMU faculty
–– Compilers, software constructionCompilers, software construction

IntroductionIntroduction

•• How to get info about object use/sharingHow to get info about object use/sharing
in multi threaded environments?in multi threaded environments?

•• Introducing Object Use Graphs (OUG)Introducing Object Use Graphs (OUG)
•• Provides info to compiler for optimizationsProvides info to compiler for optimizations

–– o/w compiler makes assumptionso/w compiler makes assumptions

•• Check for race conditions in programs (forCheck for race conditions in programs (for
swsw engineers) engineers)

•• Analysis done at compile time!Analysis done at compile time!

Background and ProblemsBackground and Problems

•• Escape analysis produce Heap ShapeEscape analysis produce Heap Shape
Graphs (HSG)Graphs (HSG)
–– Classifies objects according to propertiesClassifies objects according to properties

•• Info valid for Info valid for wholewhole program program
–– Accesses in 2 threads cause Accesses in 2 threads cause objobj to be shared to be shared

•• How to get finer granularity?How to get finer granularity?

OUGsOUGs

•• OUG constructed to determine the OUG constructed to determine the ““happenedhappened
beforebefore”” relationship relationship

•• Refines Refines HSGHSG’’ss escape info escape info
–– Recognizes structural, temporal, and lock protectionsRecognizes structural, temporal, and lock protections

•• OUG foundation to concurrence aware compilerOUG foundation to concurrence aware compiler
systemssystems

•• Distinguish effects of different threads onDistinguish effects of different threads on
abstract objectsabstract objects

TerminologyTerminology

•• Abstract thread, abstract objectAbstract thread, abstract object
–– Compiler entitiesCompiler entities
–– Conservative approximate runtime entitiesConservative approximate runtime entities

•• Runtime thread, runtime objectRuntime thread, runtime object
–– Actual objects and threads that exist in aActual objects and threads that exist in a

programprogram’’s executions execution

Example HSGExample HSG

Modeling Object UsesModeling Object Uses

•• Nodes in OUG = eventsNodes in OUG = events
•• Edges = Edges = ““happened beforehappened before”” relation relation
•• Nodes:Nodes:

–– Get/Put, Load/Store/Escape, Get/Put, Load/Store/Escape, TstartTstart//TjoinTjoin,,
Entry/Exit, CallEntry/Exit, Call

•• Nodes have attributesNodes have attributes
–– Abstract thread, program site, host object,Abstract thread, program site, host object,

accessed field, set of locks, etcaccessed field, set of locks, etc……

OUG EdgesOUG Edges

•• Control-flow orderingControl-flow ordering
–– Order of events in threads (can be cyclic)Order of events in threads (can be cyclic)

•• Reference flow orderingReference flow ordering
–– Restriction Restriction –– object used after object creation object used after object creation

or sharingor sharing

•• Thread-relation orderingThread-relation ordering
–– Edges to/from Edges to/from TStartTStart//TjoinTjoin nodes nodes

Conflicting vs. SafeConflicting vs. Safe

•• Objects are conflicting if:Objects are conflicting if:
–– No ordering between eventsNo ordering between events
–– Events from different threadsEvents from different threads
–– At least one event is a PutAt least one event is a Put
–– Accesses are not done under locksAccesses are not done under locks

•• Safe otherwiseSafe otherwise
•• OUGsOUGs may have false positives may have false positives

OUG ConstructionOUG Construction

•• Determine abstract threadsDetermine abstract threads
•• Build HSGBuild HSG
•• Build Build OUGsOUGs from symbolic execution of from symbolic execution of

abstract threadsabstract threads
•• Analyze OUG for conflicting eventsAnalyze OUG for conflicting events

Determining Abstract ThreadsDetermining Abstract Threads

•• Represented by: Represented by: T := (T := (tidtid, (m0, (m0……mnmn), kind, multi)), kind, multi)

•• TidTid= unique id for thread= unique id for thread
•• M0-mn = entry methods for threadM0-mn = entry methods for thread
•• Kind = (init, main, or user)Kind = (init, main, or user)
•• MultMult = unique = unique vsvs multiple multiple
•• Threads characterized by methodsThreads characterized by methods

executed from call graph rooted @ entryexecuted from call graph rooted @ entry
methodsmethods

Computing the HSGComputing the HSG

•• Flow insensitive of data and reference relationsFlow insensitive of data and reference relations
•• CompositionalCompositional

–– Methods are analyzed Methods are analyzed independantlyindependantly, and summaries, and summaries
usedused

•• Summary has context (parameters returnSummary has context (parameters return
values, etc)values, etc)
–– Reference Reference vars idvars id’’d d by alias setby alias set

•• AS:=(AS:=(fieldmapfieldmap, props, , props, tidmasktidmask))
•• Fieldmap Fieldmap = field names to alias set (reachable)= field names to alias set (reachable)
•• Props=propertiesProps=properties
•• Tidmask Tidmask =abstract threads that access=abstract threads that access

More on More on HSGsHSGs

•• Alias sets for class & abstract threads becomeAlias sets for class & abstract threads become
root nodesroot nodes

•• Reachable from root (transitively) = global =>Reachable from root (transitively) = global =>
global, could be multi thread accessibleglobal, could be multi thread accessible

•• Method summaryMethod summary
–– MS[m] = ((f0MS[m] = ((f0……fn),ret,except,fn),ret,except,allocalloc,reads,writes),reads,writes)
–– F0F0……fn = local variablesfn = local variables
–– Collection of alias setsCollection of alias sets
–– Abstract thread id noted at all object access sitesAbstract thread id noted at all object access sites

Symbolic ExecutionSymbolic Execution

•• Narrows classification into conflicting andNarrows classification into conflicting and
non conflictingnon conflicting

•• This is where This is where OUGs OUGs are constructedare constructed
•• Maps onto the HSGMaps onto the HSG
•• Follows the program execution throughFollows the program execution through

the nodes (objects)the nodes (objects)

MOUGsMOUGs

•• Models relevant events at method levelModels relevant events at method level
•• Control graph where actions that do notControl graph where actions that do not

involve the object are prunedinvolve the object are pruned
•• Created through single flow sensitiveCreated through single flow sensitive

method traversalmethod traversal
•• Relevant events are local variable l0-Relevant events are local variable l0-lnln, or, or

global alias set if classglobal alias set if class

MOUGsMOUGs

OptimizationOptimization

•• @ Compile time, all execution paths =@ Compile time, all execution paths =
expensive traversalsexpensive traversals

•• Save some time by avoiding equivalentSave some time by avoiding equivalent
method, thread, and locking contextmethod, thread, and locking context
•• Use site context Use site context SC:=(m,(a0SC:=(m,(a0……an),an),tidtid,lockset),lockset)

•• Avoid descent into methods that have noAvoid descent into methods that have no
effect on shared dataeffect on shared data

Conflict AnalysisConflict Analysis

•• Events between new and escape safeEvents between new and escape safe
•• Events before TSTART are safe if issuedEvents before TSTART are safe if issued

by a unique thread?by a unique thread?
–– Unless thread is started multiple timesUnless thread is started multiple times

•• If only Get events left, If only Get events left, obj obj is read-onlyis read-only
•• Else check if lock protectedElse check if lock protected
•• Else check Else check readonlynessreadonlyness/lock protected of/lock protected of

individual fieldsindividual fields

BenchmarksBenchmarks

CharacteristicsCharacteristics

How well does it do?How well does it do?

How useful?How useful?

How fast?How fast?

LimitationsLimitations

•• Initializer Initializer and and finalizer finalizer threads notthreads not
consideredconsidered

•• Whole Program KnowledgeWhole Program Knowledge
–– Reflection/dynamic class loadingReflection/dynamic class loading

•• Naïve (conservative) thread orderingNaïve (conservative) thread ordering
assumptionsassumptions

ConclusionConclusion

•• OUGs OUGs can provide finer grained analysiscan provide finer grained analysis
of shared objectsof shared objects

•• Fewer accesses are classified asFewer accesses are classified as
conflicting (incorrectly)conflicting (incorrectly)

•• OUGs OUGs solid foundation for reportingsolid foundation for reporting
accesss accesss conflicts and optimizeconflicts and optimize
synchronization operation placementsynchronization operation placement

