Points-to Analysis using BDDs

Marc Berndl, Ondřej Lhoták, Feng Qian, Laurie Hendren and Navindra Umanee McGill University

> Presented by Bruno Dufour dufour@cs.rutgers.edu Rutgers University DCS

Outline

- Background
 - Points-to (reference) analysisBDDs
- Points-to algorithm using BDDs
- Performance tuning
- Experimental results
- Applications
- Conclusions

- Goal: Given a (reference) variable v, find the set of objects to which v may point at runtime.
 - For each v, keep a set of possible objects (points-to set).

- Goal: Given a (reference) variable v, find the set of objects to which v may point at runtime.
 - For each v, keep a set of possible objects (points-to set).
- Problems

- Goal: Given a (reference) variable v, find the set of objects to which v may point at runtime.
 - For each v, keep a set of possible objects (points-to set).
- Problems
 - Large points-to sets

- Goal: Given a (reference) variable v, find the set of objects to which v may point at runtime.
 - For each v, keep a set of possible objects (points-to set).
- Problems
 - Large points-to sets
 - Large number of points-to sets

- Goal: Given a (reference) variable v, find the set of objects to which v may point at runtime.
 - For each v, keep a set of possible objects (points-to set).
- Problems
 - Large points-to sets
 - \rightarrow Find efficient set representations
 - Large number of points-to sets
 - \rightarrow Collapse equivalent variables

```
X: O a = new O();
Y: O b = new O();
Z: O c = new O();
a = b;
b = a;
c = b;
```

Points-to set: {

```
X: O a = new O();

Y: O b = new O();

Z: O c = new O();

a = b;

b = a;

c = b;
```

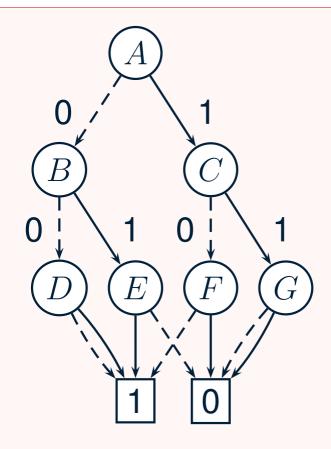
Points-to set: { (a,X) (b,Y) (c,Z)

```
X: O a = new O();
Y: O b = new O();
Z: O c = new O();
a = b;
b = a;
c = b;
```

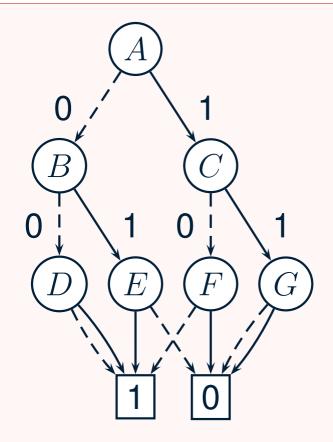
Points-to set: { (a,X) (b,Y) (c,Z) (a,Y)

```
X: O a = new O();
Y: O b = new O();
Z: O c = new O();
a = b;
b = a;
c = b;
```

Points-to set: { (a,X) (b,Y) (c,Z) (a,Y) (b,X)

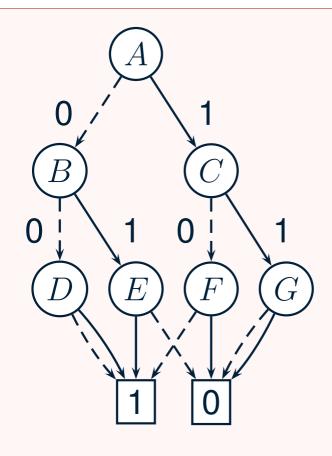

```
X: O a = new O();
Y: O b = new O();
Z: O c = new O();
a = b;
b = a;
c = b;
```

Points-to set: { (a,X) (b,Y) (c,Z) (a,Y) (b,X) (c,X) (c,Y) }

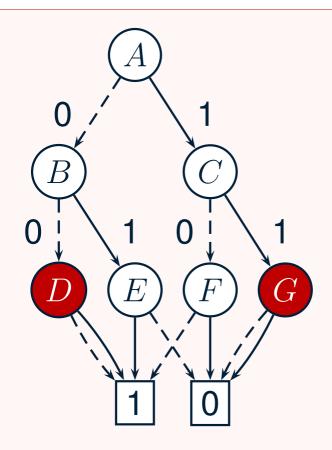

Background – BDDs

- Binary Decision Diagrams (BDDs) are data structures that are used to represent large sets with similarities.
- Introduced in [Bryant86]
- Applications in model checking
- Essentially single-root DAGs with out-degree two for each non-leaf node
- Some possible interpretations:
 - Set of binary strings
 - Representation of a boolean function $f: \{0, 1\}^n \rightarrow \{0, 1\}$
 - Finite automaton with accepting state 1 and rejecting state 0 taking binary strings as input

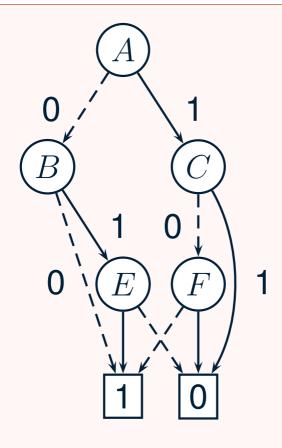
Example BDD



Example BDD

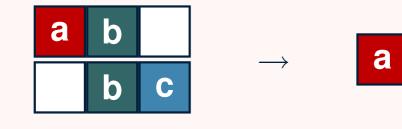


$L = \{000, 001, 011, 100\}$


Reducing a BDD

Reducing a BDD

Reduced BDD


Types of BDDs

- Ordered BDDs (OBDDs)
 - variables are ordered
 - Each variable appears only in one level of the BDD
- Reduced Ordered BDDs (ROBDDs)
 - OBDDs in reduced form
 - Consistent ordering of nodes ensures uniqueness

BDD Operations

- BDDS support common set operations (∩, ∪, ...)
- Existential quantification: $S = \{a | \exists b.(a, b) \in X\}$
- Relational product: {(a, c) | ∃b.(a, b) ∈ X ∧ (b, c) ∈ Y)}
 (∩ + existential quantification)

C

Replace: bit reordering

Operation cost proportional to # of nodes in BDD
To minimize cost, keep BDDs in reduced form
Implicitly refer to ROBDDs simply as BDDs

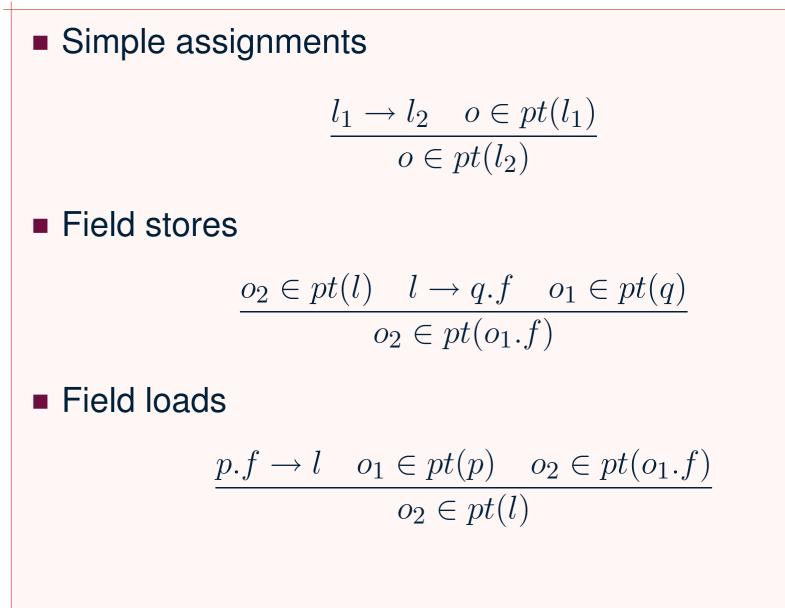
Bit Ordering

- Ordering of bits in BDDs is arbitrary
 - Any permutation is valid
 - Some permutations lead to smaller (reduced) BDDs

BuDDy

- Publicly available BDD package
 - Written in C
 - Supports dynamic variable reordering
 - Features node garbage collection
 - Groups bits into domains

Outline


- Background
 - Points-to (reference) analysisBDDs
- Points-to algorithm using BDDs
- Performance tuning
- Experimental results
- Applications
- Conclusions

- Java extension of Andersen's analysis
 - Flow-insensitive
 - Context-insensitive
 - Subset-based constraints
- All constraints generated ahead of time to separate constraint generation from solver
 - Call graph for constraint generation obtained using CHA

Points-to Algorithm

- 4 types of statements
 - Allocation: a: l := new C
 - Simple assignment: $l_2 := l_1$
 - Field store: q.f := l
 - Field load: l := p.f
- 2 relations
 - Points-to: pt
 - *pt(l)* denotes the set of objects that *l* may point to
 - Assignment-edge: \rightarrow
 - a → b indicates that b may point to any object that a may point to

Inference Rules

PTA Solver Algorithm

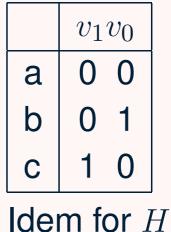
init repeat repeat Process simple assignments until no change Process field stores Process field loads until no change

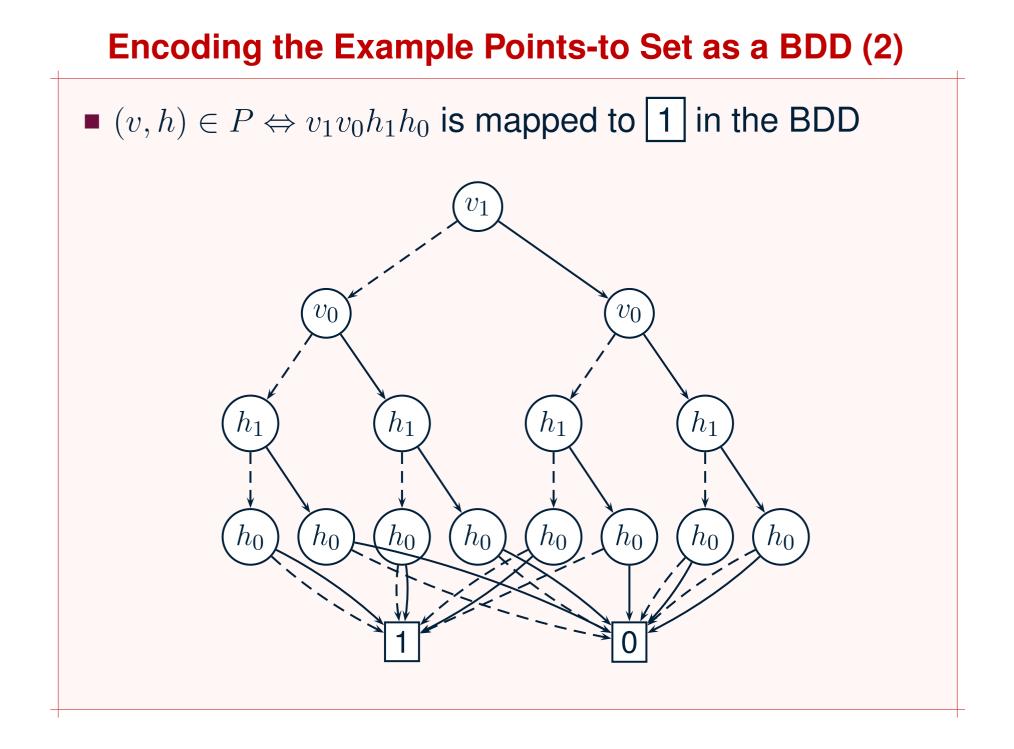
BDD Implementation

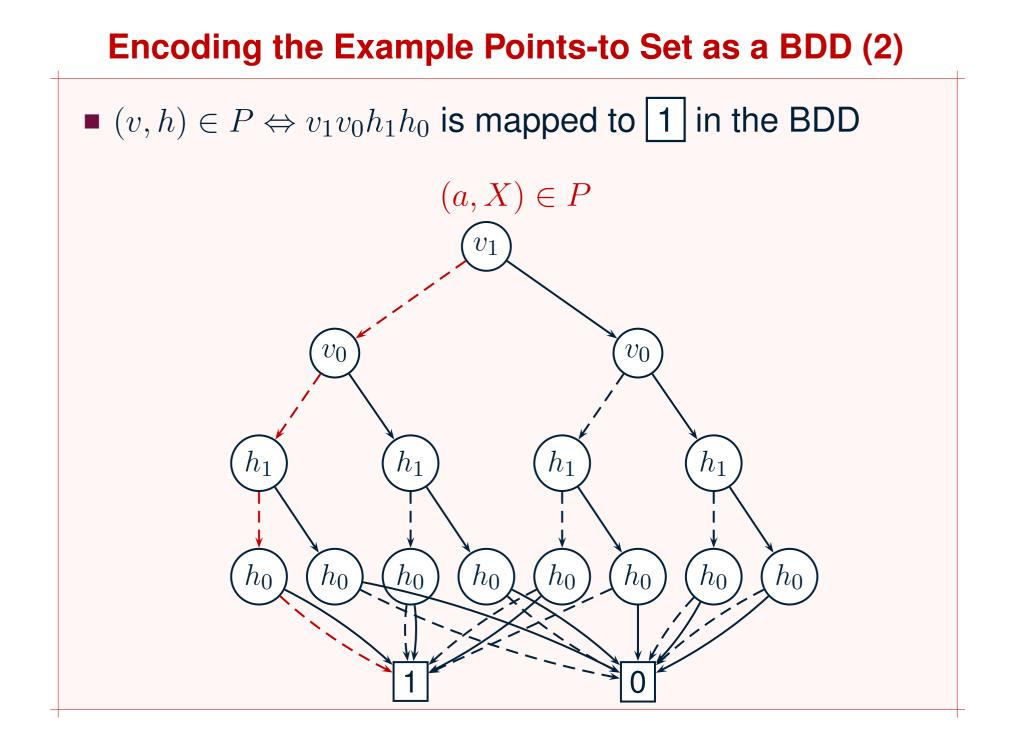
Recall:

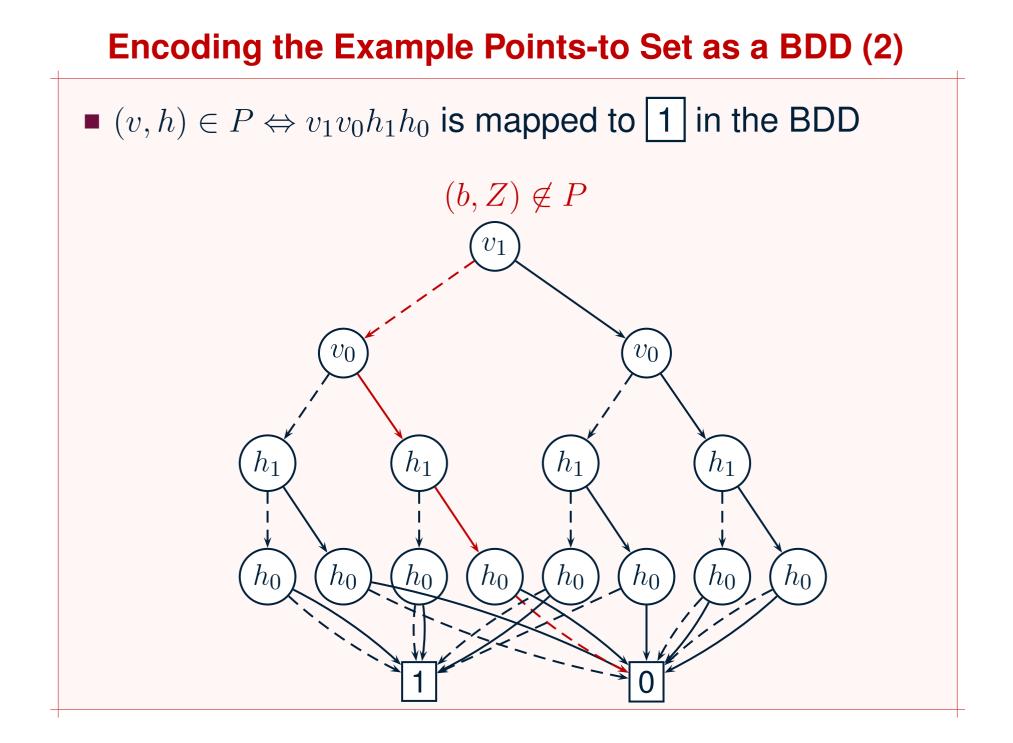
X: O a = **new** O(); Y: O b = **new** O(); Z: O c = **new** O(); a = b; b = a; c = b;

Points-to set: { (a,X) (b,Y) (c,Z) (a,Y) (b,X) (c,X) (c,Y) }

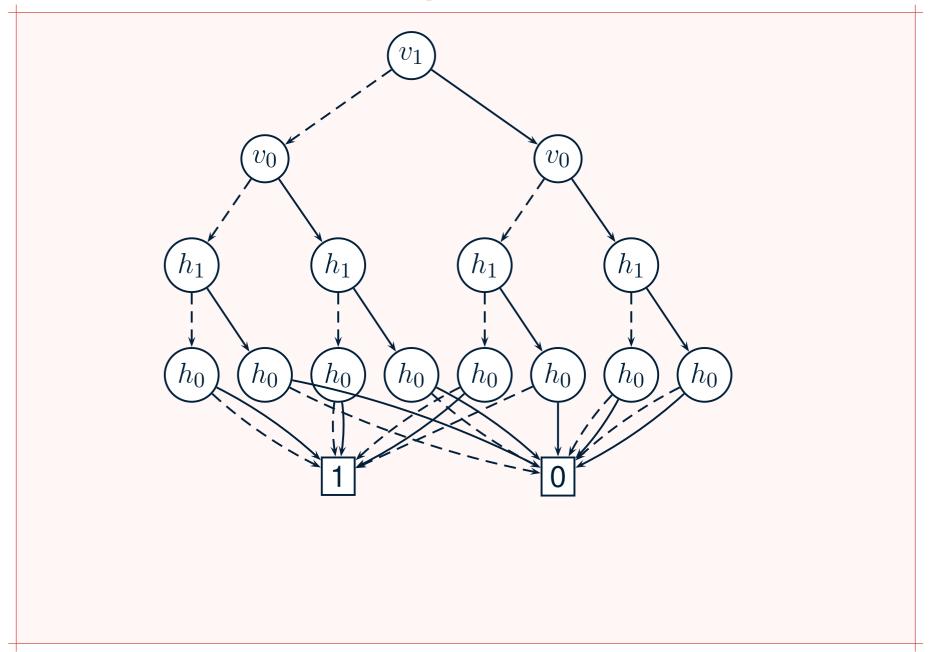

Encoding the Example Points-to Set as a BDD

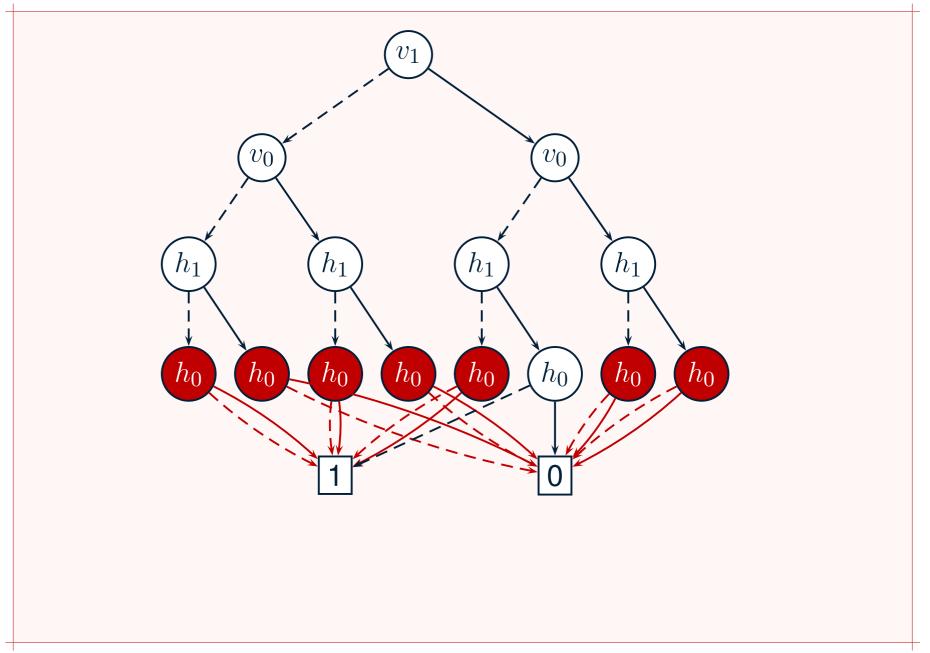

- Points-to set contains pairs of the form (v, h) where v is a variable and h is a heap location.
- Need two domains:

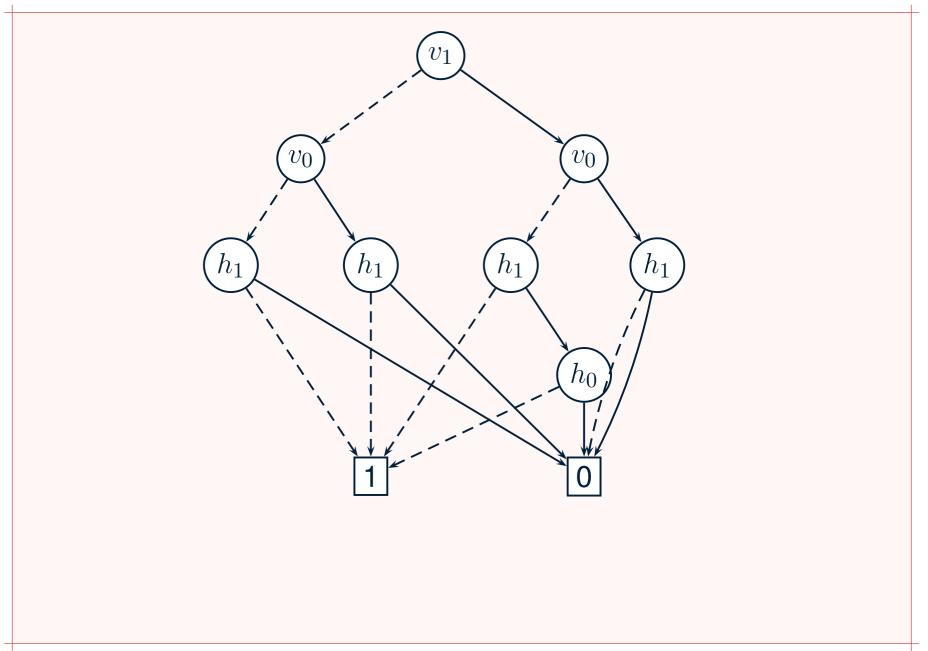

$$\bullet V = \{a, b, c\}$$

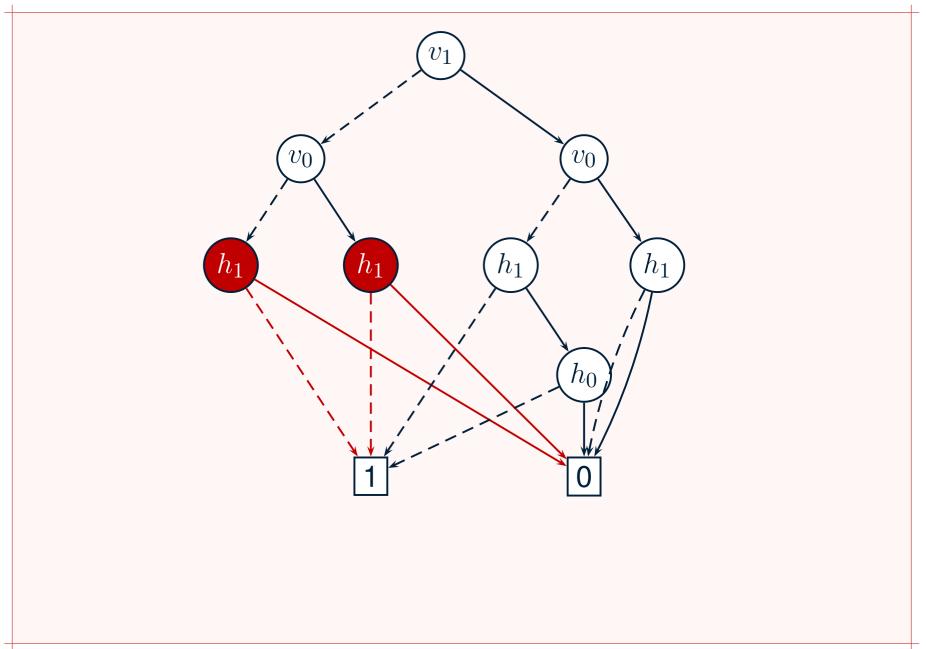

$$\bullet H = \{X, Y, Z\}$$

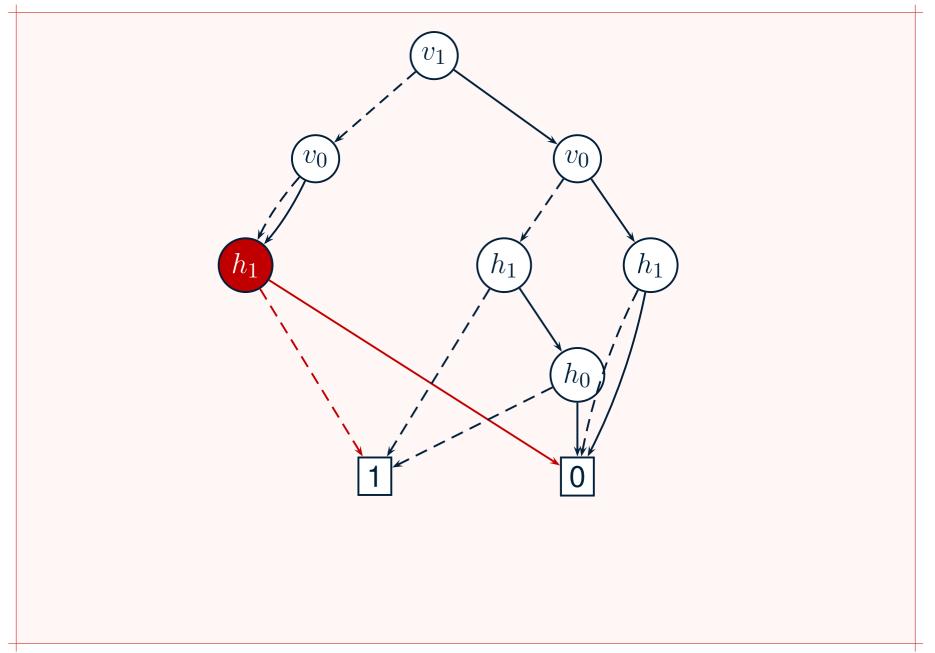
- Points-to set $P \subseteq V \times H$
- Need $\lceil log_2(|V|) \rceil = 2$ bits for each element of V
 - Represent elements of V as binary string v_1v_0

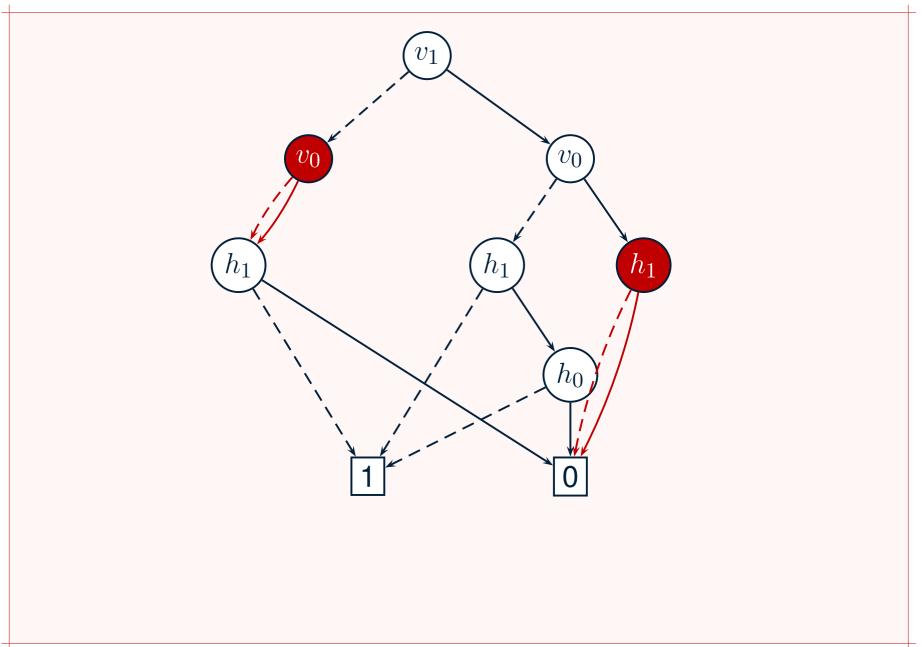


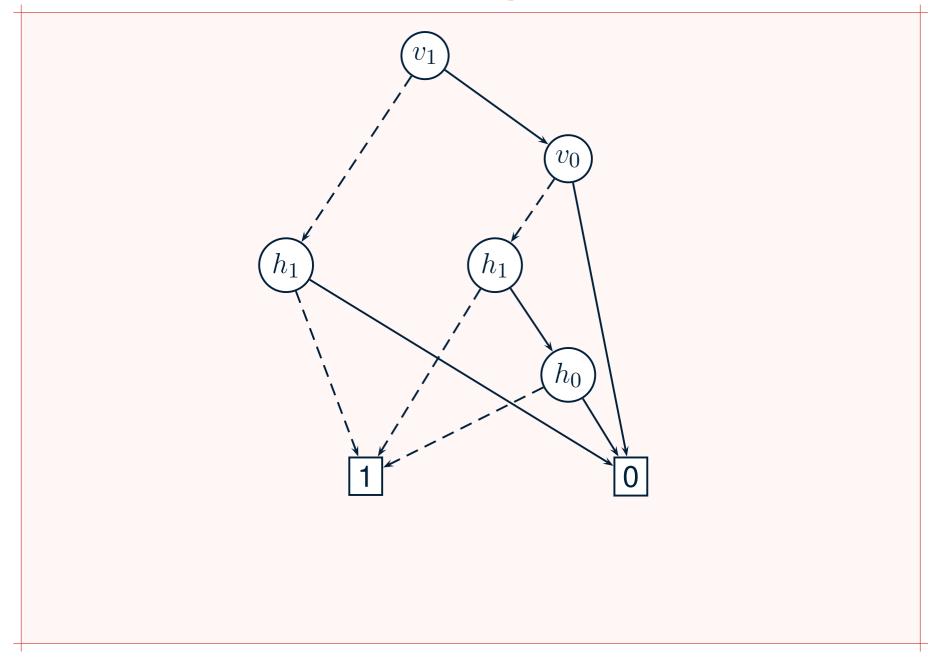



BDD Representation

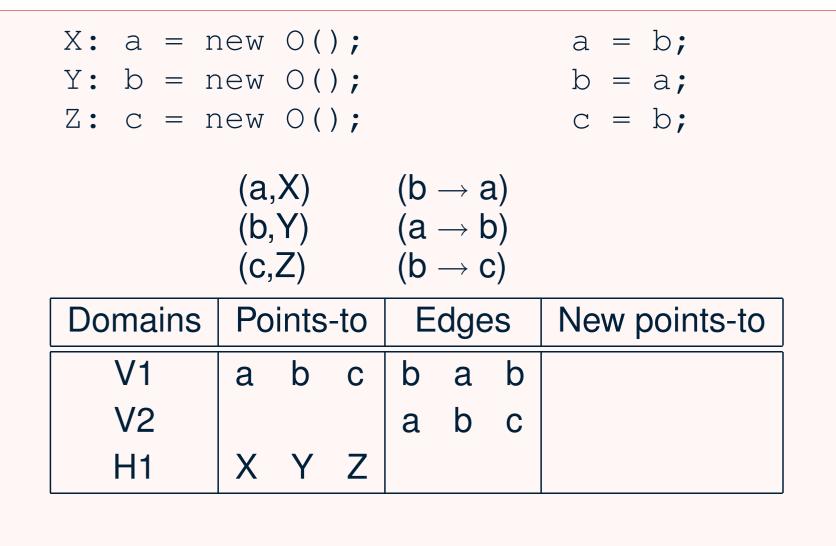

BDD Reduction (1)


BDD Reduction (2)


BDD Reduction (3)


BDD Reduction (4)

BDD Reduction (5)



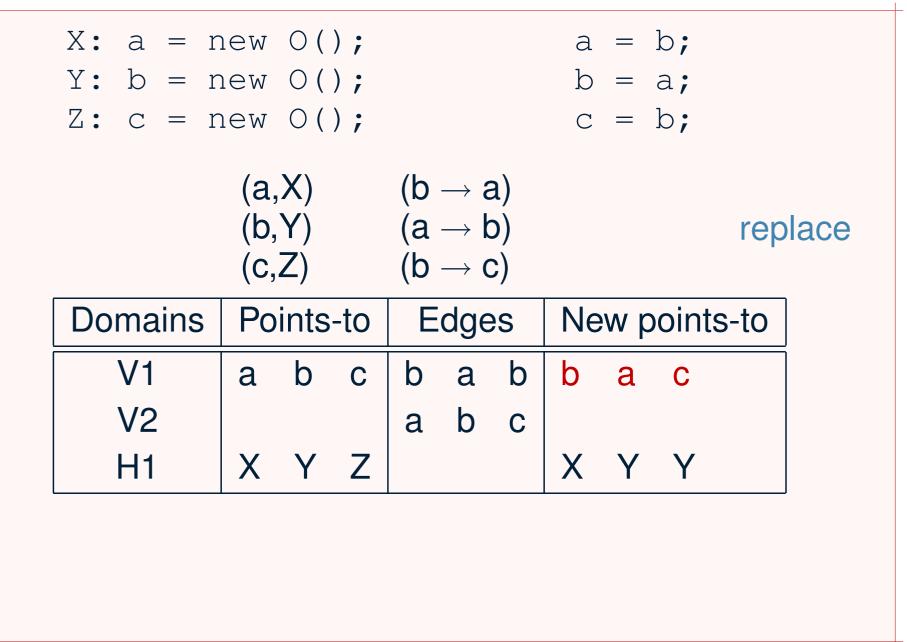
Reduced BDD Representation

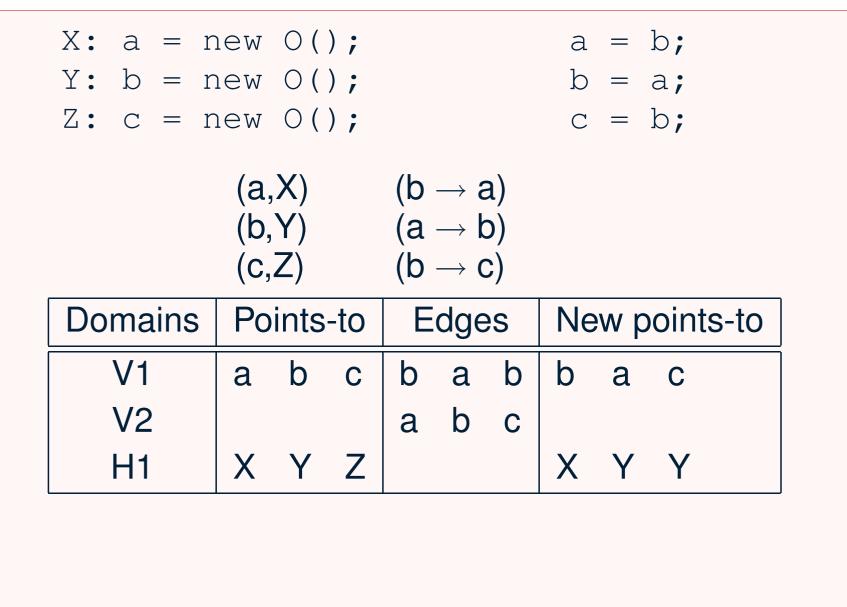
General BDD Implementation

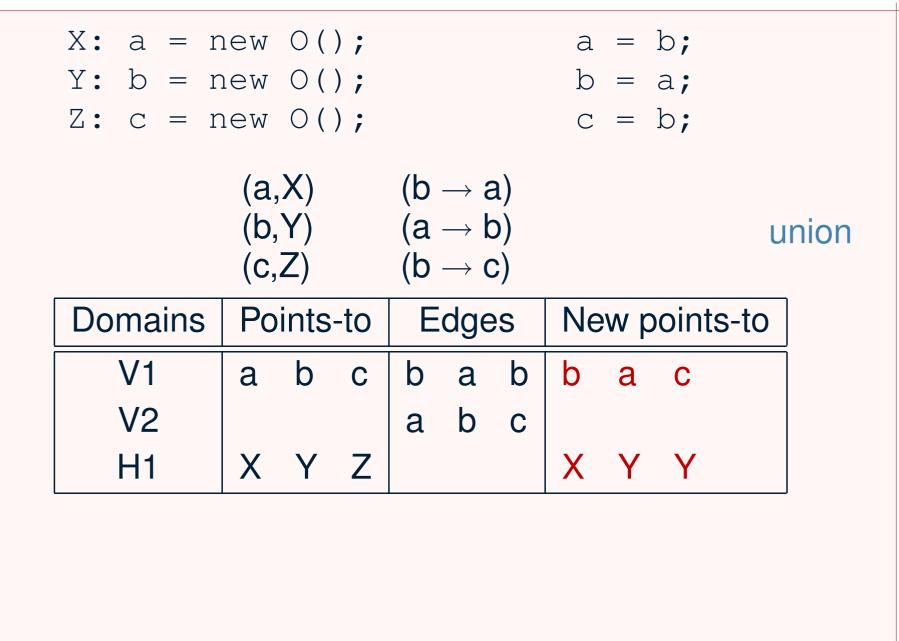
- Need 5 domains
 - *V*1, *V*2: Reference variables
 - \blacksquare Need two domains to represent pairs in $V \times V$
 - *H*1, *H*2: Allocation sites
 - Need two domains to represent the points-to set of object fields
 - FD: field signatures

X: a = r Y: b = r Z: c = r	new	0 ();				a = b; b = a; c = b;	
	•	(X) Y) Z)		(b (a (b	$\rightarrow k$)	rel	prod
Domains	Po	ints	-to	E	dge	es	New points-to]
V1	а	b	С	b	а	b]
V2				a	b	С		
H1	X	Y	Ζ					

X: a = r Y: b = r Z: c = r	new	0()	;				a = b; b = a; c = b;	
	(b,`	X) Y) Z)		(b (a (b	$\rightarrow k$)	rel	prod
Domains	Poi	nts-	to	E	dge	es	New points-to	
V1	а	b	С	b	а	b		
V2				а	b	С	b	
H1	V	Y	7				X	


X: a = r Y: b = r Z: c = r	new	0();				a = b; b = a; c = b;	
	(b,			•	$\rightarrow k$)	rel	prod
Domains	Po	ints	-to	E	dge	es	New points-to	
V1	a	b	С	b	а	b		
V2				a	b	С	b	
H1	X	Y	Ζ				X	


X: a = r Y: b = r Z: c = r	lew	0 ();				a = b; b = a; c = b;	
	-	Y)		-	$\rightarrow k$)	re	lprod
Domains	Po	ints	-to	E	dge	es	New points-to]
V1	a	b	С	b	а	b		
V2				a	b	С	b	
		V	Ζ				X	


$\begin{array}{cccc} (a,X) & (b\rightarrow a) \\ (b,Y) & (a\rightarrow b) \\ (c,Z) & (b\rightarrow c) \end{array} \qquad $	Y: b = r $Z: c = r$		-	•					=	-		
V1 a b c b a b		(b,	Y)		(a	$\rightarrow k$)				rel	proc
	Domains	Po	ints	-to	E	dge	es	Ne	ew p	ointe	s-to	
V2 abcbac H1 XYZ XYY	V1	а	b	С	b	а	b					
H1 XYZ XYY	V2				a	b	С	b	а	С		
	H1	X	Y	Ζ				X	Y	Υ		
												J

Y: b = r Z: c = r							=		
	•	() ())	-	$\rightarrow k$)				
Domains	Poin	its-to	E	dge	es	Ne	w p	oints	-to
V1	a l	C C	b	а	b				
V2			a	b	С	b	а	С	
V						X	Y	V	

Z: c = r		,X)	·	(b	\rightarrow 2	a)	C	=			
	•	,Y) ,Z)		•						rep	lace
Domains	Po	oints	-to	E	dge	S	Ne	ew p	oint	s-to	
V1	a	b	С	b	а	b					
V2				a	b	С	b	а	С		
H1	X	Y	Ζ				X	Y	Y		

Y:	a = b = c =	new	r ()	();				b	= = =	a;		
				(a, (b, (c,	Y)			(a	\rightarrow	b)	ur	nion
Dor	mains		F	Poin	ts-to	C		E	dge	es	New	
	V1	a	b	С	b	а	С	b	а	b		
	V2							а	b	С		
	H1	X	Y	Ζ	Х	Y	Y					

Propagating points-to sets X: a = new O();a = b;Y: b = new O();b = a;Z: c = new O();c = b;(a,X) $(b \rightarrow a)$ (b,Y) $(a \rightarrow b)$ (c,Z) $(b \rightarrow c)$ Edges Domains Points-to New **V1** b c b b a b a а С

XYZXYY

b c

а

V2

H1

(b,Y) (c,Z)	$(b \rightarrow a)$
	$\begin{array}{ll} (a \rightarrow b) & \mbox{relprod} \\ (b \rightarrow c) & \end{array}$
Domains Points-to	Edges New
V1 abcbacl	b a b
V2	a b c
H1 XYZXYY	

X: a = Y: b = Z: c =	new	0();	•			k) =	b; a; b;		
		(b	,X) ,Y) ,Z)			(2	$b \rightarrow a \rightarrow b \rightarrow b \rightarrow b$	b)	relpi	rod
Domains		Poir	its-to	C		E	dge	es	New]
V1	а	b c	b	а	С	b	а	b		
V2						а	b	С	С	
H1	Х	Y Z	Х	Υ	Y				Х	
										-

Propagating points-to sets X: a = new O();a = b;Y: b = new O();b = a;Z: c = new O();c = b;(a,X) $(b \rightarrow a)$ (b,Y) $(a \rightarrow b)$ (c,Z) $(b \rightarrow c)$ Edges Domains Points-to New a b c b **V1** b a b а С V2 a b c С Х H1 XYZXYY

	X: a = Y: b = Z: c =	net	w O	();				k) =	b; a; b;		
				(b	,X) ,Y) ,Z)			(a	ho ightarrow ho ho ightarrow ho	b)	repla	ice
Γ	Domains		F	Poin	ts-to	C		E	dge	es	New	
Ē	V1	а	b	С	b	а	С	b	а	b		
	V2							а	b	С	С	
	H1	Х	Y	Ζ	Х	Y	Y				Х	

X: a = Y: b = Z: c =	new C)();			k) =	b; a; b;		
		(a,X) (b,Y) (c,Z)			(a	\rightarrow \rightarrow \rightarrow	b)	repla	Ce
Domains		Points-te	0		E	dge	S	New	
V1	a b	c b	а	С	b	а	b	С	
V2					а	b	С		
H1	XY	ΖX	Υ	Y				Х	

Propagating points-to sets X: a = new O();a = b;Y: b = new O();b = a;Z: c = new O();c = b;(a,X) $(b \rightarrow a)$ (b,Y) $(a \rightarrow b)$ (c,Z) $(b \rightarrow c)$ Edges Domains Points-to New a b c b **V1** b a b а С С V2 a b c H1 XYZXYY Х

Propagating points-to sets X: a = new O();a = b;Y: b = new O();b = a;Z: c = new O();c = b;

		(a,X) (b,Y) (c,Z)					$egin{array}{l} (b ightarrow a) \ (a ightarrow b) \ (b ightarrow c) \end{array}$			union	
Domains	Points-to						Edges			New	
V1	а	b	С	b	а	С	b	а	b	С	
V2							a	b	С		
H1	Х	Y	Ζ	Х	Y	Υ				Х	

Propagating points-to sets X: a = new O();a = b;Y: b = new O();b = a;Z: c = new O();c = b;(a,X) $(b \rightarrow a)$ (b,Y) $(a \rightarrow b)$ union (c,Z) $(b \rightarrow c)$ Edges New Domains Points-to V1 b c b a c b a b a С V2 а b c XYZXYYX **H1**

Important Relations

- pointsTo $\subseteq V1 \times H1$ points-to relation for
 variables
 (l points to o)
- $fieldPt \subseteq$ (H1 × FD) × H2 points-to relation for object fields ($o_1.f$ points to o_2)
- $edgeSet \subseteq V1 \times V2$ simple assignments $(l_2 := l_1)$

- $stores \subseteq V1 \times (V2 \times FD)$ field stores $(l_2.f := l_1)$
- $loads \subseteq (V1 \times FD) \times V2$ field loads $(l_2 := l_1.f)$
- $typeFilter \subseteq V1 \times H1$

Simple assignments ($l_2 := l_1$)

```
newPt1: [V2xH1] =
          relprod( edgeSet: [V1xV2],
                    pointsTo:[V1xH1],
                              V1 );
newPt2: [V1xH1] =
          replace( newPt1: [V2xH1],
                              V2ToV1 );
newPt3: [V1xH1] =
          isect ( newPt2: [V1xH1],
                    typeFilter: [V1xH1] );
pointsTo:[V1xH1] =
          union( pointsTo:[V1xH1],
                    newPt3: [V1xH1] );
```

Field stores (q.f := l)

```
tmpRel1:[(V2xFD)xH1] =
    relprod( stores: [V1x(V2xFD)],
               pointsTo:[V1xH1],
                         V1 );
tmpRel2:[(V1xFD)xH2] =
    replace( tmpRel1: [(V2xFD)xH1],
                         V2ToV1 & H1ToH2);
fieldPt:[(H1xFD)xH2] =
    relprod( tmpRel2: [(V1xFD)xH2],
               pointsTo:[V1xH1],
                         V1 );
```

Field loads (l := p.f)

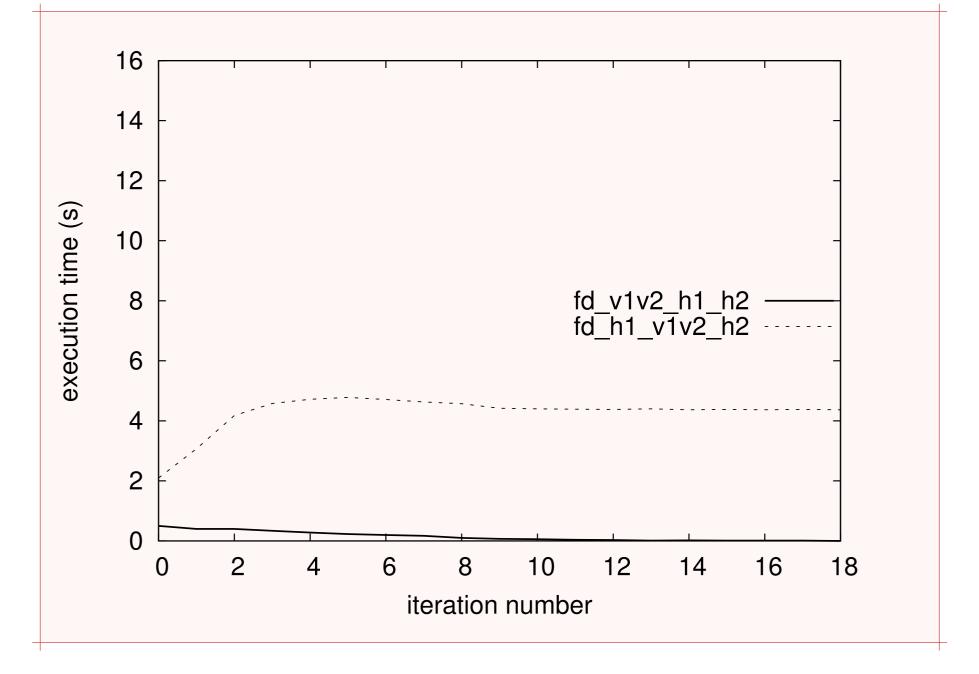
```
tmpRel3: [(H1xFD)xV2] =
    relprod( loads: [(V1xFD)xV2],
              pointsTo:[V1xH1],
                        V1 );
             [V2xH2] =
newPt4:
    relprod( tmpRel3: [(H1xFD)xV2],
              fieldPt: [(H1xFD)xH2],
                        H1xFD );
newPt5:
             [V1xH1] =
    replace( newPt4: [V2xH2],
                        V2ToV1 & H2ToH1);
```

Outline

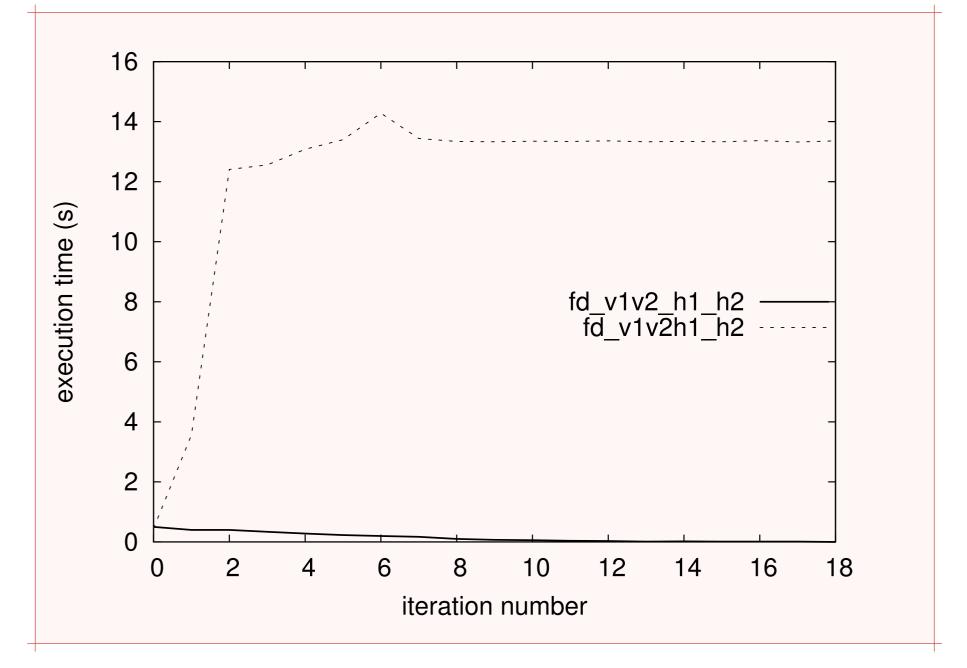
- Background
 - Points-to (reference) analysisBDDs
- Points-to algorithm using BDDs
- Performance tuning
- Experimental results
- Applications
- Conclusions

Experimental Setup

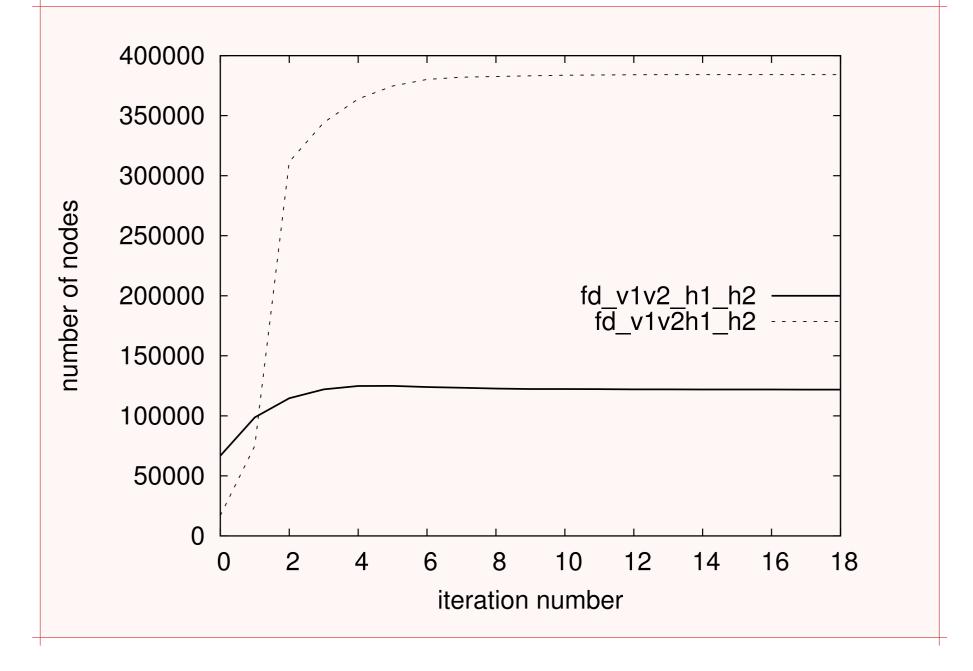
- Subset-based constraints generated by SPARK for a field-sensitive analysis
- Call graph constructed using CHA
- Effect of native methods considered (inherited from SOOT)
- 2 kinds of sets of constraints
 - Simplified (s)
 - Non-simplified (ns)
- 2 strategies for handling declared types
 - Type filtering during analysis (t)
 - Type filtering at the end of analysis (nt)


Performance Tuning – Variable Ordering

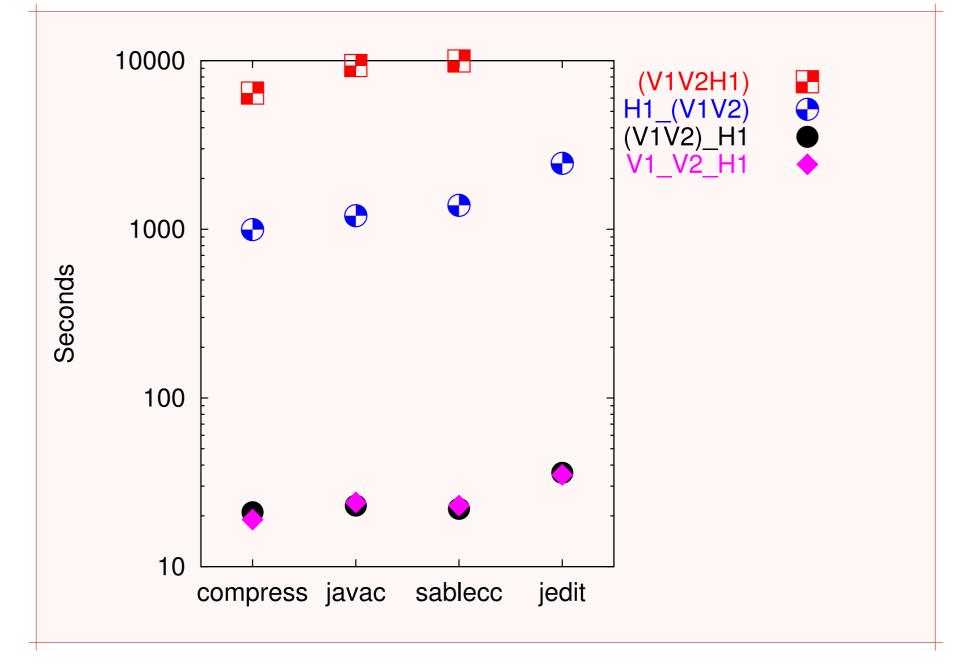
- Problem: Using the default configuration, the BDD solver cannot solve most real benchmarks.
- Profiling reveals that relprod operation from the inner loop is the bottleneck.
- Two factors to consider for performance
 - Relative domain ordering
 - Variable interleaving within domains

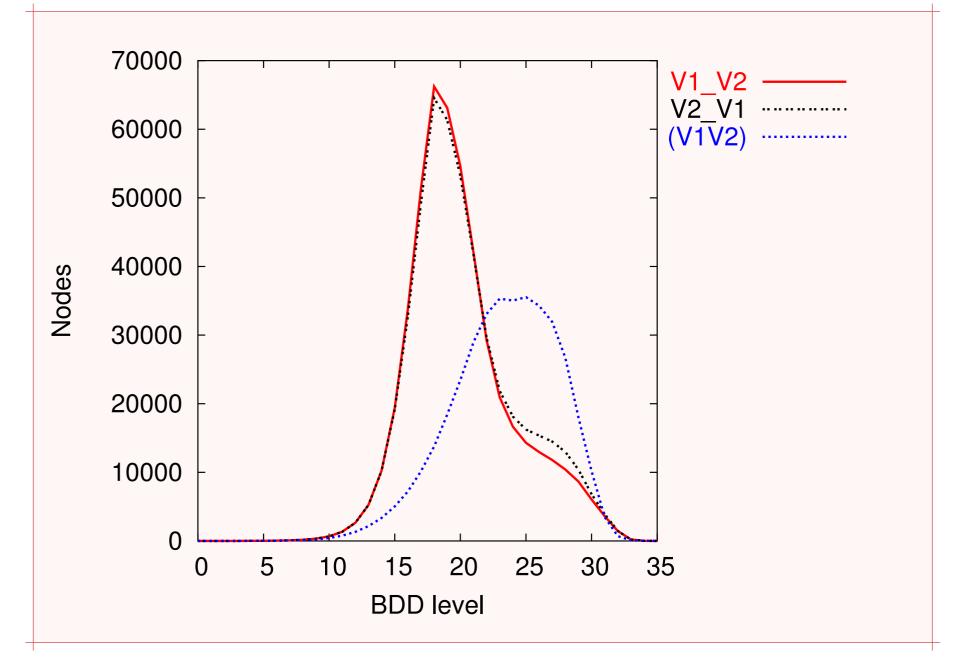

Variable Interleaving Notation

- Let FD, V1 be domains such that f_0, \ldots, f_n are the variables of FD and v_0, \ldots, v_n are the variables of domain V1.
 - FDV1 denotes the interleaving of variables, i.e. $f_0v_0f_1v_1...f_nv_n$.
 - FD_V1 denotes the concatenation of variables, i.e. $f_0f_1 \dots f_nv_0v_1 \dots v_n$.
- Variables are always order from most to least significant bit to exploit unused high bits.
- BuDDy's default ordering is FDV1V2H1H2

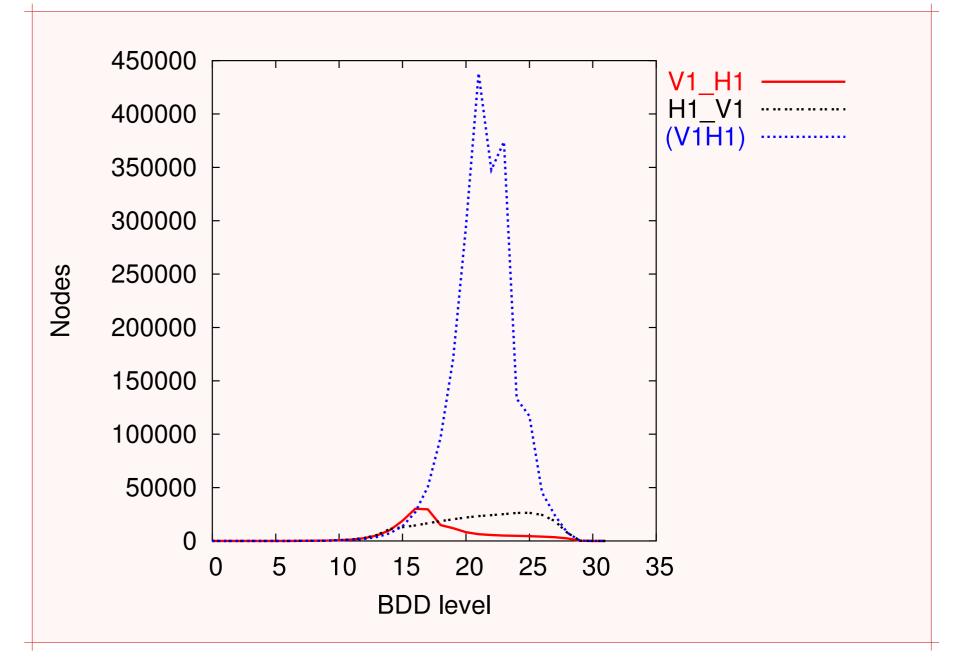

Effect of Domain Arrangement on relprod

Effect of Interleaving Domains on relprod


Effect of Interleaving Domains on pointsTo


Effect of Variable Ordering on Performance

- Default ordering is good for model checking, but much too slow for PTA
- Investigate other orderings
 - Focus on the domains used in the problematic relprod operation, i.e. V1, V2, H1.
 - Reason about the impact of certain orderings on BDD size
 - Domains that feature a large amount of similarity between the sets could benefit from preventing interleaving.
 - It is easier to exploit similarities when present at the end of the variable sequence than at the beginning.


Effect of Different Orderings on Performance

Effect of Ordering on *edgeSet*

Effect of Ordering on *pointsTo*

Performance Tuning – Incrementalization

- Observation: The relprod operation propagates all points-to sets along all edges at every execution.
 - Most sets have already been propagated in previous iterations
 - relprod executes in time proportional to the # of nodes
 - The inner relprod is very hot

Performance Tuning – Incrementalization

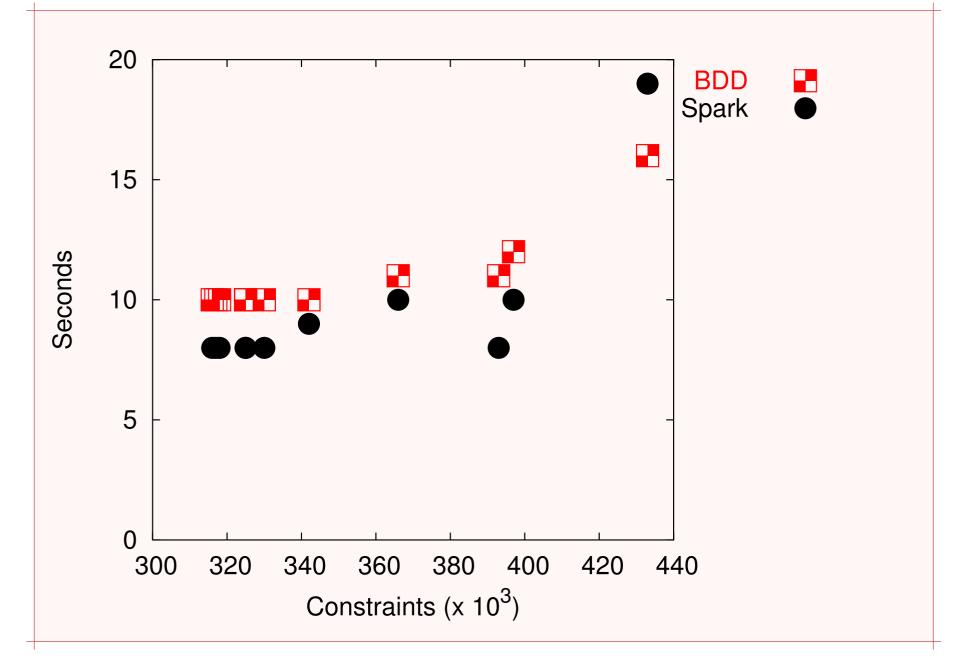
- Observation: The relprod operation propagates all points-to sets along all edges at every execution.
 - Most sets have already been propagated in previous iterations
 - relprod executes in time proportional to the # of nodes
 - The inner relprod is very hot
- Only propagate the new part of the points-to set
 - new pointsTo relation remains small
 - relprod executes much faster

Incremental BDD-PTA Algorithm

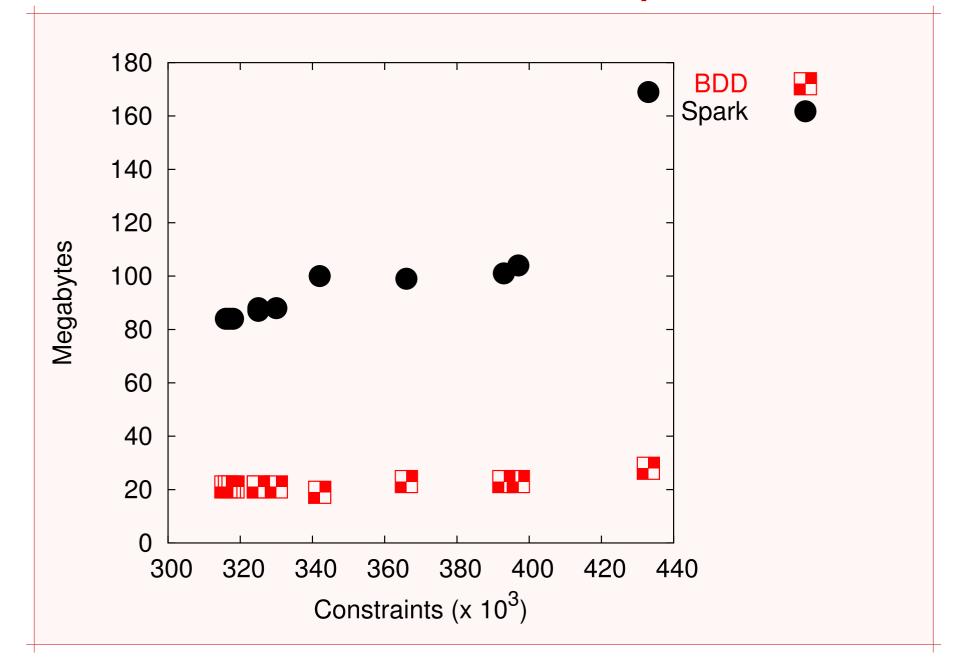
```
newPt1: [V2xH1] =
          relprod( edgeSet: [V1xV2],
                    pointsTo:[V1xH1],
                              V1 );
newPt2: [V1xH1] =
          replace( newPt1: [V2xH1],
                              V2ToV1 );
pointsTo:[V1xH1] =
          union( pointsTo:[V1xH1],
                    newPt2: [V1xH1] );
```

Performance Tuning – Incrementalization

```
newPt1: [V2xH1] =
          relprod( edgeSet: [V1xV2],
                    newPoint:[V1xH1],
                              V1 );
newPt2: [V1xH1] =
          replace( newPt1: [V2xH1],
                              V2ToV1 );
newPoint:[V1xH1] =
          setminus( newPt2: [V1xH1],
                     pointsTo:[V1xH1] );
pointsTo:[V1xH1] =
          union( pointsTo:[V1xH1],
                    newPoint:[V1xH1] );
```


Effect of Incrementalization on Performance

benchmark	fd_V1V2_H1_2		FD_V1_V2_H1_H2	
	non-inc	inc	non-inc	inc
compress (s/t)	20.63	11.72	19.07	9.80
compress (ns/t)	54.46	26.83	83.63	19.66
compress (ns/nt)	145.33	71.55	228.21	58.58
javac (s/t)	22.62	14.83	23.89	10.83
javac (ns/t)	62.35	30.55	103.52	23.14
javac (ns/nt)	166.66	80.04	285.65	65.46
sablecc-j (s/t)	21.90	14.00	23.10	10.60
sablecc-j (ns/t)	63.43	30.05	110.87	22.86
sablecc-j (ns/nt)	158.33	76.53	269.30	63.82
jedit (s/t)	35.92	20.11	35.43	15.60
jedit (ns/t)	112.47	47.53	357.97	35.29
jedit (ns/nt)	336.18	150.72	783.92	120.53


Outline

- Background
 - Points-to (reference) analysisBDDs
- Points-to algorithm using BDDs
- Performance tuning
- Experimental results
- Applications
- Conclusions

Overall Performance – Time

Overall Performance – Space

Outline

- Background
 - Points-to (reference) analysisBDDs
- Points-to algorithm using BDDs
- Performance tuning
- Experimental results
- Applications
- Conclusions

Applications

- Manipulating sets makes it easy to express common problems:
 - "May/Must be aliased" analysis
 - Virtual method resolution (receiver types)
 - Inlining
 - Devirtualization
- Manipulating the solution as a BDD
 - improves performance
 - Iowers development cost

Related Work

• A lot...

PTA

- PTA algorithms
- Efficient set representations
- Equality-based constraints
- • •
- BDDs
 - Model checking

- BDDs are useful in the context of PTA
- It is possible to write efficient solvers using BDD libraries "out of the box"
- Finding a good bit ordering is necessary to obtain good performance