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Background

= Qur group develops techniques for understanding Java application
behavior

— performance and memory diagnosis tools
— e.g. Jinsight (mature tool), LeakBot, JaVinci (ongoing research)
— characterizing complexity

» Focus is on large framework-based systems
— high-volume web-based (e-Business) applications

— client-side applications (e.g. Eclipse-based)

» \We maintain a consulting practice, solving problems for IBM
customers and products




Observations

= Things are getting worse
— Performance errors are easy to make

— Performance errors are difficult to localize

— and to understand, communicate, assess
Costs of design choices are difficult to predict

Tools are at the wrong level
Automated optimizations are not keeping up

= Even well-tuned programs seem bloated
— They seem to be doing a lot of work to accomplish very little




Goals for this talk

= Scare you ... with how bad things are




Goals for this talk

= Share our experiences from the real world
What types of problems occur in these applications?

Explore some of the reasons they occur
Show some requirements for analysis
— lllustrate Livedinsight approach, including its limitations

Gain insights on where optimizations are failing




Road Map

» Background: large-scale object-oriented systems

= Case studies in Java performance analysis
Part I: Performance errors from the real world

Part Il; A “well-tuned” benchmark

= Ongoing research
Automating performance understanding

Characterizing complexity




Object-oriented Design and Java

= Modern O-O design techniques and the Java language aim to ease
programming and maintenance, improve correctness, and enable
reusability

e.g. implementations are hidden behind well-defined interfaces
e.g. design patterns distribute functional responsibility

e.g. Java provides high-level features like automatic garbage collection,
multithreading, and object serialization

* In general, the programmer is free not to worry about what's
happening behind the scenes

» These techniques have been very successful, and they have
enabled the construction of larger, more complex systems.
However ...




Object-oriented Design, Java and Performance

= ... many of these same properties can make performance difficult to
predict, performance errors easy to make, and runtime behavior
complex to analyze

= Some properties of well-designed Java programs:
— implementation choices are hidden

— implementation is functionally distributed across many classes for a
single user-level feature

many interacting parts; many small methods
APIs that return new objects

reusable libraries/frameworks from vendors or other teams




e-Business Applications: Java part

= Extensive use of libraries and frameworks

- Application server frameworks provide commonly needed services: security,
availability, session management, resource pooling, etc.

Incredible number of different standards: servlets, JSPs, JDBC, EJBs, JNDI,
XML, XSLT, RMI/IIOP, etc.

Many are different in kind

Most were designed separately, for general-purpose usage

Each has its own type system, conventions, etc.

Customers have their own frameworks which are reused across applications
Many authors, many vendors

= Application itself is usually relatively small
— and the actual business and presentation logic is relatively simple!

= On the client side we are seeing a similar story (Eclipse, Hyades, eMF, etc.)




Part |: case studies




Jinsight: Understanding Java Application Behavior
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A word of warning about the case studies

» |[t's easy to think of each case as just another example of bad
programming
- But many of the errors were made by very good programmers!

- Instead, we would like to encourage questioning of why these
problems are so prevalent




Case study #1: Banking application

Large European bank

Client-server architecture
Server: z/OS (IBM 390), WebSphere, additional higher-level frameworks

Java client

Problem: CPU utilization was too high on the server

Cause: 6-7 independent problems
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Anatomy of a transaction
Get client request

Options Zoom Selected Help Threads

Parse client request
Build IMS request

Send to IMS

Parse IMS response
Build client response

Send client response
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Transaction detail: part Il
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Sending response: summary

= Problem: sending response is expensive
= Solution: introduce a buffering layer

= Comments
— Performance is not automatically composable!

— The problem occurred within a framework, and was discovered during
application deployment

— Lesson: performance testing with real-world use cases is
especially important for frameworks

— There actually was a buffering layer, but at the wrong level




Case study #2: Brokerage application

Web-based client
Customer can look up account information, stock holdings

Server:
WebSphere

Application uses JSPs, EJBs
Customer wrote a general framework to support many applications

Problem: slow response time

Cause: at least 3 different problems
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Database request example: summary

= Problem: customer reported that database requests were slow
— the actual problem was expensive logging, using object serialization

=  What went wrong?
— costs are hidden
— just one little call to writeObject!
— Littleinstrumenter? the code was put in to prevent a performance problem!

— later, the customer erroneously told us they had fixed the code, yet the problem
remained

— lesson: validation is essential

= Diagnosis techniques

— Visualization and focused summarization of information in context were key to
discovering and measuring the impact of the problem

— Used data flow (by hand!) to understand the purpose of the serialization
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Problem: converting dates
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Converting dates

Creating a new SimpleDateFormat
each time
yet the format is always the
same!
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Date conversion example: summary

Problem: creating the same object over and over
— plus an additional setup cost

lllustrates three common phenomena:
— recomputation is one of the most common problems
— the costofcalls is not obvious
— creation of temporary objects

— allocation and GC cost are just part of the problem
— thereal expense is initializing temporary data structures
— note that the remaining part of the conversion is still expensive

— conversion is a major expense even in “correctly-written” applications

Diagnosis techniques

— understanding and focused summarization of activity in a particular context were essential
to discovery and accurate measurement of the impact

— data flow and escape information (guessed at, by hand) were valuable for understanding




Case study #3: Credit card application

= Problem: slow response time

= Causes: many different problems (only 2 shown here)
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Database requests

Calls these ResultSet methods:
getString (String columnName)

getLong (String columnName)

etc.

Causes findColumn(columnName)
to be called for each field

- but the column structure is
fixed for every record!

Solution: use different calls:
getString (int columnindex)

getLong (int columnindex)

etc.
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private static KeyFactory instance = new KeyFactory();

// Create a unique credit card transaction key
public synchronized long getSIDKey() {

try {

Thread.sleep(1);
long key =

expression based on current time and server name
return key;

} catch(Exception e) {
return getSIDKey();
Y

}

in a loop within each servlet hit:

instance.getSIDKey();

Create transaction key

Sleep in a synchronized method
= Contention problem

= Response time problem

Called 17 times in one hit!




private static KeyFactory instance = new KeyFactory();

// Create a unique credit card transaction key
public synchronized long getSIDKey() {
try {
Thread.sleep(1);
long key =
expression based on current time and server name
return key;

} catch(Exception e) {

return getSIDKey();
}
}

in one servlet hit, in a loop:

instance.getSIDKey();

Create transaction key

Want went wrong?
Just “coding crazy”?

Rather, it was insufficient
awareness of scalable
multithreading issues

Recursion in exception handler?




Part Il: The Diary of a Datum




Ongoing Research




JaVinci: Automated Performance Explanation

= Problem: current tools place too much burden on the user
Too much expertise is required to interpret the data

Too much work is required to dig through details, even for experts

= Goal: simplify performance diagnosis and understanding
Challenge: can we turn a 500K method call trace into a manager’s summary?

= Approach:
Build collective expertise into the tools

— Knowledge about how problems are analyzed
— Domain knowledge (e.g. about J2EE, WCS)
— Knowledge of what is worth tracing

Let the system do the hard work: automate much of analysis and trace collection
Raise the level of explanation

Integrate many layers of explanation

Combine static and dynamic analyses




Characterizing Complexity

» Goal: Understand the nature and causes of run-time complexity

= Enables:
— Performance understanding and assessment of individual applications

— Comparisons across various implementations
— Characterization of classes of applications

— Identify good API design practice
— ldentify classes of optimizations to target

= FSE 2005 submission




People

= Customer examples; Descriptive characterization
— Nick Mitchell, Gary Sevitsky, Harini Srinivasan

= Jinsight (past)

— Wim De Pauw, Herb Derby, Olivier Gruber, Erik Jensen, Ravi Konuru,
Martin Robillard, Gary Sevitsky, Harini Srinivasan, John Vlissides,
Jeaha Yang

= JaVinci: automation of performance understanding
— Gary Sevitsky, Nick Mitchell

— Barbara Ryder




