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Background – Points-to Analysis

Goal: Given a (reference) variable v, find the set of
objects to which v may point at runtime.

For each v, keep a set of possible objects
(points-to set).

Problems
Large points-to sets
→ Find efficient set representations
Large number of points-to sets
→ Collapse equivalent variables
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Points-to Example Code

X: O a = new O();
Y: O b = new O();
Z: O c = new O();

a = b;
b = a;
c = b;

Points-to set: {

(a,X) (b,Y) (c,Z) (a,Y) (b,X) (c,X) (c,Y)

}
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Background – BDDs

Binary Decision Diagrams (BDDs) are data
structures that are used to represent large sets with
similarities.

Introduced in [Bryant86]

Applications in model checking

Essentially single-root DAGs with out-degree two for
each non-leaf node

Some possible interpretations:
Set of binary strings
Representation of a boolean function
f : {0, 1}n → {0, 1}

Finite automaton with accepting state 1 and
rejecting state 0 taking binary strings as input
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Example BDD

A

B C

D E F G

1 0

0 1

0 1 0 1

L = {000,001,011,100}
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Reducing a BDD

A

B C

D E F G

1 0

0 1

0 1 0 1
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Reduced BDD

A

B C

E F

1 0

0 1

0

1 0

1
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Types of BDDs

Ordered BDDs (OBDDs)
variables are ordered
Each variable appears only in one level of the
BDD

Reduced Ordered BDDs (ROBDDs)
OBDDs in reduced form
Consistent ordering of nodes ensures uniqueness
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BDD Operations

BDDS support common set operations (∩, ∪, . . . )

Existential quantification: S = {a|∃b.(a, b) ∈ X}

Relational product: {(a, c) | ∃b.(a, b) ∈ X ∧ (b, c) ∈ Y )}
(∩ + existential quantification)

a b

b c
→ a c

Replace: bit reordering
a c → a c

Operation cost proportional to # of nodes in BDD
To minimize cost, keep BDDs in reduced form
Implicitly refer to ROBDDs simply as BDDs
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Bit Ordering

Ordering of bits in BDDs is arbitrary
Any permutation is valid
Some permutations lead to smaller (reduced)
BDDs
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BuDDy

Publicly available BDD package
Written in C
Supports dynamic variable reordering
Features node garbage collection
Groups bits into domains
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Points-to Algorithm

Java extension of Andersen’s analysis
Flow-insensitive
Context-insensitive
Subset-based constraints

All constraints generated ahead of time to separate
constraint generation from solver

Call graph for constraint generation obtained
using CHA
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Points-to Algorithm

4 types of statements
Allocation: a : l := new C

Simple assignment: l2 := l1

Field store: q.f := l

Field load: l := p.f

2 relations
Points-to: pt

pt(l) denotes the set of objects that l may point
to

Assignment-edge: →
a → b indicates that b may point to any object
that a may point to
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Inference Rules

Simple assignments

l1 → l2 o ∈ pt(l1)

o ∈ pt(l2)

Field stores

o2 ∈ pt(l) l → q.f o1 ∈ pt(q)

o2 ∈ pt(o1.f)

Field loads

p.f → l o1 ∈ pt(p) o2 ∈ pt(o1.f)

o2 ∈ pt(l)
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PTA Solver Algorithm

init
repeat

repeat
Process simple assignments

until no change
Process field stores
Process field loads

until no change
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BDD Implementation

Recall:
X: O a = new O();
Y: O b = new O();
Z: O c = new O();

a = b;
b = a;
c = b;

Points-to set: { (a,X) (b,Y) (c,Z) (a,Y) (b,X) (c,X) (c,Y) }
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Encoding the Example Points-to Set as a BDD

Points-to set contains pairs of the form (v, h) where v

is a variable and h is a heap location.

Need two domains:
V = {a, b, c}

H = {X, Y, Z}

Points-to set P ⊆ V × H

Need dlog2(|V |)e = 2 bits for each element of V

Represent elements of V as binary string v1v0

v1v0

a 0 0
b 0 1
c 1 0

Idem for H
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Encoding the Example Points-to Set as a BDD (2)

(v, h) ∈ P ⇔ v1v0h1h0 is mapped to 1 in the BDD

v1

v0 v0

h1 h1 h1 h1

h0 h0 h0 h0 h0 h0 h0 h0

1 0
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Encoding the Example Points-to Set as a BDD (2)
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v1

v0 v0

h1 h1 h1 h1
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Encoding the Example Points-to Set as a BDD (2)

(v, h) ∈ P ⇔ v1v0h1h0 is mapped to 1 in the BDD

(b, Z) 6∈ P

v1

v0 v0

h1 h1 h1 h1

h0 h0 h0 h0 h0 h0 h0 h0

1 0
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BDD Representation

v1

v0 v0

h1 h1 h1 h1

h0 h0 h0 h0 h0 h0 h0 h0

1 0
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BDD Reduction (1)

v1

v0 v0

h1 h1 h1 h1

h0 h0 h0 h0 h0 h0 h0 h0

1 0
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BDD Reduction (2)

v1

v0 v0

h1 h1 h1 h1

h0

1 0
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BDD Reduction (3)

v1

v0 v0

h1 h1 h1 h1

h0

1 0
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BDD Reduction (4)

v1

v0 v0

h1 h1 h1

h0

1 0

Points-to Analysis using BDDs – p. 26/76



BDD Reduction (5)

v1

v0 v0

h1 h1 h1

h0

1 0
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Reduced BDD Representation

v1

v0

h1 h1

h0

1 0
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General BDD Implementation

Need 5 domains
V 1, V 2: Reference variables

Need two domains to represent pairs in V × V

H1, H2: Allocation sites
Need two domains to represent the points-to set
of object fields

FD: field signatures
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Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c
H1 X Y Z
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Propagating points-to sets
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a = b;
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(a,X)
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Important Relations

pointsTo ⊆ V 1 × H1
points-to relation for
variables
(l points to o)

fieldP t ⊆
(H1 × FD) × H2
points-to relation for
object fields
(o1.f points to o2)

edgeSet ⊆ V 1 × V 2
simple assignments
(l2 := l1)

stores ⊆ V 1× (V 2×FD)
field stores
(l2.f := l1)

loads ⊆ (V 1 × FD) × V 2
field loads
(l2 := l1.f )

typeF ilter ⊆ V 1 × H1
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Simple assignments (l2 := l1)

newPt1: [V2xH1] =
relprod( edgeSet: [V1xV2],

pointsTo:[V1xH1],
V1 );

newPt2: [V1xH1] =
replace( newPt1: [V2xH1],

V2ToV1 );
newPt3: [V1xH1] =

isect ( newPt2: [V1xH1],
typeFilter: [V1xH1] );

pointsTo:[V1xH1] =
union( pointsTo:[V1xH1],

newPt3: [V1xH1] );
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Field stores (q.f := l)

tmpRel1:[(V2xFD)xH1] =
relprod( stores: [V1x(V2xFD)],

pointsTo:[V1xH1],
V1 );

tmpRel2:[(V1xFD)xH2] =
replace( tmpRel1: [(V2xFD)xH1],

V2ToV1 & H1ToH2);
fieldPt:[(H1xFD)xH2] =

relprod( tmpRel2: [(V1xFD)xH2],
pointsTo:[V1xH1],

V1 );
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Field loads (l := p.f )

tmpRel3: [(H1xFD)xV2] =
relprod( loads: [(V1xFD)xV2],

pointsTo:[V1xH1],
V1 );

newPt4: [V2xH2] =
relprod( tmpRel3: [(H1xFD)xV2],

fieldPt: [(H1xFD)xH2],
H1xFD );

newPt5: [V1xH1] =
replace( newPt4: [V2xH2],

V2ToV1 & H2ToH1);
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Experimental Setup

Subset-based constraints generated by SPARK for a
field-sensitive analysis

Call graph constructed using CHA

Effect of native methods considered (inherited from
SOOT)

2 kinds of sets of constraints
Simplified (s)
Non-simplified (ns)

2 strategies for handling declared types
Type filtering during analysis (t)
Type filtering at the end of analysis (nt)
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Performance Tuning – Variable Ordering

Problem: Using the default configuration, the BDD
solver cannot solve most real benchmarks.

Profiling reveals that relprod operation from the
inner loop is the bottleneck.

Two factors to consider for performance
Relative domain ordering
Variable interleaving within domains
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Variable Interleaving Notation

Let FD, V 1 be domains such that f0, . . . , fn are the
variables of FD and v0, . . . , vn are the variables of
domain V 1.

FDV 1 denotes the interleaving of variables, i.e.
f0v0f1v1 . . . fnvn.
FD_V 1 denotes the concatenation of variables,
i.e. f0f1 . . . fnv0v1 . . . vn.

Variables are always order from most to least
significant bit to exploit unused high bits.

BuDDy’s default ordering is FDV 1V 2H1H2

Points-to Analysis using BDDs – p. 58/76



Effect of Domain Arrangement on relprod
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Effect of Interleaving Domains on relprod
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Effect of Interleaving Domains on pointsTo
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Effect of Variable Ordering on Performance

Default ordering is good for model checking, but
much too slow for PTA

Investigate other orderings
Focus on the domains used in the problematic
relprod operation, i.e. V 1, V 2, H1.
Reason about the impact of certain orderings on
BDD size

Domains that feature a large amount of
similarity between the sets could benefit from
preventing interleaving.
It is easier to exploit similarities when present at
the end of the variable sequence than at the
beginning.
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Effect of Different Orderings on Performance
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Effect of Ordering on edgeSet
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Effect of Ordering on pointsTo
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Performance Tuning – Incrementalization

Observation: The relprod operation propagates all
points-to sets along all edges at every execution.

Most sets have already been propagated in
previous iterations
relprod executes in time proportional to the # of
nodes
The inner relprod is very hot

Only propagate the new part of the points-to set
new pointsTo relation remains small
relprod executes much faster
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Incremental BDD-PTA Algorithm

newPt1: [V2xH1] =
relprod( edgeSet: [V1xV2],

pointsTo:[V1xH1],
V1 );

newPt2: [V1xH1] =
replace( newPt1: [V2xH1],

V2ToV1 );

pointsTo:[V1xH1] =
union( pointsTo:[V1xH1],

newPt2: [V1xH1] );
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Performance Tuning – Incrementalization

newPt1: [V2xH1] =
relprod( edgeSet: [V1xV2],

newPoint:[V1xH1],
V1 );

newPt2: [V1xH1] =
replace( newPt1: [V2xH1],

V2ToV1 );
newPoint:[V1xH1] =

setminus( newPt2: [V1xH1],
pointsTo:[V1xH1] );

pointsTo:[V1xH1] =
union( pointsTo:[V1xH1],

newPoint:[V1xH1] );
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Effect of Incrementalization on Performance

benchmark fd_V1V2_H1_2̋ FD_V1_V2_H1_H2

non-inc inc non-inc inc

compress (s/t) 20.63 11.72 19.07 9.80

compress (ns/t) 54.46 26.83 83.63 19.66

compress (ns/nt) 145.33 71.55 228.21 58.58

javac (s/t) 22.62 14.83 23.89 10.83

javac (ns/t) 62.35 30.55 103.52 23.14

javac (ns/nt) 166.66 80.04 285.65 65.46

sablecc-j (s/t) 21.90 14.00 23.10 10.60

sablecc-j (ns/t) 63.43 30.05 110.87 22.86

sablecc-j (ns/nt) 158.33 76.53 269.30 63.82

jedit (s/t) 35.92 20.11 35.43 15.60

jedit (ns/t) 112.47 47.53 357.97 35.29

jedit (ns/nt) 336.18 150.72 783.92 120.53
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Overall Performance – Time
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Overall Performance – Space

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 300  320  340  360  380  400  420  440

M
eg

ab
yt

es

Constraints (x 103)

BDD
Spark

Points-to Analysis using BDDs – p. 72/76



Outline

Background
Points-to (reference) analysis
BDDs

Points-to algorithm using BDDs

Performance tuning

Experimental results

Applications

Conclusions

Points-to Analysis using BDDs – p. 73/76



Applications

Manipulating sets makes it easy to express common
problems:

“May/Must be aliased” analysis
Virtual method resolution (receiver types)

Inlining
Devirtualization

Manipulating the solution as a BDD
improves performance
lowers development cost
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Related Work

A lot. . .
PTA

PTA algorithms
Efficient set representations
Equality-based constraints
. . .

BDDs
Model checking
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Conclusions

BDDs are useful in the context of PTA

It is possible to write efficient solvers using BDD
libraries “out of the box”

Finding a good bit ordering is necessary to obtain
good performance
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