
Profiling Java Applications UsingProfiling Java Applications Using
Code Code HotswappingHotswapping and Dynamic and Dynamic

Call Graph RevelationCall Graph Revelation
Mikhail Mikhail DmitrievDmitriev

Sun Microsystems LabSun Microsystems Lab

Presented byPresented by
Ophelia ChesleyOphelia Chesley



 Advantage:Advantage:
 Reveal dynamic behavior of modern softwareReveal dynamic behavior of modern software
 Gathers low-level (CPU, memory usages) data as wellGathers low-level (CPU, memory usages) data as well

as high-level data (GUI events, EJB security)as high-level data (GUI events, EJB security)
 Disadvantage:Disadvantage:

 Incurs high overhead Incurs high overhead –– excess time to execute excess time to execute
 Skews cache missesSkews cache misses
 Prevents certain optimizationsPrevents certain optimizations
 Static instrumentation stays with the target applicationStatic instrumentation stays with the target application

during the entire runduring the entire run
 Proposed Solution:Proposed Solution:

 Profile only limited subsets of methodsProfile only limited subsets of methods
 On-line instrumentationOn-line instrumentation

Instrumentation-based ProfilingInstrumentation-based Profiling



Implemented Solution: Implemented Solution: JFluidJFluid
 JFluidJFluid Server with target VM Server with target VM

 Receives and execute commands from usersReceives and execute commands from users
 Inform users of events pertaining to the targetInform users of events pertaining to the target

applicationapplication
 Transmit profiled data to usersTransmit profiled data to users
 Minimal communication and profiler codeMinimal communication and profiler code

 JFluidJFluid GUI Tool GUI Tool
 Use the Use the ProfileServerProfileServer class to start the target VM, or class to start the target VM, or
 attach attach JFluidJFluid to the running VM using the UNIX signal to the running VM using the UNIX signal

SIGQUITSIGQUIT
 Processes rough profiling data and builds compactProcesses rough profiling data and builds compact

profiling resultsprofiling results



HotswappingHotswapping

 Only methods, not classes are modified/instrumentedOnly methods, not classes are modified/instrumented
 Locate all pointers to old method versionsLocate all pointers to old method versions
 Create new method versions in parallel with other JavaCreate new method versions in parallel with other Java

threadsthreads
 Suspend all Java threadsSuspend all Java threads
 DeoptimizeDeoptimize methods that were previously methods that were previously

inlinedinlined/compiled (provided by Hotspot VM)/compiled (provided by Hotspot VM)
 Switch pointers to the respective new method objectsSwitch pointers to the respective new method objects
 Resume all application threadsResume all application threads



Dynamic Instrumentation of a CallDynamic Instrumentation of a Call
SubgraphSubgraph

 User select an arbitrary method root forUser select an arbitrary method root for
instrumentationinstrumentation

 JFluidJFluid tool will recursively: tool will recursively:
 Scan an executing instrumented method (m) to findScan an executing instrumented method (m) to find

next called method (next called method (VC.vVC.v) to ) to instrumentinstrument
 Check loaded subclasses of VC to find any methods vCheck loaded subclasses of VC to find any methods v

that may overrides that may overrides VC.vVC.v and instrument them by and instrument them by
hotswappinghotswapping

 Check each newly loaded class whether any of itsCheck each newly loaded class whether any of its
methods override the instrumented methods of itsmethods override the instrumented methods of its
superclassessuperclasses



ResultsResults
 Currently only support collection of CPU profiling dataCurrently only support collection of CPU profiling data
 Compare overhead between fully profiled versusCompare overhead between fully profiled versus

partially profiled target applications (SPECjvm98 andpartially profiled target applications (SPECjvm98 and
PetStorePetStore))

 For small benchmarks, partial profiling still results inFor small benchmarks, partial profiling still results in
considerable overhead (breaks optimization)considerable overhead (breaks optimization)

 Partial profiling in large benchmarks incurs 2-12%Partial profiling in large benchmarks incurs 2-12%
overheadoverhead

 For benchmarks with many polymorphic calls, dynamicFor benchmarks with many polymorphic calls, dynamic
instrumentation still results in many instrumentedinstrumentation still results in many instrumented
methods that are not called methods that are not called –– wasted time for wasted time for
hotswappinghotswapping..


