Ownership Types for Ob ject
Encapsulation

Chandrasekhar Boyapati
Barbara Liskov
l_iuba Shrira

POPL 2003

L S S S R

Motivation

Oownership Type

Subtyping and the problem
Solution——Inner Class (ma jor contribution)
Effect

Application & Summary

Motivation

* Godl is local reasoning about correctness

— Prove a class meets its specification,
using only specifications but not code of
other classes

— Requires no interference from code
outside the class

— Ob jects must be encapsulated

Motivation(cont’ d)

* Three major relationships between the
classes in ORD (Ob ject Relation Diagram)
— Inheritance
— Association
— Aggregation

* But modern OO0 programming(Java, G++,
Cif) languages don’t support aggregation
explicitly

Motivation(cont’ d)

* UML

— Aggregation: A special form of association that specifies
a whole—part relationship between the aggregate (whole)
and a component part.

— GComposition: A form of aggregation which requires that a
part instance be included in at most one composite at a
time, and that the composite ob ject is responsible for the
creation and destruction of the parts.

— Both are transitive, and anti—symmetric,ir—reflexive

* Ownership corresponds to composition in UML

L S S S R

Motivation

Oownership Type

Subtyping and the problem
Solution——Inner Class (ma jor contribution)
Effect

Application & Summary

Oownership Types

* Properties
— P1:Every object has an (direct) owner
— P2:0wner can be another ob ject or world
— P3:0wnership relation forms a tree

— P4:0wner of an object cannot change

* An Ob ject is only allowed to access
— Itself and objects they (directly) own
— Its (transitive) ancestors and ob jects it (directly) owns

— Globally accessible ob jects

Ownership Types(example)

02

03

o1 ob
06

o4 o7

Ob ject Encapsulation(]

= xample)

#* Consider a Set ob ject s implemented using

a Vector ob ject v

* The ownership type system e
encapsulation

Nnforces

— [fvis inside s and o is outside

— Then o cannot access v
S

A)°

Oownership Types for

4

Encapsulation

* Ownership allows d program to statically
declare encapsulation boundaries that
capture dependencies

* An ob ject should own all the ob jects it
depends on

— Directly, Transitively

— Qverstatement......

TStack Example (No Owners)

class TStack |
TStack

TNode head:

void push(T vaiue) {...} TNode

T pop() i...{
%

-

class TNode |

TNode next:

T value:

class T {...}

TStack Example (With Owners)

class TStack({stackOwner, TOwner)
TNode(this, TOwner) head;

%

class TNode{nodeOwner, TOwner) }
TNode{nodeOwner, TOwner) next;
T{TOwner) value;

%

class T {TOwner) {...}

TStack

TNode

TStack Example

=) class TStack(stackOwner, TOwner) |
TNode(this, TOwner) head;
%
class TNode{nodeOwner, TOwner) }
TNode{nodeOwner, TOwner) next;
T{TOwner) value;

%

class T {TOwner) {...}

First owner owns the “this" object

TStack

TNode

=

TStack Example

class TStack({stackOwner, TOwner)
TNode(this, TOwner) head;

%

class TNode{nodeOwner, TOwner) }

TStack
TNode{nodeOwner, TOwner) next;
T(TOwner) value; TNode
%
class T {TOwner) {...} T

TStack owns the “head” TNode

TStack Example

class TStack({stackOwner, TOwner)
TNode(this, TOwner) head;

%

class TNode{nodeOwner, TOwner) }

TStack
- TNode{nodeOwner, TOwner) next;
T(TOwner) value; TNode
%
class T {TOwner) {...} T

TStack Example

class TStack({stackOwner, TOwner)

TNode(this, TOwner) head;
{ Client

class TNode{nodeOwner, TOwner) }
TStack

TNode{nodeOwner, TOwner) next;
T(TOwner) value; TNode

%

class Client{clientOwner) |

T

) TStack(this, this) sI;
TStack(this, world) s2;
TStack{worlid, worid) s3;

TStack Example

class TStack({stackOwner, TOwner) WOHd

TNode(this, TOwner) head;
{ Client

class TNode{nodeOwner, TOwner) }
TStack

TNode{nodeOwner, TOwner) next;
T(TOwner) value; TNode

%

class Client{clientOwner) |

T

TStack(this, this) sI;
L TStack(this, world) s2;
TStack{worlid, worid) s3;

TStack Example

class TStack({stackOwner, TOwner) WOHd

TNode(this, TOwner) head;

%

class TNode{nodeOwner, TOwner) }

TStack
TNode{nodeOwner, TOwner) next;
T(TOwner) value; TNode
%
class Client{clientOwner) | T

TStack(this, this) sI;
TStack(this, world) s2;
o TStack{worlid, worid) s3;

TStack Example

class TStack({stackOwner, TOwner)
TNode(this, TOwner) head;

%

class TNode{nodeOwner, TOwner) }

TStack
TNode{nodeOwner, TOwner) next;
T(TOwner) value; TNode
%
class Client{clientOwner) | T

world

Client

TStack(this, this) sI;
TStack(this, world) s2;
TStack{worlid, worid) s3;
TStack{world, this) sa; // illegal

The first owner <=The second owner

Subtyping

* The first owner parameter of the
supertype must be the same as the
subtype

* Thus T(TOwner) is not a subtype of
Ob ject(World)!!!

Problem! [terator

¥ Consider an lterator i over Stack s
* If iis encapsulated within s

— Then i cannot be implemented by
extending the existing (general) Iterators
outside s

— i can’t be used outside s

* If 1is not encapsulated within s

— Then i cannot access representation of s

L S S S R

Motivation

Oownership Type

Subtyping and the problem
Solution——Inner Class (ma jor contribution)
Effect

Application & Summary

Solution

* INnner Class
— Previous ownership type combine the inner
class with the ownership
* An inner class is parameterized with
owners just like a regular class, but it iIs not
necessarily the same as the container class

* Thus the lterator in stack s can extends
the existing iterators outside s

INnNnerclass

* The inner class must explicitly include the
outer class parameter in its declaration in
order to use it inside.

* Theorem: X can access an ob ject owned by
O only if
— 1) x<=o0 or

— 2) x is an inner class ob ject of o

Proof

» Because the outer class can access the

ob ject instantiated from the inner class, so
the they should prove that the inner class’s

direct owner is the outer class’'s ancestor

* Confusion:
— What is exactly enumOwner?

— £<=0, why? The point is that C.this can access o,
so f<=o or f directly own o

L S S S R

Motivation

Oownership Type

Subtyping and the problem
Solution——Inner Class (ma jor contribution)
Effect

Application & Summary

E ffect

* Reads (r) writes (w)
— The method can write an ob ject x only if x <=w

— The method can read an ob ject x only if x <=r

* Ownership types and effects can be used
to locally reason about the side effects of
method calls

* Not contribution of this paper

L S S S R

Motivation

Oownership Type

Subtyping and the problem
Solution——Inner Class (ma jor contribution)
Effect

Application & Summary

Application of Ownership Type

* L_azy Modular Upgrades in Persistent
Ob ject Stores
— Boyapati, Liskov, Shrira, Moh,
Richman(ooPSLA '03)
* Ownership Types for Safe Programming:
Preventing Data Races and Deadlocks

— Boyapati, Lee, Rinard (0OPSLA '01) (OOPSLA '02)
* Ownership Types for Safe Region—Based

Memory Management in Real—Time Java
Boyapati, Salcianu, Beebee, Rinard (PLDI '03)

Summary(from the Author)

Oownership types capture dependencies

Extension for inner class ob jects allows
Iiterators and wrappers

Approach provides expressive power, yet
ensures moduldr reasoning

E ffects clauses enhance modular
reasoning

