Points-to Analysis using BDDs

Marc Berndl, Ondrej Lhotak, Feng Qian, Laurie Hendren and Navindra Umanee

McGill University

Presented by Bruno Dufour
dufour@cs.rutgers.edu

Rutgers University DCS

Points-to Analvsis usina BDDs — p. 1/76

Outline

m Background
= Points-to (reference) analysis
= BDDs

m Points-to algorithm using BDDs
m Performance tuning

m Experimental results

m Applications

m Conclusions

Points-to Analvsis usina

BDDs —p. 2/76

Background — Points-to Analysis

m Goal: Given a (reference) variable v, find the set of
objects to which v may point at runtime.

= For each v, keep a set of possible objects
(points-to set).

Points-to Analvsis usina BDDs — p. 3/76

Background — Points-to Analysis

m Goal: Given a (reference) variable v, find the set of
objects to which v may point at runtime.

= For each v, keep a set of possible objects
(points-to set).

m Problems

Points-to Analvsis usina BDDs — p. 3/76

Background — Points-to Analysis

m Goal: Given a (reference) variable v, find the set of
objects to which v may point at runtime.

= For each v, keep a set of possible objects
(points-to set).
m Problems
= Large points-to sets

Points-to Analvsis usina BDDs — p. 3/76

Background — Points-to Analysis

m Goal: Given a (reference) variable v, find the set of
objects to which v may point at runtime.

= For each v, keep a set of possible objects
(points-to set).

m Problems
= Large points-to sets

= Large number of points-to sets

Points-to Analvsis usina BDDs — p. 3/76

Background — Points-to Analysis

m Goal: Given a (reference) variable v, find the set of
objects to which v may point at runtime.

= For each v, keep a set of possible objects
(points-to set).
m Problems

= Large points-to sets
— Find efficient set representations

m Large number of points-to sets
— Collapse equivalent variables

Points-to Analvsis usina BDDs — p. 3/76

Points-to Example Code

X: 0 a=new O();
Y: O b =new O();
Z: 0O c =new O();

a=Db,

b = a,

c = b;

Points-to set: { }

Points-to Analvsis usina BDDs — p. 4/76

Points-to Example Code

X: 0 a=new O();
Y: O b =new O();
Z. O c =new O();

a=>b,

b = a,

C = b;

Points-to set: { (a,X) (b,Y) (c,4) |

Points-to Analvsis usina BDDs — p. 4/76

Points-to Example Code

X: 0 a=new O();
Y: O b =new O();
Z: 0O c =new O();

a=Db;

b = a,

C = b;

Points-to set: { (a,X) (b,Y) (c,Z) (a,Y) |

Points-to Analvsis usina BDDs — p. 4/76

Points-to Example Code

X: 0 a=new O();
Y: O b =new O();
Z: 0O c =new O();

a=Db,

b = a;

C = b;

Points-to set: { (a,X) (b,Y) (¢,2) (a,Y) (b,X)

Points-to Analvsis usina BDDs — p. 4/76

Points-to Example Code

X: 0 a=new O();
Y: O b =new O();
Z: 0O c =new O();

a=Db,

b = a,

Cc =Db;

Points-to set: { (a,X) (b,Y) (¢,2) (&,Y) (b,X) (c,X) (c,Y) }

Points-to Analvsis usina BDDs — p. 4/76

Background — BDDs

m Binary Decision Diagrams (BDDs) are data
structures that are used to represent large sets with
similarities.

m Introduced in [Bryant86]

m Applications in model checking

m Essentially single-root DAGs with out-degree two for
each non-leaf node

m Some possible interpretations:
m Set of binary strings
m Representation of a boolean function
f:{0,1}" — {0,1}
= Finite automaton with accepting state |1 |and
rejecting state | 0 | taking binary strings as input

Points-to Analvsis us

ina BDDs — n. 5/76

Example BDD

Points-to Analvsis usina

BDDs —p. 6/76

Example BDD

0. 1
C
0! 1 0! 1
AR
X /\/\/\ //
1 0

L = {000,001,011,100}

Points-to Analvsis usina

BDDs —p. 6/76

Reducing a BDD

Points-to Analvsis usina

BDDs —p. 7/76

Reducing a BDD

Points-to Analvsis usina

BDDs —p. 876

Reduced BDD

Points-to Analvsis usina BDDs — p. 9/76

Types of BDDs

m Ordered BDDs (OBDDs)
m variables are ordered
m Each variable appears only in one level of the
BDD
m Reduced Ordered BDDs (ROBDDs)
= OBDDs in reduced form
m Consistent ordering of nodes ensures uniqueness

Points-to Analvsis usina BDDs —p. 10/76

BDD Operations

m BDDS support common set operations (N, U, ...)
m Existential quantification: S = {a|3b.(a,b) € X'}

m Relational product: {(a,c) | 3b.(a,b) € X A (b,c) € Y)}
(N + existential quantification)

m Replace: bit reordering

—

oo > llc
M-

m Operation cost proportional to # of nodes in BDD
= To minimize cost, keep BDDs in reduced form
= Implicitly refer to ROBDDs simply as BDDs

Points-to Analvsis usina BDDs —p. 11/76

Bit Ordering

m Ordering of bits in BDDs is arbitrary
= Any permutation is valid

= Some permutations lead to smaller (reduced)

BDDs

Points-to Analvsis usina

BDDs —pn. 12/76

BuDDy

m Publicly available BDD package
= Written in C
m Supports dynamic variable reordering
= Features node garbage collection
m Groups bits into domains

Points-to Analvsis usina

BDDs —p. 13/76

Outline

m Background
= Points-to (reference) analysis
= BDDs

m Points-to algorithm using BDDs
m Performance tuning

m Experimental results

m Applications

m Conclusions

Points-to Analvsis usina

BDDs —p. 14/76

Points-to Algorithm

m Java extension of Andersen’s analysis
= Flow-insensitive
= Context-insensitive
m Subset-based constraints
m All constraints generated ahead of time to separate
constraint generation from solver

m Call graph for constraint generation obtained
using CHA

Points-to Analvsis us

ina BDDs —p. 15/76

Points-to Algorithm

m 4 types of statements
m Allocation: a : |l := new C
= Simple assignment: [, :=[;
m Field store: ¢q.f =1
m Fieldload: [:=p.f
m 2 relations

= Points-to: pt
= pt(l) denotes the set of objects that [may point
to

m Assignment-edge: —
= ¢ — b Indicates that b may point to any object
that « may point to

Points-to Analvsis usina BDDs — p. 16/76

Inference Rules

m Simple assignments

l1 — Iy o€ pt(lh)
0 € pi(l2)

m Field stores

o2 €pt(l) | —q.f o1 € pt(q)
02 € pt(o1.f)

m Field loads

p.f —1 o1 €pt(p) o2 € pt(o1.f)

09 € pt(l)

Points-to Analvsis usina

BDDs —pn. 17/76

PTA Solver Algorithm

INit
repeat
repeat
Process simple assignments
until no change
Process field stores
Process field loads
until no change

Points-to Analvsis usina BDDs —p. 18/76

BDD Implementation

Recall:
X: O a = new O();
Y: O b =new O();
Z: O c=new O();
a=Db;
b =a,
Cc =Db;

Points-to set: { (a,X) (b,Y) (c,2) (a,Y) (b,X) (c,X) (c,Y) }

Points-to Analvsis usina BDDs —p. 19/76

Encoding the Example Points-to Set as a BDD

m Points-to set contains pairs of the form (v, h) where v
IS a variable and h is a heap location.

= Need two domains:
mV ={a,b,c}
s H={XY, 2}
m Points-toset PC V x H

m Need [loga(|V])] = 2 bits for each element of V/

m Represent elements of VV as binary string v;vg
V10
al 00
b| 0 1
c| 10

m |dem for H

Points-to Analvsis usina BDDs — p. 20/76

Encoding the Example Points-to Set as a BDD (2)

m (v,h) € P< vivghthg is mapped to

]

in the BDD

Points-to Analvsis usina BDDs — p. 21/76

Encoding the Example Points-to Set as a BDD (2)

m (v,h) € P< vivghihg is mapped to|1|in the BDD

Encoding the Example Points-to Set as a BDD (2)

m (v,h) € P< vivghihg is mapped to|1|in the BDD

BDD Representation

Points-to Analvsis usina BDDs — p. 22/76

BDD Reduction (1)

Points-to Analvsis usina BDDs — p. 23/76

BDD Reduction (2)

Points-to Analvsis usina BDDs — p. 24/76

BDD Reduction (3)

Points-to Analvsis usina BDDs — p. 25/76

BDD Reduction (4)

Points-to Analvsis usina BDDs — p. 26/76

BDD Reduction (5)

Points-to Analvsis usina BDDs — p. 27/76

Reduced BDD Representation

Points-to Analvsis usina BDDs — p. 28/76

General BDD Implementation

® Need 5 domains

m V1, V2: Reference variables
= Need two domains to represent pairs in V. x V

m 1, H2: Allocation sites
= Need two domains to represent the points-to set
of object fields

m F'D: field signatures

Points-to Analvsis usina BDDs — p. 29/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); cC = b;

(a,X) (b — a)
(b,Y) (a — b)
(c,Z) (b — ¢)

Domains | Points-to | Edges | New points-to

V1 a b c|/b aob
V2 a b c
H1 XY Z

Points-to Analvsis usina BDD

s —pn. 30/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;

(a,X) (b — a)
(b,Y) (a — b) relprod
(c,Z) (b — ¢)

Domains | Points-to | Edges | New points-to

V1 a b c|/b ab
V2 a b c
H1 XY Z

Points-to Analvsis usina BDD

s —pn. 31/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;

(a,X) (b — a)
(b,Y) (a — b) relprod
(c,Z) (b — ¢)

Domains | Points-to | Edges | New points-to

V1 a b c|/b ab
V2 a b c
H1 XY Z X

O

Points-to Analvsis usina BDD

s —pn. 32/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;

(a,X) (b — a)
(b,Y) (a — b) relprod
(c,Z) (b — ¢)

Domains | Points-to | Edges | New points-to

V1 a b c|/b aob
V2 a b c
H1 XY Z X

O

Points-to Analvsis usina BDD

s —pn. 33/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;

(a,X) (b — a)
(b,Y) (a — b) relprod
(c,Z) (b — ¢)

Domains | Points-to | Edges | New points-to

V1 a b c|/b a b
V2 a b c
H1 XY Z X

O

Points-to Analvsis usina BDD

s —pn. 34/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;

(a,X) (b — a)
(b,Y) (a — b) relprod
(c,Z) (b — ¢)

Domains | Points-to | Edges | New points-to

V1 a b c|/b a b
V2 a b c|lb a c
H1 XY Z XY Y

Points-to Analvsis usina BDD

s —pn. 35/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); cC = b;

(a,X) (b — a)
(b,Y) (a — b)
(c,Z) (b — ¢)

Domains | Points-to | Edges | New points-to

V1 a b c|/b aob
V2 a b c|lb a c
H1 XY Z XYY

Points-to Analvsis usina BDD

s —pn. 36/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;

(a,X) (b — a)
(b,Y) (a — b) replace
(c,Z) (b — ¢)

Domains | Points-to | Edges | New points-to

V1 a b c|/b aob
V2 a b c|lb a c
H1 XY Z XY Y

Points-to Analvsis usina BDD

s —pn. 37/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;

(a,X) (b — a)
(b,Y) (a — b) replace
(c,Z) (b — ¢)

Domains | Points-to | Edges | New points-to

V1 a b c|/b a b|b a c
V2 a b c
H1 XY Z XYY

Points-to Analvsis usina BDD

s —pn. 38/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); cC = b;

(a,X) (b — a)
(b,Y) (a — b)
(c,Z) (b — ¢)

Domains | Points-to | Edges | New points-to

V1 a b c|b a b|b a c¢
V2 a b c
H1 XY Z XYY

Points-to Analvsis usina BDD

s —pn. 39/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;

(a,X) (b — a)
(b,Y) (@ —b) union
(c,Z) (b — ¢)

Domains | Points-to | Edges | New points-to

V1 a b c|/b a b|b a c
V2 a b c
H1 XY Z XYY

Points-to Analvsis usina BDD

s —pn. 40/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;
(a,X) (b — a)
(b,Y) (@ —Db) union
(c,2) (b —c)
Domains Points-to Edges | New
Vi a b c¢c b a c|b a b
V2 a b c
H1 XY Z XY Y

Points-to Analvsis usina BDDs — p. 41/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;
(a,X) (b — a)
(b,Y) (a — b)
(c,2) (b —c)
Domains Points-to Edges | New
V1 a b c b a c|b a b
V2 a b c
H1 XY Z XYY

Points-to Analvsis usina BDDs — p. 42/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;
(a,X) (b — a)
(b,Y) (a — b) relprod
(c,2) (b —c)
Domains Points-to Edges | New
Vi a b c¢c b a c|b a b
V2 a b c
H1 XY Z XY Y

Points-to Analvsis usina BDDs — p. 43/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;
(a,X) (b — a)
(b,Y) (a — b) relprod
(c,2) (b —c)
Domains Points-to Edges | New
V1 a b c b a c|b ab
V2 a b c C
H1 XY Z XY Y X

Points-to Analvsis usina BDDs — p. 44/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); cC = b;
(a,X) (b —a)
(b,Y) (@ —b)
(c,Z) (b —c)
Domains Points-to Edges | New
V1 a b ¢c b a c|b ab
V2 a b c C
H1 XY Z XY Y X

Points-to Analvsis usina BDDs — p. 45/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;
(a.X) (b — a)
(b,Y) (a — b) replace
(c,Z) (b —c)
Domains Points-to Edges | New
V1 a b c b a c|b a b
V2 a b c C
H1 XY Z XY Y X

Points-to Analvsis usina BDDs — p. 46/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;
(a,X) (b — a)
(b,Y) (a — b) replace
(c,2) (b —c)
Domains Points-to Edges | New
V1 a b ¢c b a c|b a b C
V2 a b c
H1 XY Z XYY X

Points-to Analvsis usina BDDs — p. 47/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); cC = b;
(a,X) (b —a)
(b,Y) (@ —b)
(c,Z) (b —c)
Domains Points-to Edges | New
V1 a b c b a c|b a b C
V2 a b c
H1 XY Z XY Y X

Points-to Analvsis usina BDDs — p. 48/76

Propagating points-to sets

X: a = new O(); a = b;
Y: b = new O(); b = a;
Z: c = new O(); c = b;
(a,X) (b — a)
(b,Y) (@ — Db) union
(c,2) (b —c)
Domains Points-to Edges | New
V1 a b ¢c b a c|b a b C
V2 a b ¢
H1 XY Z XYY X

Points-to Analvsis usina BDDs — p. 49/76

Propagating points-to sets

X: a = new O(); a = b;

Y: b = new O(); b = a;

Z: c = new O(); c = b;
(a,X) (b — a)
(b,Y) (@ — Db) union
(c,2) (b —c)

Domains Points-to Edges | New

V1 a b ¢c b a c c|b aob

V2 a b c

H1 XY Z XY Y X

Points-to Analvsis usina BDDs — p. 50/76

Important Relations

m pointsio C V1x HI
points-to relation for
variables
(I points to o)

m fieldPt C
(H1 x FFD) x H2
points-to relation for
object fields
(01.f points to 09)

B edgeSet C V1 X V2
simple assignments

(lg = 11)

m stores CV1x (V2x FD)
field stores

(lo.f =11)
m [oads C (V1 x FD) x V2
field loads

(ZQ = ll.f)
m typeFilter C V1 x H1

Points-to Analvsis usina

BDDs —p. 51/76

Simple assighments (I := (1)

newPtl:

newPt?2:

newPt3:

polntsTo:

[V2xH1] =
relprod(edgeSet: [VIxVZ],
pointsTo:[VIixH1],

V1);
[VIXH1] =
replace(newPtl: [V2xH1],
V2ToVl1
[VIXH1] =

isect (newPt2: [VixH1],

) ;

typeFilter: [VixH1]

[VIXH1] =
union (pointsTo:[VIxH1],
newPt3: [VixH1]

)

) ;

Points-to Analvsis usina BDDs — p. 52/76

Field stores (¢.f =)

tmpRell :[(V2xFD)xH1] =
relprod(stores:
pointsTo:

tmpRel2 :[(VIXFD)xH2] =
replace(tmpRell:

fieldPt :[(HiXFD)xH2] =
relprod(tmpRelZ:
polntsTo:

[V1x(V2xFD)],
[Vi1xH1],
V1);

[((V2xXFD)xH1],

V2ToV1l & H1ToHZ) ;

[(V1xFD)xH2],
[VIxH1],
vl);

Points-to Analvsis usina BDDs — p. 53/76

Field loads (/ := p.f)

tmpRel3: [(HIXFD)xV2] =
relprod(loads: [((VIXFD)xV2],
pointsTo:[VIxH1],
V1l);
newPt4: [V2xH2] =

relprod(tmpRel3: [(HIxXFD)xV2],
fieldPt: [(HIXFD)xH2],
H1xFD) ;
newPt5: [VIxH1] =
replace(newPt4: [V2xHZ],

V2ToV1l & H2ToH1) ;

Points-to Analvsis usina BDDs — p. 54/76

Outline

m Background
= Points-to (reference) analysis
= BDDs

m Points-to algorithm using BDDs
m Performance tuning

m Experimental results

m Applications

m Conclusions

Points-to Analvsis usina

BDDs — p. 55/76

Experimental Setup

m Subset-based constraints generated by Srark for a
field-sensitive analysis

m Call graph constructed using CHA

m Effect of native methods considered (inherited from
SooT)
m 2 kinds of sets of constraints
= Simplified (s)
= Non-simplified (ns)
m 2 strategies for handling declared types
= Type filtering during analysis ()
= Type filtering at the end of analysis (nt)

Points-to Analvs

is usina BDDs — n. 56/76

Performance Tuning — Variable Ordering

m Problem: Using the default configuration, the BDD
solver cannot solve most real benchmarks.

m Profiling reveals that relprod operation from the
inner loop is the bottleneck.
m [wo factors to consider for performance
= Relative domain ordering
= Variable interleaving within domains

Points-to Analvsis usina BDDs — p. 57/76

Variable Interleaving Notation

m Let /'D, V1 be domains such that fy, ..., f,, are the
variables of F'D and vy, ..., v, are the variables of
domain V1.

m F'DV'1 denotes the interleaving of variables, i.e.
fovofiv1 ... favn.

m D V1 denotes the concatenation of variables,
€. fofi... favovt ... vy,

m Variables are always order from most to least
significant bit to exploit unused high bits.

m BuDDy'S default ordering is FDV1V2H1H?2

Points-to Analvsis usina BDDs — p. 58/76

Effect of Domain Arrangement on relprod

execution time (s)

1 6 I I I I I I I I

14 | -

12 | -

8 fd viv2z h1 h2
fd h1 viv2 h2 -------

1 1 1

O | | T — I
0 2 4 6 8 10 12 14 16 18

iteration number

Points-to Analvsis usina BDDs — p. 59/76

Effect of Interleaving Domains on relprod

execution time (s)

1 6 | | | | |

14 |

12

1

gt fd_viv2_h1_h2
: fd_viv2h1 _h2

|

|

O | | T — I
0 2 4 6 8 10

iteration number

12

14

16

18

Points-to Analvsis usina BDDs — p. 60/76

Effect of Interleaving Domains on pointsTo

number of nodes

400000 | | | | .
350000 |
300000 [

250000 r

200000 | ! fd viv2 h1 h2 ——
" fd viv2hi h2

150000 |

100000 /

50000 —I,"

O I I I I I
0 2 4 6 8 10

iteration number

12

14

16

18

Points-to Analvsis usina BDDs — p. 61/76

Effect of Variable Ordering on Performance

m Default ordering is good for model checking, but
much too slow for PTA

m Investigate other orderings

= Focus on the domains used in the problematic
relprod operation, i.e. V1,V2 H1.
= Reason about the impact of certain orderings on
BDD size
= Domains that feature a large amount of
similarity between the sets could benefit from
preventing interleaving.
= |t is easlier to exploit similarities when present at

the end of the variable sequence than at the
beginning.

Points-to Analvsis usina

BDDs — p. 62/76

Effect of Different Orderings on Performance

Seconds

10000 ;

1000 |

100 ¢

10

. = e .
"
Uy
&
B Uy
@
~ U v
compress javac sablecc jedit

(VIV2H1)

TH1 (V1V2)
1 (viV2) Hi
V1 V2 HA

"n
&
o
¢

Points-to Analvsis usina BDDs — p. 63/76

Effect of Ordering on edgeSet

70000 -
V1 V2
V2_V1
60000 [T(VIV2) e
50000 |
» 40000 r |
()]
©
@]
Z 30000 | |
20000 |
10000 ¢ |
0 ' \
0 5 10 15 20 25 30 35
BDD level

Points-to Analvsis usina BDDs — p. 64/76

Effect of Ordering on pointsTo

Nodes

450000
400000
350000
300000
250000
200000
150000
100000
50000
0

0.3
. w2
St ” 2y
il I e

V1 H1

|

(VIH1)

5

10

15 20 25 30
BDD level

35

Points-to Analvsis usina BDDs — p. 65/76

Performance Tuning — Incrementalization

m Observation: The relprod operation propagates all
points-to sets along all edges at every execution.

= Most sets have already been propagated in
previous iterations

m relprod executes in time proportional to the # of
nodes

m The inner relprod is very hot

Points-to Analvsis usina BDDs — p. 66/76

Performance Tuning — Incrementalization

m Observation: The relprod operation propagates all
points-to sets along all edges at every execution.

= Most sets have already been propagated in
previous iterations

m relprod executes in time proportional to the # of
nodes

m The inner relprod is very hot

m Only propagate the new part of the points-to set
®m New pointsTo relation remains small
®m relprod executes much faster

Points-to Analvsis usina BDDs — p. 66/76

Incremental BDD-PTA Algorithm

newPtl: [V2xH1] =
relprod(edgeSet: [VIxVZ],
pointsTo:[VIxH1],
V1);

newPt2: [VixH1] =
replace(newPtl: [V2xH1],

V2ToV1) ;

pointsTo:[VIxH1] =
union (pointsTo:[VIxH1],
newPt2: [VixH1]);

Points-to Analvsis usina BDDs — p. 67/76

Performance Tuning — Incrementalization

newPtl: [V2xH1] =
relprod(edgeSet: [VIxVZ],
newPoint :[VixH1],
V1);
newPt?2: [VIXH1] =
replace(newPtl: [V2xH1],
V2ToV1l);
newPoint :[VixH1] =
setminus (newPt2: [VixH1],
pointsTo:[VIxH1]) ;
pointsTo:[VIxH1] =
union (pointsTo:[VIxH1],
newPoint :[VixH1]) ;

Points-to Analvsis usina BDDs — p. 68/76

Effect of Incrementalization on Performance

benchmark fd VIV2 H1 2 || FD_V1 V2 H1 H2

non-inc Inc || non-inc inc
compress (s/t) 20.63 11.72 19.07 9.80
compress (ns/t) 54.46 | 26.83 83.63 19.66
compress (ns/nt) | 145.33 | 71.55 || 228.21 58.58
javac (s/t) 22.62 14.83 23.89 10.83
javac (ns/t) 62.35 | 30.55 || 103.52 23.14
javac (ns/nt) 166.66 | 80.04 || 285.65 65.46
sablecc-j (s/t) 21.90 14.00 23.10 10.60
sablecc-j (ns/t) 63.43 | 30.05 | 110.87 22.86
sablecc-j (ns/nt) 158.33 | 76.53 || 269.30 63.82
jedit (s/t) 35.92 | 20.11 35.43 15.60
jedit (ns/t) 112.47 | 47.53 | 357.97 35.29
jedit (ns/nt) 336.18 | 150.72 || 783.92 120.53

Points-to Analvsis usina BDDs — p. 69/76

Outline

m Background
= Points-to (reference) analysis
= BDDs

m Points-to algorithm using BDDs
m Performance tuning

m Experimental results

m Applications

m Conclusions

Points-to Analvsis usina

BDDs —pn. 70/76

Overall Performance — Time

20 I I I I I I
@ BDD ™
Spark @
"u
15 .
0 "u
= "y y
g 10 r e E.ﬂ o ®]
O]
£ o 00 ®
5 | i
O 1 1 1 1 1 1
300 320 340 360 380 400 420 440
Constraints (x 103)

Points-to Analvsis usina BDDs —p. 71/76

Overall Performance — Space

Megabytes

180
160
140
120
100
80
60
40
20
0

T

e e " " y |

|

BDD
— Spark

|

"u

| | | | |

300 320 340 360 380 400 420 440

Constraints (x 103)

. Ju"

Points-to Analvsis usina BDDs — p. 72/76

Outline

m Background
= Points-to (reference) analysis
= BDDs

m Points-to algorithm using BDDs
m Performance tuning

m Experimental results

m Applications

m Conclusions

Points-to Analvsis usina

BDDs — n. 73/76

Applications

m Manipulating sets makes it easy to express common
problems:

= “May/Must be aliased” analysis
= Virtual method resolution (receiver types)
= Inlining
= Devirtualization
= Manipulating the solution as a BDD
= improves performance
= [owers development cost

Points-to Analvsis usina BDDs — p. 74/76

Related Work

m Alot...

= PTA
= PTA algorithms
= Efficient set representations
= Equality-based constraints

__ I
= BDDs
= Model checking

Points-to Analvsis usina BDDs — p. 75/76

Conclusions

BDDs are useful in the context of PTA

t is possible to write efficient solvers using BDD

Ibraries “out of the box”

good performance

~inding a good bit ordering is necessary to obtain

Points-to Analvsis usina

BDDs — pn. 76/76

	Outline
	Background -- Points-to Analysis
	Background -- Points-to Analysis
	Background -- Points-to Analysis
	Background -- Points-to Analysis
	Background -- Points-to Analysis

	Points-to Example Code
	Points-to Example Code
	Points-to Example Code
	Points-to Example Code
	Points-to Example Code

	Background -- BDDs
	Example BDD
	Example BDD

	Reducing a BDD
	Reducing a BDD
	Reduced BDD
	Types of BDDs
	BDD Operations
	Bit Ordering
	�uddy
	Outline
	Points-to Algorithm
	Points-to Algorithm
	Inference Rules
	PTA Solver Algorithm
	BDD Implementation
	Encoding the Example Points-to Set as a BDD
	Encoding the Example Points-to Set as a BDD (2)
	Encoding the Example Points-to Set as a BDD (2)
	Encoding the Example Points-to Set as a BDD (2)

	BDD Representation
	BDD Reduction (1)
	BDD Reduction (2)
	BDD Reduction (3)
	BDD Reduction (4)
	BDD Reduction (5)
	Reduced BDD Representation
	General BDD Implementation
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Important Relations
	Simple assignments (l_2 := l_1)
	Field stores ($q.f$:= l)
	Field loads (l := $p.f$)
	Outline
	Experimental Setup
	Performance Tuning -- Variable Ordering
	Variable Interleaving Notation
	Effect of Domain Arrangement on 	exttt {relprod}
	Effect of Interleaving Domains on 	exttt {relprod}
	Effect of Interleaving Domains on 	exttt {pointsTo}
	Effect of Variable Ordering on Performance
	Effect of Different Orderings on Performance
	Effect of Ordering on $edgeSet$
	Effect of Ordering on $pointsTo$
	Performance Tuning -- Incrementalization
	Performance Tuning -- Incrementalization

	Incremental BDD-PTA Algorithm
	Performance Tuning -- Incrementalization
	Effect of Incrementalization on Performance
	Outline
	Overall Performance -- Time
	Overall Performance -- Space
	Outline
	Applications
	Related Work
	Conclusions

