Understanding Performance in Large-scale
Framework-based Systems

Gary Sevitsky, Nick Mitchell, Harini Srinivasan
Intelligent Analysis Tools Group
IBM TJ Watson Research Center

Background

= Qur group develops techniques for understanding Java application
behavior

— performance and memory diagnosis tools
— e.g. Jinsight (mature tool), LeakBot, JaVinci (ongoing research)
— characterizing complexity

» Focus is on large framework-based systems
— high-volume web-based (e-Business) applications

— client-side applications (e.g. Eclipse-based)

» \We maintain a consulting practice, solving problems for IBM
customers and products

Observations

= Things are getting worse
— Performance errors are easy to make

— Performance errors are difficult to localize

— and to understand, communicate, assess
Costs of design choices are difficult to predict

Tools are at the wrong level
Automated optimizations are not keeping up

= Even well-tuned programs seem bloated
— They seem to be doing a lot of work to accomplish very little

Goals for this talk

= Scare you ... with how bad things are

Goals for this talk

= Share our experiences from the real world
What types of problems occur in these applications?

Explore some of the reasons they occur
Show some requirements for analysis
— lllustrate Livedinsight approach, including its limitations

Gain insights on where optimizations are failing

Road Map

» Background: large-scale object-oriented systems

= Case studies in Java performance analysis
Part I: Performance errors from the real world

Part Il; A “well-tuned” benchmark

= Ongoing research
Automating performance understanding

Characterizing complexity

Object-oriented Design and Java

= Modern O-O design techniques and the Java language aim to ease
programming and maintenance, improve correctness, and enable
reusability

e.g. implementations are hidden behind well-defined interfaces
e.g. design patterns distribute functional responsibility

e.g. Java provides high-level features like automatic garbage collection,
multithreading, and object serialization

* In general, the programmer is free not to worry about what's
happening behind the scenes

» These techniques have been very successful, and they have
enabled the construction of larger, more complex systems.
However ...

Object-oriented Design, Java and Performance

= ... many of these same properties can make performance difficult to
predict, performance errors easy to make, and runtime behavior
complex to analyze

= Some properties of well-designed Java programs:
— implementation choices are hidden

— implementation is functionally distributed across many classes for a
single user-level feature

many interacting parts; many small methods
APIs that return new objects

reusable libraries/frameworks from vendors or other teams

e-Business Applications: Java part

= Extensive use of libraries and frameworks

- Application server frameworks provide commonly needed services: security,
availability, session management, resource pooling, etc.

Incredible number of different standards: servlets, JSPs, JDBC, EJBs, JNDI,
XML, XSLT, RMI/IIOP, etc.

Many are different in kind

Most were designed separately, for general-purpose usage

Each has its own type system, conventions, etc.

Customers have their own frameworks which are reused across applications
Many authors, many vendors

= Application itself is usually relatively small
— and the actual business and presentation logic is relatively simple!

= On the client side we are seeing a similar story (Eclipse, Hyades, eMF, etc.)

Part |: case studies

Jinsight: Understanding Java Application Behavior

[553 Call Tree: Calls from java/io/PrintStieam println [String): 4 occunences [Workspace 1] (=] E3

File Startwith Tree Selectec Help

Visual approaCh calls N ‘ L’l'.rllflLIJ‘ll:J‘lAl ‘Ibllr cor !nul.n:;‘:nfT number Ufull-,.
For performance and memory analysis :

Traces details of an execution
Shows howand when problems occur [resostcns Wokmecs 111

File Rows Columns Select
Allows ad hoc computation of highly LERETY
focused measures ‘

Scalable to very large applications
Selective and conditional tracing

Flexibility in navigating and exploring

|
| + IJ 5 |Object objects (200 bytes), num of refs: §
FetOb

Traces using a JVMPI profiling agent N :l"D = g

Analyze during or after the run 5 togcamof mathods /o opace 1 N P |

Ogticnz Clazses Selecied Hep Method Colors

Windows, AlX, Z/OS, Z/Linux, etc. o— 202 base T

5 b
- ..
11 11

A word of warning about the case studies

» |[t's easy to think of each case as just another example of bad
programming
- But many of the errors were made by very good programmers!

- Instead, we would like to encourage questioning of why these
problems are so prevalent

Case study #1: Banking application

Large European bank

Client-server architecture
Server: z/OS (IBM 390), WebSphere, additional higher-level frameworks

Java client

Problem: CPU utilization was too high on the server

Cause: 6-7 independent problems

&

Anatomy of a transaction
Get client request

Options Zoom Selected Help Threads

Parse client request
Build IMS request

Send to IMS

Parse IMS response
Build client response

Send client response

j J b-l h+ }hread named [Thread)] &t time [1,322.04sec]

Options Zoom Selected Help Threads

4

TN

i
I

I

1
i

|

=] o))

nvoke of [NativeServerConnection nativeRead] on [InProcNativeServerConnection.1)

Transaction detail: part |

Get client request

Parse client request

Build IMS request

Send to IMS

Options Zoom Selected Help Threads

Transaction detail: part Il

Parse IMS response

Build client response

T

|

I
UL

Send response

'Tﬂf

i

I
I

] I e —

%itions Zoom Selected Help Threads S e n d reS po n Se (pa rtl a |)

(time)

vuiie
-lmritp

write write -EisEntryEnabled
write TP TP

sendString sendString writelnt write isEntryEnabled
e isEntryEnabled

write - —_—

write e :EntryEnabled
write i e i:EntryEnabled
write .wtite = sEntryEnabled
———— — isEntryEnabled

sendinteger] writelnt - ——

wurite isEntryEnabled
i — et

write isEntryEnabled
write = =
sendString writelnt write isEntryEnabled

write IS alidi ————sEntryEnabled

write isEntryEnabled

write alidi m
isEntryEnabled isEntryEnabled

write

check isEntryEnab il

sendString sendString writelnt

isEntryEnabled
isEntryEnabled
write i —isEntn,rEm
isEntryEnabled

sendintegerfilwritelnt i | —
———sE ntryEnabled
isEntryEnabled
isEntryEnabled

sendString writelnt i p— < E ity Enable d
BE————— . tEnabled
isEntryEnabled

isEntryEnabled

rite ™ : EE————— :EntEnabled
=EntryEnabled

isEntryEnabled
EntryEnabled
isEntryEnabled

i : isEntryEnabled =
aride ———— ——
4 J »

+ I _I h- | h+ | }nvoke of [BufferedServietOutputStream.check] on [BufferedServietOutputStream. 1] cumul. time [249.99usec] star

sendString sendString writelnt

Options Zoom Selected Help Threads

— oot — : o Send response: detail

rite check\alidity

sendString writelnt

isEntryEnabled
currentThread

gelaaThiesd View shows writing just the

getinstancelD

BEniyEnabled header of one String!

isEntryEnabled T

check -
isEntryE

SEntyEn abled W Protocol implemented by

isEntryEnabled B

ooty layering DataOutputStream
CurenThead over SRTOutputStream

getlavaThread
getinstancelD
isEntryEnabled

i Enabled Solution: buffering

check
isEntryEnahlad —

isEntryEnabled
isEntryEnabled .

checkfalidity
isEntryEnabled
currentThread

getlavaThread
getinstancelD
isEntryEnabled

isEntryEnabled —

check e ———]
isEntryEnabled
e ar . .
isEntryEnahled
isEntryEnabled 1

checklalidity
isEntryEnabled

currentThread
getlavaThread
getinstancelD

—
isEntryEnabled
write _ v
icEntrcBEnablad
» I

L

j _| b-l b+ | invoke of [TraceComponent isEntryEnabled] on [TraceComponent.26] cumul. time [51 .7usec] started at [1,321.89s

Sending response: summary

= Problem: sending response is expensive
= Solution: introduce a buffering layer

= Comments
— Performance is not automatically composable!

— The problem occurred within a framework, and was discovered during
application deployment

— Lesson: performance testing with real-world use cases is
especially important for frameworks

— There actually was a buffering layer, but at the wrong level

Case study #2: Brokerage application

Web-based client
Customer can look up account information, stock holdings

Server:
WebSphere

Application uses JSPs, EJBs
Customer wrote a general framework to support many applications

Problem: slow response time

Cause: at least 3 different problems

N

ptions Zoom Selected Help Threads

Problem: database requests?

actual query to database

processing 3 records

all the rest: customer
LittleInstrumenter class
uses Java serialization to wrap
up database results, just to
measure & log their size

Database request example: summary

= Problem: customer reported that database requests were slow
— the actual problem was expensive logging, using object serialization

= What went wrong?
— costs are hidden
— just one little call to writeObject!
— Littleinstrumenter? the code was put in to prevent a performance problem!

— later, the customer erroneously told us they had fixed the code, yet the problem
remained

— lesson: validation is essential

= Diagnosis techniques

— Visualization and focused summarization of information in context were key to
discovering and measuring the impact of the problem

— Used data flow (by hand!) to understand the purpose of the serialization

A
<)
=

Options Zoom Selected Help Threads

Problem: converting dates

63 dates converted to Java
— format in this one phase of
— one servlet hit

initializeDef

I

| i‘]n;

cost of converting one date:
- 1520 method calls

120 temporary objects
Teiatizs created

initializeDef

initialize

initializeDef

i
;

|

J

|
W

getDate

jJﬂm

initialize getlnstan
initializeDef

il

- —

— 0|
——

<init= Zinit> =

—_—
qetNumberlt_ pefinance i — .
z

=i
initialize -
—

initializeDef

=
—_—]
H
_—=__ e M——
e —
| —

—
—
————

o
W
Il
Ed

4

initialize

initializeDef

I

%

getDate

<init= <init>

)
;
L
:
]

]
initialize P P pe——
4

j J b-l b+ | jnvoke of [SimpleDateFormat parse] on [SimpleDateFormat.5] cumul. time [7.45msec) started at [960.4sec)

Converting dates

Creating a new SimpleDateFormat
each time
yet the format is always the
same!

initialize

initializeDaf

I}

I

also, substantial setup cost to
call SimpleDateFormat
constructor

initialize

Solution: cache the converter
. even once per transaction would help

parse

—_—
(qetNumberly pefindfance o

<init= Zinit>

initialize

<init= <init>

initialize
4

j J b-l b+ | jnvoke of [SimpleDateFormat parse] on [SimpleDateFormat.5] cumul. time [7.45msec) started at [960.4sec)

Date conversion example: summary

Problem: creating the same object over and over
— plus an additional setup cost

lllustrates three common phenomena:
— recomputation is one of the most common problems
— the costofcalls is not obvious
— creation of temporary objects

— allocation and GC cost are just part of the problem
— thereal expense is initializing temporary data structures
— note that the remaining part of the conversion is still expensive

— conversion is a major expense even in “correctly-written” applications

Diagnosis techniques

— understanding and focused summarization of activity in a particular context were essential
to discovery and accurate measurement of the impact

— data flow and escape information (guessed at, by hand) were valuable for understanding

Case study #3: Credit card application

= Problem: slow response time

= Causes: many different problems (only 2 shown here)

=

=10l x|

Options Zoom Selected Help

(time) -

29yl
2qulls
2qual
2gual
getTimestal Zinits :
=Inits
etTimelnhd computeFih
getOffset
quals
29ual
equal
getDate <init> Zinits
etTimelnM_ computef
SQLGetDateData
SQLGetStiliquaquals
equals
getTimestal init> l_‘rn.
Zinits
etTimelnhd computeFiE
getTimestal - —_— getDffset
= clone clone o
getTime getTimelnh computeTi
T —_ it isLenient getOffset
29uals
qual
29uals
2qual
equal

29yl

getTimestal

[<init> <inits —
etTimelnhd computeFih

getOffset
equal
getDate getDate Zinit it E—
etTimelnhd computeF
qetDate2 clone
clone clope
getTime getTimelnh computel
— Zinit> Zinits isLenient
getTimestal <init> Zinits
etTimelnM " computeFi
getTimestas — getOffset
clone “clone o
getTime getTimelnh ¢ aTi
S—_ it isLenient getOffset
mquals
agqual
SQLGetStinguaquals
equal
29uals
getTimestar <initz W‘_‘
etTimelnM computeFi
getTimestag ie— 1 ———— getOffset
clone clope clone v

netTime

natTimealnh

comnutaTi

Database requests

View shows getting the field
values out of one row

Called in a loop (e.g. 25
records for one query)

One row costs:
728 method calls

106 new short-lived
objects

after JIT!

x
4|j;l }ime: 314330

e

Options Zoom Selected Help

getString2

SQLGetStilgla time) j

findColumn

i getString2
LM
ie(S‘lfing findColumn
getString2

etString findColumn:

getString2

etTimestalfindColumni

getTimestag

etlon —
i 8 i;_e(LonQ findColumn
getlong2

SOLGetStRgUa

get als

L equals
SOLGetStiRg0a

get
. equals
SQLGetStingUa

P —

lone
gt E———
equals

computeFi

imaTaFic

getOffset

netTimestay

SQLGetTimestam

get— uals
SQLGetLongua%g

etString —
etString findColumn
getString2

net
get [
SOLGetStingoa 0"

T fim
etlon i;——
i 9 etlong findColumn
getlong2

et -
SOLGetlonyomguels

hetLong —
metlong findColumn:
getlLong2
] —

etString findColumn:
getString2

L — T
SQLGetLongUats
findColumn
getDate
getDate2 SOLGetDatiUSta
get A
SQLGetSti aq

il

g
Update j J Fime: 4400754

Database requests

Calls these ResultSet methods:
getString (String columnName)

getLong (String columnName)

etc.

Causes findColumn(columnName)
to be called for each field

- but the column structure is
fixed for every record!

Solution: use different calls:
getString (int columnindex)

getLong (int columnindex)

etc.

ey

C-)ptions Zoom Selected Help D ata b a S e re q u eStS

. Eget
getStiing2 WG & emes I ale

jetstin i"’“
I ? etStiing findColumniii———pu
- getString2 e —— 2quals

SQLGetStringUa

Part 2: getDate and getTimestamp
frotolumnBie M cause new GregorianCalendar to

getString2 SOLGetStringDa

FndCotamn get created each time

_ get A
getString2 SOLGetStilgVa

jetString

quals

etTimesta

ETD Solution: use different calls:
— getDate (columnindex, Calendar)
e E——— :
t equals getTimestamp (columnindex, Calendar)

etTimelnh computeFi imeT~Ciat
Fe
etOffset 1

d

gt Timests S G et tam But these calls were not

findColumn

i implemented in the DB2 driver!

SOLGetlongUnd s

findColumn

—_— et
getSting2 5ol GetstngraIvde

fndCotamn What went wrong?

net
getlong2 SOLGetlonyomivels

facorm o ———— - Knowledge of correct API
required

getlongZ 50l GetLongDmd !

etDate etDate findColumnl get—-: .
hebate | e p— - Causing unnecessary

recomputation & object re-

Y M"compmen creation
! Part 2: driver implementation
findColumn

getbate2 TS ALGLD AT not suited for common use
get

fnevolmnEget me——
getString2 S OLG etStril eaquals Case

trim

_I petsting -aetShina findCalumn
4
Update I j J}imez 8512611

private static KeyFactory instance = new KeyFactory();

// Create a unique credit card transaction key
public synchronized long getSIDKey() {

try {

Thread.sleep(1);
long key =

expression based on current time and server name
return key;

} catch(Exception e) {
return getSIDKey();
Y

}

in a loop within each servlet hit:

instance.getSIDKey();

Create transaction key

Sleep in a synchronized method
= Contention problem

= Response time problem

Called 17 times in one hit!

private static KeyFactory instance = new KeyFactory();

// Create a unique credit card transaction key
public synchronized long getSIDKey() {
try {
Thread.sleep(1);
long key =
expression based on current time and server name
return key;

} catch(Exception e) {

return getSIDKey();
}
}

in one servlet hit, in a loop:

instance.getSIDKey();

Create transaction key

Want went wrong?
Just “coding crazy”?

Rather, it was insufficient
awareness of scalable
multithreading issues

Recursion in exception handler?

Part Il: The Diary of a Datum

Ongoing Research

JaVinci: Automated Performance Explanation

= Problem: current tools place too much burden on the user
Too much expertise is required to interpret the data

Too much work is required to dig through details, even for experts

= Goal: simplify performance diagnosis and understanding
Challenge: can we turn a 500K method call trace into a manager’s summary?

= Approach:
Build collective expertise into the tools

— Knowledge about how problems are analyzed
— Domain knowledge (e.g. about J2EE, WCS)
— Knowledge of what is worth tracing

Let the system do the hard work: automate much of analysis and trace collection
Raise the level of explanation

Integrate many layers of explanation

Combine static and dynamic analyses

Characterizing Complexity

» Goal: Understand the nature and causes of run-time complexity

= Enables:
— Performance understanding and assessment of individual applications

— Comparisons across various implementations
— Characterization of classes of applications

— Identify good API design practice
— ldentify classes of optimizations to target

= FSE 2005 submission

People

= Customer examples; Descriptive characterization
— Nick Mitchell, Gary Sevitsky, Harini Srinivasan

= Jinsight (past)

— Wim De Pauw, Herb Derby, Olivier Gruber, Erik Jensen, Ravi Konuru,
Martin Robillard, Gary Sevitsky, Harini Srinivasan, John Vlissides,
Jeaha Yang

= JaVinci: automation of performance understanding
— Gary Sevitsky, Nick Mitchell

— Barbara Ryder

