Mining Jungloids: Helping to
Navigate the API Jungle

David Mandelin, Lin Xu, Rastislav Bodik (UC
Berkeley)

Doug Kimelman (IBM)

Presented By: Andrew Tjang

Problem Statement

APIls allow programmers to reuse code for common
s/w tasks

APls written with most general purposes in mind
Reuse makes reuse difficult

Take J2SE: 21,000 methods in thousands of
classes

o Are javadocs good enough?

Fine grained method implementations = ease of
reuse = hard to use

Introducing Jungloids

These large APls sometimes make simple tasks
difficult

EX:

o IFile file = ...;
|ICompilationUnit cu =
JavaCore.createCompilationUnitFrom(file);
ASTNode ast =

AST.parseCompilationUnit(cu, false);
Jungloid defined:

o “a chain of objects and method calls you need to get from
something you have to something you need — like a
monkey swinging from vine to vine through the jungle”

Prospectot

Their tool to navigate the jungle
A search engine to find jungloids
Given input: source class, target class

Outputs: a series of jungloids that match
constraints

Other applications

Use Prospector in IDEs to determine correct

code path at any given point

o Determine all classes in scope, and run k queries
of type <Ti, Tout>

K-input jungloids

o Multiple input classes, with one output class

o Run prospector successively to find each input

Jungloid Basic Building Blocks

Method signature
Field declarations
Class inheritance declarations

Form directed graph
o Nodes: class
o Edge: method signature

Methods that return Object

Throws a wrench into producing correct
jungloids

Can downcast to 1 of 50,000 classes at
compile time

Programmers usually look at examples to
determine the correct jungloid

Examples

Fix (somewhat) the Object downcast problem

Programmers usually use grep to find
relevant examples
o Grep unaware of context and code structure

Relevant code may span many
methods/classes

Combining Signatures and Examples

Combine best of both worlds

o Signatures — simple and general

o Examples — more precise, catch downcasts
Jungloid graph combines these

o Each path represents jungloid

o Examples converted into paths and added

Use standard graph algorithms to solve
gueries beginning at Tin and ending at Tout

Flementary Jungloids

Fields: if class T declares a field U f,
o Jf: T>U

Instance Methods: if a class T declares and instance method with
no arguments

0 Jdm():T>U

Static Methods: class C declares static method with one non
primitive parameter

o Cm(J): T>U

Constructors: Constructor with exactly one non primitive
parameter

o UU):T>U

Supertype Conversion: if T is subtype of U

a0 JT>U

Jungloids

All elementary jungloids are jungloids

If E1[J]: T-> U is a jungloid, and E2{J): U=>V
IS a elementary jungloid, then E2[E1[J]]: T2V
IS a jungloid (transitive property)

Example

Recall:

a IFile file = ...;
|CompilationUnit cu =
JavaCore.createCompilationUnitFrom(file);

ASTNode ast =
AST.parseCompilationUnit(cu, false);

Composed of 3 elementary Jungloids:
o Static method jungloid
o Static method jungloid
a0 Supertype jungloid??

Signature Graph

gelResource() getParent()
LavaElement IResource M IContainer
supertype T
JavaCore.createClassFileFrom () IClassFile AST.parseCompilationUnit () T
IFile CompilationUnit > ASTNode

JavaCore.createCompilationUnitFro ICompilationUnit [* AST.parseCompilationUnit()

Non-usetul Jungloids

Fails in user context: returns null or throws
exception

Fails for all program inputs the user plans to
use

Returns normally, but doesn’t satisfy user’s
intent

Ranking Jungloids

Put short jungloids at top of result list

o Programmer not likely to write a jungloid w/ 300
method calls

o Shorter jungloids likely to return normally

Shortest arbitrarily chosen jungloid in result
set satisfied programmers intent in 9/10

times
Presented the top k matches

[imitations

input types as Object

String as intermediate type

May produce unwanted jungloids
Downcasts

How to handle downcasts

Create new downcast elementary jungloid

Can't add all downcast edges based on signatures
o makes for many unwanted jungloids
o makes for short jungloids (ranking problems)

|deally: Include downcasts that do not fail runtime
type check (ClassCastException)

o can be approximated by adding based on examples

o obtain corpus of code

o extract casts (mining)

o make extracted info more general

Casting

protected IJavaCbject getObjectContext() |
IDebugView view = theDebugView;
ISelection g = view.getViewer () .getSelection();
IStructuredsSelection gel =
(IStructuredselection) s;
Object selection = sel.getFirstElement () ;
IJavaVariable wvar = (IJavaVariable) selection;

Figure 4: An API usage example containing a cast found in a
corpus of sample client code.

IDebugView

getViewer()
h 4

Viewer

getSelection()
h 4

1Selection

downcast
b 4

IStructuredSelection

qgetFirstElement()

Object
downcast

k 4
JavalnspectExpression

Figure 5: Example jungloid mined from code in Figure 4.

More casting

getSelection()

h A
1Selection

downcast
b 4

IStructuredSelection

qgetFirstElement()

Obiject

downcast Figure 6: Part of the jungloid graph, formed from signatures
) 4 and an example. All nodes have supertype conversion edges
JavalnspectExpression leading to Object, but some have been omitted for legibility.

Figure 5: Example jungloid mined from code in Figure 4.

How to Mine

Create signature graph
Prefix truncate to generalize
Merge with signature graph

Extraction Algorithm

Construct data dependence graph of corpus

Methods treated as expressions
o (can be entered, but not done)

Find all cast expressions, and extract
backward acyclic paths

Convert to example jungloid

Prefix Truncation

Casts with unnecessary prefixes should be
truncated

0 may be too specific and prevent mining
Views jungloids as a set of stings

Remove layers not needed to distinguish
between two different down casts

Truncating

1 ProjectComponent AntXWLCorbext
_ getPraject() | getProject()
¥ ¥
Il Project Project Block
getTargets() i gefTamgets() statemants()
List List List
'“ get) ge(geti)
L J ¥ ¥
Objact Objact Objact
downcast downicast dowmzast
¥ J ¥
v Targat Target Statameant
() (b) (c)
Figure 9: Example jungloids with unneeded pre-

fixes, shown with dashed lines. The list returned by
Project.getTargets () contains Target objects, re-
gardless of the methods called to obtain the Project.

Mining Accuracy

Completeness and Soundness

Completeness - Any valid jungloid can be
found

Soundness - the search only returns valid
jungloids

Valid jungloid - jungloids that return normally
for at least one context and program input

How to achieve mining accuracy?

Corpus must approach certain ideal
properties:
Corpus Coverage Property

o Corpus contains all APl usage scenarios
containing casts that return normally (At least
once)

o the larger the better
Corpus Cast Property

o The corpus never throws ClassCastExpression
o Contains no dead-code jungloids with casts

Experiments

Performed two experiments:

o Test Prospector's query processing accuracy
(finds the right jungloids for solving problems)

o Study performance on developers.(do developers
solve problems

‘ Accuracy Results

Table 1: Query processing accuracy test results, showing the
rank of the desired solution jungloid in PROSPECTOR results

for 20 real world queries.

Jungloid | Number of | Fraction of | Cumulative
rank queries queries fraction

1 10 S0 S0

2 3 15 65

3 3 A5 80

4 1 05 85

Not found 3 15 1.00

‘ User Results

Table 2: User study results for six programming problems. The
Prospector and Baseline columns show the number of users that
successfully completed the problem out of the number that at-
tempted the problem.

Success Average Time (min)
Problem | Prospector | Baseline | Prospector | Baseline
| 2/2 515 4.5 8.4
2 (/2 06 - 11.16
3 5/5 1.2 134 20
4 1/2 0/2 25 -
5 1/3 0/2 2() -
6 1/2 4/4 9 12

Conclusions

Automatic analysis can yield jungloids

Jungloids can ease the burden of figuring out
APls

In practice, it seemed to be a useful tool for
developers.

