
Mining Jungloids: Helping to
Navigate the API Jungle

David Mandelin, Lin Xu, Rastislav Bodik (UC
Berkeley)
Doug Kimelman (IBM)

Presented By: Andrew Tjang

Problem Statement

APIs allow programmers to reuse code for common
s/w tasks
APIs written with most general purposes in mind
Reuse makes reuse difficult
Take J2SE: 21,000 methods in thousands of
classes

Are javadocs good enough?
Fine grained method implementations = ease of
reuse = hard to use

Introducing Jungloids

These large APIs sometimes make simple tasks
difficult
Ex:

IFile file = …;
ICompilationUnit cu =

JavaCore.createCompilationUnitFrom(file);
ASTNode ast =

AST.parseCompilationUnit(cu, false);
Jungloid defined:

“a chain of objects and method calls you need to get from
something you have to something you need – like a
monkey swinging from vine to vine through the jungle”

Prospector

Their tool to navigate the jungle
A search engine to find jungloids
Given input: source class, target class
Outputs: a series of jungloids that match
constraints

Other applications

Use Prospector in IDEs to determine correct
code path at any given point

Determine all classes in scope, and run k queries
of type <Ti, Tout>

K-input jungloids
Multiple input classes, with one output class
Run prospector successively to find each input

Jungloid Basic Building Blocks

Method signature
Field declarations
Class inheritance declarations
Form directed graph

Nodes: class
Edge: method signature

Methods that return Object

Throws a wrench into producing correct
jungloids
Can downcast to 1 of 50,000 classes at
compile time
Programmers usually look at examples to
determine the correct jungloid

Examples

Fix (somewhat) the Object downcast problem
Programmers usually use grep to find
relevant examples

Grep unaware of context and code structure
Relevant code may span many
methods/classes

Combining Signatures and Examples

Combine best of both worlds
Signatures – simple and general
Examples – more precise, catch downcasts

Jungloid graph combines these
Each path represents jungloid
Examples converted into paths and added

Use standard graph algorithms to solve
queries beginning at Tin and ending at Tout

Elementary Jungloids

Fields: if class T declares a field U f,
J.f : T U

Instance Methods: if a class T declares and instance method with
no arguments

J.m(): T U
Static Methods: class C declares static method with one non
primitive parameter

C.m(J): T U
Constructors: Constructor with exactly one non primitive
parameter

U(J): T U
Supertype Conversion: if T is subtype of U

J:T U

Jungloids

All elementary jungloids are jungloids
If E1[J]: T U is a jungloid, and E2{J): U V
is a elementary jungloid, then E2[E1[J]]:T V
is a jungloid (transitive property)

Example

Recall:
IFile file = …;
ICompilationUnit cu =

JavaCore.createCompilationUnitFrom(file);
ASTNode ast =

AST.parseCompilationUnit(cu, false);
Composed of 3 elementary Jungloids:

Static method jungloid
Static method jungloid
Supertype jungloid??

Signature Graph

Non-useful Jungloids

Fails in user context: returns null or throws
exception
Fails for all program inputs the user plans to
use
Returns normally, but doesn’t satisfy user’s
intent

Ranking Jungloids

Put short jungloids at top of result list
Programmer not likely to write a jungloid w/ 300
method calls
Shorter jungloids likely to return normally

Shortest arbitrarily chosen jungloid in result
set satisfied programmers intent in 9/10
times
Presented the top k matches

Limitations

input types as Object
String as intermediate type
May produce unwanted jungloids
Downcasts

How to handle downcasts

Create new downcast elementary jungloid
Can't add all downcast edges based on signatures

makes for many unwanted jungloids
makes for short jungloids (ranking problems)

Ideally: Include downcasts that do not fail runtime
type check (ClassCastException)

can be approximated by adding based on examples
obtain corpus of code
extract casts (mining)
make extracted info more general

Casting

More casting

How to Mine

Create signature graph
Prefix truncate to generalize
Merge with signature graph

Extraction Algorithm

Construct data dependence graph of corpus
Methods treated as expressions

(can be entered, but not done)
Find all cast expressions, and extract
backward acyclic paths
Convert to example jungloid

Prefix Truncation

Casts with unnecessary prefixes should be
truncated

may be too specific and prevent mining
Views jungloids as a set of stings
Remove layers not needed to distinguish
between two different down casts

Truncating

Mining Accuracy

Completeness and Soundness
Completeness - Any valid jungloid can be
found
Soundness - the search only returns valid
jungloids
Valid jungloid - jungloids that return normally
for at least one context and program input

How to achieve mining accuracy?

Corpus must approach certain ideal
properties:
Corpus Coverage Property

Corpus contains all API usage scenarios
containing casts that return normally (At least
once)
the larger the better

Corpus Cast Property
The corpus never throws ClassCastExpression
Contains no dead-code jungloids with casts

Experiments

Performed two experiments:
Test Prospector's query processing accuracy
(finds the right jungloids for solving problems)
Study performance on developers.(do developers
solve problems

Accuracy Results

User Results

Conclusions

Automatic analysis can yield jungloids
Jungloids can ease the burden of figuring out
APIs
In practice, it seemed to be a useful tool for
developers.

