
Points-to Analysis using BDDs

Marc Berndl, Ondřej Lhoták, Feng Qian, Laurie Hendren and Navindra Umanee

McGill University

Presented by Bruno Dufour

dufour@cs.rutgers.edu

Rutgers University DCS

Points-to Analysis using BDDs – p. 1/76

Outline

Background
Points-to (reference) analysis
BDDs

Points-to algorithm using BDDs

Performance tuning

Experimental results

Applications

Conclusions

Points-to Analysis using BDDs – p. 2/76

Background – Points-to Analysis

Goal: Given a (reference) variable v, find the set of
objects to which v may point at runtime.

For each v, keep a set of possible objects
(points-to set).

Problems
Large points-to sets
→ Find efficient set representations
Large number of points-to sets
→ Collapse equivalent variables

Points-to Analysis using BDDs – p. 3/76

Background – Points-to Analysis

Goal: Given a (reference) variable v, find the set of
objects to which v may point at runtime.

For each v, keep a set of possible objects
(points-to set).

Problems

Large points-to sets
→ Find efficient set representations
Large number of points-to sets
→ Collapse equivalent variables

Points-to Analysis using BDDs – p. 3/76

Background – Points-to Analysis

Goal: Given a (reference) variable v, find the set of
objects to which v may point at runtime.

For each v, keep a set of possible objects
(points-to set).

Problems
Large points-to sets

→ Find efficient set representations
Large number of points-to sets
→ Collapse equivalent variables

Points-to Analysis using BDDs – p. 3/76

Background – Points-to Analysis

Goal: Given a (reference) variable v, find the set of
objects to which v may point at runtime.

For each v, keep a set of possible objects
(points-to set).

Problems
Large points-to sets

→ Find efficient set representations

Large number of points-to sets

→ Collapse equivalent variables

Points-to Analysis using BDDs – p. 3/76

Background – Points-to Analysis

Goal: Given a (reference) variable v, find the set of
objects to which v may point at runtime.

For each v, keep a set of possible objects
(points-to set).

Problems
Large points-to sets
→ Find efficient set representations
Large number of points-to sets
→ Collapse equivalent variables

Points-to Analysis using BDDs – p. 3/76

Points-to Example Code

X: O a = new O();
Y: O b = new O();
Z: O c = new O();

a = b;
b = a;
c = b;

Points-to set: {

(a,X) (b,Y) (c,Z) (a,Y) (b,X) (c,X) (c,Y)

}

Points-to Analysis using BDDs – p. 4/76

Points-to Example Code

X: O a = new O();
Y: O b = new O();
Z: O c = new O();

a = b;
b = a;
c = b;

Points-to set: { (a,X) (b,Y) (c,Z)

(a,Y) (b,X) (c,X) (c,Y)

}

Points-to Analysis using BDDs – p. 4/76

Points-to Example Code

X: O a = new O();
Y: O b = new O();
Z: O c = new O();

a = b;
b = a;
c = b;

Points-to set: { (a,X) (b,Y) (c,Z) (a,Y)

(b,X) (c,X) (c,Y)

}

Points-to Analysis using BDDs – p. 4/76

Points-to Example Code

X: O a = new O();
Y: O b = new O();
Z: O c = new O();

a = b;
b = a;
c = b;

Points-to set: { (a,X) (b,Y) (c,Z) (a,Y) (b,X)

(c,X) (c,Y)

}

Points-to Analysis using BDDs – p. 4/76

Points-to Example Code

X: O a = new O();
Y: O b = new O();
Z: O c = new O();

a = b;
b = a;
c = b;

Points-to set: { (a,X) (b,Y) (c,Z) (a,Y) (b,X) (c,X) (c,Y) }

Points-to Analysis using BDDs – p. 4/76

Background – BDDs

Binary Decision Diagrams (BDDs) are data
structures that are used to represent large sets with
similarities.

Introduced in [Bryant86]

Applications in model checking

Essentially single-root DAGs with out-degree two for
each non-leaf node

Some possible interpretations:
Set of binary strings
Representation of a boolean function
f : {0, 1}n → {0, 1}

Finite automaton with accepting state 1 and
rejecting state 0 taking binary strings as input

Points-to Analysis using BDDs – p. 5/76

Example BDD

A

B C

D E F G

1 0

0 1

0 1 0 1

L = {000,001,011,100}

Points-to Analysis using BDDs – p. 6/76

Example BDD

A

B C

D E F G

1 0

0 1

0 1 0 1

L = {000,001,011,100}

Points-to Analysis using BDDs – p. 6/76

Reducing a BDD

A

B C

D E F G

1 0

0 1

0 1 0 1

Points-to Analysis using BDDs – p. 7/76

Reducing a BDD

A

B C

D E F G

1 0

0 1

0 1 0 1

Points-to Analysis using BDDs – p. 8/76

Reduced BDD

A

B C

E F

1 0

0 1

0

1 0

1

Points-to Analysis using BDDs – p. 9/76

Types of BDDs

Ordered BDDs (OBDDs)
variables are ordered
Each variable appears only in one level of the
BDD

Reduced Ordered BDDs (ROBDDs)
OBDDs in reduced form
Consistent ordering of nodes ensures uniqueness

Points-to Analysis using BDDs – p. 10/76

BDD Operations

BDDS support common set operations (∩, ∪, . . .)

Existential quantification: S = {a|∃b.(a, b) ∈ X}

Relational product: {(a, c) | ∃b.(a, b) ∈ X ∧ (b, c) ∈ Y)}
(∩ + existential quantification)

a b

b c
→ a c

Replace: bit reordering
a c → a c

Operation cost proportional to # of nodes in BDD
To minimize cost, keep BDDs in reduced form
Implicitly refer to ROBDDs simply as BDDs

Points-to Analysis using BDDs – p. 11/76

Bit Ordering

Ordering of bits in BDDs is arbitrary
Any permutation is valid
Some permutations lead to smaller (reduced)
BDDs

Points-to Analysis using BDDs – p. 12/76

BuDDy

Publicly available BDD package
Written in C
Supports dynamic variable reordering
Features node garbage collection
Groups bits into domains

Points-to Analysis using BDDs – p. 13/76

Outline

Background
Points-to (reference) analysis
BDDs

Points-to algorithm using BDDs

Performance tuning

Experimental results

Applications

Conclusions

Points-to Analysis using BDDs – p. 14/76

Points-to Algorithm

Java extension of Andersen’s analysis
Flow-insensitive
Context-insensitive
Subset-based constraints

All constraints generated ahead of time to separate
constraint generation from solver

Call graph for constraint generation obtained
using CHA

Points-to Analysis using BDDs – p. 15/76

Points-to Algorithm

4 types of statements
Allocation: a : l := new C

Simple assignment: l2 := l1

Field store: q.f := l

Field load: l := p.f

2 relations
Points-to: pt

pt(l) denotes the set of objects that l may point
to

Assignment-edge: →
a → b indicates that b may point to any object
that a may point to

Points-to Analysis using BDDs – p. 16/76

Inference Rules

Simple assignments

l1 → l2 o ∈ pt(l1)

o ∈ pt(l2)

Field stores

o2 ∈ pt(l) l → q.f o1 ∈ pt(q)

o2 ∈ pt(o1.f)

Field loads

p.f → l o1 ∈ pt(p) o2 ∈ pt(o1.f)

o2 ∈ pt(l)

Points-to Analysis using BDDs – p. 17/76

PTA Solver Algorithm

init
repeat

repeat
Process simple assignments

until no change
Process field stores
Process field loads

until no change

Points-to Analysis using BDDs – p. 18/76

BDD Implementation

Recall:
X: O a = new O();
Y: O b = new O();
Z: O c = new O();

a = b;
b = a;
c = b;

Points-to set: { (a,X) (b,Y) (c,Z) (a,Y) (b,X) (c,X) (c,Y) }

Points-to Analysis using BDDs – p. 19/76

Encoding the Example Points-to Set as a BDD

Points-to set contains pairs of the form (v, h) where v

is a variable and h is a heap location.

Need two domains:
V = {a, b, c}

H = {X, Y, Z}

Points-to set P ⊆ V × H

Need dlog2(|V |)e = 2 bits for each element of V

Represent elements of V as binary string v1v0

v1v0

a 0 0
b 0 1
c 1 0

Idem for H

Points-to Analysis using BDDs – p. 20/76

Encoding the Example Points-to Set as a BDD (2)

(v, h) ∈ P ⇔ v1v0h1h0 is mapped to 1 in the BDD

v1

v0 v0

h1 h1 h1 h1

h0 h0 h0 h0 h0 h0 h0 h0

1 0

Points-to Analysis using BDDs – p. 21/76

Encoding the Example Points-to Set as a BDD (2)

(v, h) ∈ P ⇔ v1v0h1h0 is mapped to 1 in the BDD

(a, X) ∈ P

v1

v0 v0

h1 h1 h1 h1

h0 h0 h0 h0 h0 h0 h0 h0

1 0

Points-to Analysis using BDDs – p. 21/76

Encoding the Example Points-to Set as a BDD (2)

(v, h) ∈ P ⇔ v1v0h1h0 is mapped to 1 in the BDD

(b, Z) 6∈ P

v1

v0 v0

h1 h1 h1 h1

h0 h0 h0 h0 h0 h0 h0 h0

1 0

Points-to Analysis using BDDs – p. 21/76

BDD Representation

v1

v0 v0

h1 h1 h1 h1

h0 h0 h0 h0 h0 h0 h0 h0

1 0

Points-to Analysis using BDDs – p. 22/76

BDD Reduction (1)

v1

v0 v0

h1 h1 h1 h1

h0 h0 h0 h0 h0 h0 h0 h0

1 0

Points-to Analysis using BDDs – p. 23/76

BDD Reduction (2)

v1

v0 v0

h1 h1 h1 h1

h0

1 0

Points-to Analysis using BDDs – p. 24/76

BDD Reduction (3)

v1

v0 v0

h1 h1 h1 h1

h0

1 0

Points-to Analysis using BDDs – p. 25/76

BDD Reduction (4)

v1

v0 v0

h1 h1 h1

h0

1 0

Points-to Analysis using BDDs – p. 26/76

BDD Reduction (5)

v1

v0 v0

h1 h1 h1

h0

1 0

Points-to Analysis using BDDs – p. 27/76

Reduced BDD Representation

v1

v0

h1 h1

h0

1 0

Points-to Analysis using BDDs – p. 28/76

General BDD Implementation

Need 5 domains
V 1, V 2: Reference variables

Need two domains to represent pairs in V × V

H1, H2: Allocation sites
Need two domains to represent the points-to set
of object fields

FD: field signatures

Points-to Analysis using BDDs – p. 29/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c
H1 X Y Z

Points-to Analysis using BDDs – p. 30/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c
H1 X Y Z

relprod

Points-to Analysis using BDDs – p. 31/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c b
H1 X Y Z X

relprod

Points-to Analysis using BDDs – p. 32/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c b
H1 X Y Z X

relprod

Points-to Analysis using BDDs – p. 33/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c b
H1 X Y Z X

relprod

Points-to Analysis using BDDs – p. 34/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c b a c
H1 X Y Z X Y Y

relprod

Points-to Analysis using BDDs – p. 35/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c b a c
H1 X Y Z X Y Y

Points-to Analysis using BDDs – p. 36/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c b a c
H1 X Y Z X Y Y

replace

Points-to Analysis using BDDs – p. 37/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New points-to

V1 a b c b a b b a c
V2 a b c
H1 X Y Z X Y Y

replace

Points-to Analysis using BDDs – p. 38/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New points-to

V1 a b c b a b b a c
V2 a b c
H1 X Y Z X Y Y

Points-to Analysis using BDDs – p. 39/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New points-to

V1 a b c b a b b a c
V2 a b c
H1 X Y Z X Y Y

union

Points-to Analysis using BDDs – p. 40/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New

V1 a b c b a c b a b
V2 a b c
H1 X Y Z X Y Y

union

Points-to Analysis using BDDs – p. 41/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New

V1 a b c b a c b a b
V2 a b c
H1 X Y Z X Y Y

Points-to Analysis using BDDs – p. 42/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New

V1 a b c b a c b a b
V2 a b c
H1 X Y Z X Y Y

relprod

Points-to Analysis using BDDs – p. 43/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New

V1 a b c b a c b a b
V2 a b c c
H1 X Y Z X Y Y X

relprod

Points-to Analysis using BDDs – p. 44/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New

V1 a b c b a c b a b
V2 a b c c
H1 X Y Z X Y Y X

Points-to Analysis using BDDs – p. 45/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New

V1 a b c b a c b a b
V2 a b c c
H1 X Y Z X Y Y X

replace

Points-to Analysis using BDDs – p. 46/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New

V1 a b c b a c b a b c
V2 a b c
H1 X Y Z X Y Y X

replace

Points-to Analysis using BDDs – p. 47/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New

V1 a b c b a c b a b c
V2 a b c
H1 X Y Z X Y Y X

Points-to Analysis using BDDs – p. 48/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New

V1 a b c b a c b a b c
V2 a b c
H1 X Y Z X Y Y X

union

Points-to Analysis using BDDs – p. 49/76

Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b → a)
(a → b)
(b → c)

Domains Points-to Edges New

V1 a b c b a c c b a b
V2 a b c
H1 X Y Z X Y Y X

union

Points-to Analysis using BDDs – p. 50/76

Important Relations

pointsTo ⊆ V 1 × H1
points-to relation for
variables
(l points to o)

fieldP t ⊆
(H1 × FD) × H2
points-to relation for
object fields
(o1.f points to o2)

edgeSet ⊆ V 1 × V 2
simple assignments
(l2 := l1)

stores ⊆ V 1× (V 2×FD)
field stores
(l2.f := l1)

loads ⊆ (V 1 × FD) × V 2
field loads
(l2 := l1.f)

typeF ilter ⊆ V 1 × H1

Points-to Analysis using BDDs – p. 51/76

Simple assignments (l2 := l1)

newPt1: [V2xH1] =
relprod(edgeSet: [V1xV2],

pointsTo:[V1xH1],
V1);

newPt2: [V1xH1] =
replace(newPt1: [V2xH1],

V2ToV1);
newPt3: [V1xH1] =

isect (newPt2: [V1xH1],
typeFilter: [V1xH1]);

pointsTo:[V1xH1] =
union(pointsTo:[V1xH1],

newPt3: [V1xH1]);

Points-to Analysis using BDDs – p. 52/76

Field stores (q.f := l)

tmpRel1:[(V2xFD)xH1] =
relprod(stores: [V1x(V2xFD)],

pointsTo:[V1xH1],
V1);

tmpRel2:[(V1xFD)xH2] =
replace(tmpRel1: [(V2xFD)xH1],

V2ToV1 & H1ToH2);
fieldPt:[(H1xFD)xH2] =

relprod(tmpRel2: [(V1xFD)xH2],
pointsTo:[V1xH1],

V1);

Points-to Analysis using BDDs – p. 53/76

Field loads (l := p.f)

tmpRel3: [(H1xFD)xV2] =
relprod(loads: [(V1xFD)xV2],

pointsTo:[V1xH1],
V1);

newPt4: [V2xH2] =
relprod(tmpRel3: [(H1xFD)xV2],

fieldPt: [(H1xFD)xH2],
H1xFD);

newPt5: [V1xH1] =
replace(newPt4: [V2xH2],

V2ToV1 & H2ToH1);

Points-to Analysis using BDDs – p. 54/76

Outline

Background
Points-to (reference) analysis
BDDs

Points-to algorithm using BDDs

Performance tuning

Experimental results

Applications

Conclusions

Points-to Analysis using BDDs – p. 55/76

Experimental Setup

Subset-based constraints generated by SPARK for a
field-sensitive analysis

Call graph constructed using CHA

Effect of native methods considered (inherited from
SOOT)

2 kinds of sets of constraints
Simplified (s)
Non-simplified (ns)

2 strategies for handling declared types
Type filtering during analysis (t)
Type filtering at the end of analysis (nt)

Points-to Analysis using BDDs – p. 56/76

Performance Tuning – Variable Ordering

Problem: Using the default configuration, the BDD
solver cannot solve most real benchmarks.

Profiling reveals that relprod operation from the
inner loop is the bottleneck.

Two factors to consider for performance
Relative domain ordering
Variable interleaving within domains

Points-to Analysis using BDDs – p. 57/76

Variable Interleaving Notation

Let FD, V 1 be domains such that f0, . . . , fn are the
variables of FD and v0, . . . , vn are the variables of
domain V 1.

FDV 1 denotes the interleaving of variables, i.e.
f0v0f1v1 . . . fnvn.
FD_V 1 denotes the concatenation of variables,
i.e. f0f1 . . . fnv0v1 . . . vn.

Variables are always order from most to least
significant bit to exploit unused high bits.

BuDDy’s default ordering is FDV 1V 2H1H2

Points-to Analysis using BDDs – p. 58/76

Effect of Domain Arrangement on relprod

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n
tim

e
(s

)

iteration number

fd_v1v2_h1_h2
fd_h1_v1v2_h2

Points-to Analysis using BDDs – p. 59/76

Effect of Interleaving Domains on relprod

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18

ex
ec

ut
io

n
tim

e
(s

)

iteration number

fd_v1v2_h1_h2
fd_v1v2h1_h2

Points-to Analysis using BDDs – p. 60/76

Effect of Interleaving Domains on pointsTo

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 2 4 6 8 10 12 14 16 18

nu
m

be
r o

f n
od

es

iteration number

fd_v1v2_h1_h2
fd_v1v2h1_h2

Points-to Analysis using BDDs – p. 61/76

Effect of Variable Ordering on Performance

Default ordering is good for model checking, but
much too slow for PTA

Investigate other orderings
Focus on the domains used in the problematic
relprod operation, i.e. V 1, V 2, H1.
Reason about the impact of certain orderings on
BDD size

Domains that feature a large amount of
similarity between the sets could benefit from
preventing interleaving.
It is easier to exploit similarities when present at
the end of the variable sequence than at the
beginning.

Points-to Analysis using BDDs – p. 62/76

Effect of Different Orderings on Performance

 10

 100

 1000

 10000

compress javac sablecc jedit

S
ec

on
ds

(V1V2H1)
H1_(V1V2)
(V1V2)_H1
V1_V2_H1

Points-to Analysis using BDDs – p. 63/76

Effect of Ordering on edgeSet

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 5 10 15 20 25 30 35

N
od

es

BDD level

V1_V2
V2_V1
(V1V2)

Points-to Analysis using BDDs – p. 64/76

Effect of Ordering on pointsTo

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 5 10 15 20 25 30 35

N
od

es

BDD level

V1_H1
H1_V1
(V1H1)

Points-to Analysis using BDDs – p. 65/76

Performance Tuning – Incrementalization

Observation: The relprod operation propagates all
points-to sets along all edges at every execution.

Most sets have already been propagated in
previous iterations
relprod executes in time proportional to the # of
nodes
The inner relprod is very hot

Only propagate the new part of the points-to set
new pointsTo relation remains small
relprod executes much faster

Points-to Analysis using BDDs – p. 66/76

Performance Tuning – Incrementalization

Observation: The relprod operation propagates all
points-to sets along all edges at every execution.

Most sets have already been propagated in
previous iterations
relprod executes in time proportional to the # of
nodes
The inner relprod is very hot

Only propagate the new part of the points-to set
new pointsTo relation remains small
relprod executes much faster

Points-to Analysis using BDDs – p. 66/76

Incremental BDD-PTA Algorithm

newPt1: [V2xH1] =
relprod(edgeSet: [V1xV2],

pointsTo:[V1xH1],
V1);

newPt2: [V1xH1] =
replace(newPt1: [V2xH1],

V2ToV1);

pointsTo:[V1xH1] =
union(pointsTo:[V1xH1],

newPt2: [V1xH1]);

Points-to Analysis using BDDs – p. 67/76

Performance Tuning – Incrementalization

newPt1: [V2xH1] =
relprod(edgeSet: [V1xV2],

newPoint:[V1xH1],
V1);

newPt2: [V1xH1] =
replace(newPt1: [V2xH1],

V2ToV1);
newPoint:[V1xH1] =

setminus(newPt2: [V1xH1],
pointsTo:[V1xH1]);

pointsTo:[V1xH1] =
union(pointsTo:[V1xH1],

newPoint:[V1xH1]);

Points-to Analysis using BDDs – p. 68/76

Effect of Incrementalization on Performance

benchmark fd_V1V2_H1_2̋ FD_V1_V2_H1_H2

non-inc inc non-inc inc

compress (s/t) 20.63 11.72 19.07 9.80

compress (ns/t) 54.46 26.83 83.63 19.66

compress (ns/nt) 145.33 71.55 228.21 58.58

javac (s/t) 22.62 14.83 23.89 10.83

javac (ns/t) 62.35 30.55 103.52 23.14

javac (ns/nt) 166.66 80.04 285.65 65.46

sablecc-j (s/t) 21.90 14.00 23.10 10.60

sablecc-j (ns/t) 63.43 30.05 110.87 22.86

sablecc-j (ns/nt) 158.33 76.53 269.30 63.82

jedit (s/t) 35.92 20.11 35.43 15.60

jedit (ns/t) 112.47 47.53 357.97 35.29

jedit (ns/nt) 336.18 150.72 783.92 120.53

Points-to Analysis using BDDs – p. 69/76

Outline

Background
Points-to (reference) analysis
BDDs

Points-to algorithm using BDDs

Performance tuning

Experimental results

Applications

Conclusions

Points-to Analysis using BDDs – p. 70/76

Overall Performance – Time

 0

 5

 10

 15

 20

 300 320 340 360 380 400 420 440

S
ec

on
ds

Constraints (x 103)

BDD
Spark

Points-to Analysis using BDDs – p. 71/76

Overall Performance – Space

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 300 320 340 360 380 400 420 440

M
eg

ab
yt

es

Constraints (x 103)

BDD
Spark

Points-to Analysis using BDDs – p. 72/76

Outline

Background
Points-to (reference) analysis
BDDs

Points-to algorithm using BDDs

Performance tuning

Experimental results

Applications

Conclusions

Points-to Analysis using BDDs – p. 73/76

Applications

Manipulating sets makes it easy to express common
problems:

“May/Must be aliased” analysis
Virtual method resolution (receiver types)

Inlining
Devirtualization

Manipulating the solution as a BDD
improves performance
lowers development cost

Points-to Analysis using BDDs – p. 74/76

Related Work

A lot. . .
PTA

PTA algorithms
Efficient set representations
Equality-based constraints
. . .

BDDs
Model checking

Points-to Analysis using BDDs – p. 75/76

Conclusions

BDDs are useful in the context of PTA

It is possible to write efficient solvers using BDD
libraries “out of the box”

Finding a good bit ordering is necessary to obtain
good performance

Points-to Analysis using BDDs – p. 76/76

	Outline
	Background -- Points-to Analysis
	Background -- Points-to Analysis
	Background -- Points-to Analysis
	Background -- Points-to Analysis
	Background -- Points-to Analysis

	Points-to Example Code
	Points-to Example Code
	Points-to Example Code
	Points-to Example Code
	Points-to Example Code

	Background -- BDDs
	Example BDD
	Example BDD

	Reducing a BDD
	Reducing a BDD
	Reduced BDD
	Types of BDDs
	BDD Operations
	Bit Ordering
	�uddy
	Outline
	Points-to Algorithm
	Points-to Algorithm
	Inference Rules
	PTA Solver Algorithm
	BDD Implementation
	Encoding the Example Points-to Set as a BDD
	Encoding the Example Points-to Set as a BDD (2)
	Encoding the Example Points-to Set as a BDD (2)
	Encoding the Example Points-to Set as a BDD (2)

	BDD Representation
	BDD Reduction (1)
	BDD Reduction (2)
	BDD Reduction (3)
	BDD Reduction (4)
	BDD Reduction (5)
	Reduced BDD Representation
	General BDD Implementation
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Propagating points-to sets
	Important Relations
	Simple assignments (l_2 := l_1)
	Field stores ($q.f$:= l)
	Field loads (l := $p.f$)
	Outline
	Experimental Setup
	Performance Tuning -- Variable Ordering
	Variable Interleaving Notation
	Effect of Domain Arrangement on 	exttt {relprod}
	Effect of Interleaving Domains on 	exttt {relprod}
	Effect of Interleaving Domains on 	exttt {pointsTo}
	Effect of Variable Ordering on Performance
	Effect of Different Orderings on Performance
	Effect of Ordering on $edgeSet$
	Effect of Ordering on $pointsTo$
	Performance Tuning -- Incrementalization
	Performance Tuning -- Incrementalization

	Incremental BDD-PTA Algorithm
	Performance Tuning -- Incrementalization
	Effect of Incrementalization on Performance
	Outline
	Overall Performance -- Time
	Overall Performance -- Space
	Outline
	Applications
	Related Work
	Conclusions

