
Method-Level Phase Behavior in Java Workloads

Andy Georges, Dries Buytaert, Lieven Eeckhout and Koen De Bosschere

Ghent University

Presented by Bruno Dufour

dufour@cs.rutgers.edu

Rutgers University DCS

Method-Level Phase Behavior in Java Workloads – p.1/41

Outline

Introduction & motivation

Experimental setup

Method-level phases
Profiling techniques
Data analysis

Statistical techniques

Results

Conclusions

Method-Level Phase Behavior in Java Workloads – p.2/41

Introduction

Java workload: Java application + Java Virtual
Machine (JVM)

Application and JVM interact at runtime
Application complexity is increasing
VM complexity is increasing

VM Implementation: (smart) interpreters, JITs &
optimizations,
Runtime support: GC, thread scheduling, class
loaders, finalizer mechanism,

Problem: Need automated ways to analyze and
understand Java workload behaviour

Focus on low-level behaviour characteristics (i.e.
hardware performance metrics)

Method-Level Phase Behavior in Java Workloads – p.3/41

Method-level Phase Behaviour

Relies on a strong correspondance between phases
and code organisation

Behaviour of a method over time expected to have
low variation

Java is strongly object-oriented, methods are (on
average):

short
frequently executed

Methods should provide a good level of abstraction
for phases.

Method-Level Phase Behavior in Java Workloads – p.4/41

Method-level Phase Behaviour (2)

Goal: Cluster executed methods into phases based
on runtime information (offline).

Collect timing information
Find method-level phases
Profile each phase to measure behaviour
characteristics

Method-Level Phase Behavior in Java Workloads – p.5/41

Experimental Setup

Hardware & Performance counters

Virtual Machine

Benchmarks

Method-Level Phase Behavior in Java Workloads – p.6/41

Experimental Setup – Hardware

AMD Athlon XP 2.1 Ghz
64 KB L1 I-Cache + 64 KB L1 D-Cache
256 Kb (unified) L2 cache
. . .

4 performance counter registers
Programmable
Can measure 60+ event types (cycles, retired
instructions, cache misses, . . .)
Used to compute hardware-level performance
metrics

Normalize measurements # of retired
instructions

Performance API (PAPI) provides abstraction layer
for increased portability

Method-Level Phase Behavior in Java Workloads – p.7/41

Experimental Setup – Virtual Machine

Jikes Research Virtual Machine (RVM)
No interpretation (Pure JIT)
Implemented in Java
3 compilation strategies:

Baseline: fast, unoptimized compilation.
Optimizing: slow, optimized compilation.
Adaptive: baseline first, then recompilation of
hot methods as needed.

Generational GC
Variable number of virtual processors, i.e. kernel
threads
Built-in support for harware counters

Counters monitored on per-thread basis

Method-Level Phase Behavior in Java Workloads – p.8/41

Experimental Setup – Benchmarks

Benchmark Description
S

P
E

C
jv

m
98

Compress Modified Lempel-Ziv compression/decompression

Jess Expert shell system

Raytrace Raytracer

DB Performs operations on memory-resident database

Javac JDK compiler (1.0.6)

Mpegaudio mp3 decoder

Mtrt Multithreaded version of Raytrace

Jack Java parser generator (now JavaCC)

PseudoJBB Modified warehouse simulation program

Method-Level Phase Behavior in Java Workloads – p.9/41

Method-Level Phases

Phase: set of parts of program execution that exhibit
similar characteristics.

Not necessarily temporally adjacent.

Requirements:
Distinguish app/JVM
Distinguish between various parts of JVM
Recognize application phases

Approach: Consider method + callees (subtrees
rooted at m in call graph)

Coarse granularity limits runtime profiling
Granularity sufficiently fined-grained to identify
phases

Method-Level Phase Behavior in Java Workloads – p.10/41

Method-Level Phases (2)

Offline analysis

Additional Goals
Complete temporal coverage
Unintrusive profiling
Compact traces
Rich traces

Method-Level Phase Behavior in Java Workloads – p.11/41

Data Gathering

Strategy (overview):
Step 1 (online): Measure total number of clock
cycles spent in each method
Step 2 (offline): Aggregate data from step 1. Build
dynamic call graph annoted with result from step
1, and use it to identify phases.
Step 3 (online): Measure performance metrics for
each phase.

Method-Level Phase Behavior in Java Workloads – p.12/41

Instrumentation

Methods compiled as
Prologue/Epilogue: Used to implement setup
method execution (e.g. calling conventions).
Method body: original body of method.

Instrumentation supported by all Jikes RVM
compilers

Instrumentation introduces new GC points
Must ensure that all stack maps are updated
before running instrumented code
On-stack replacement (OSR) is supported.

Method-Level Phase Behavior in Java Workloads – p.13/41

Instrumentation (2)

Counter values reset in prologue, read in epilogue
Includes all callees
Prologue/epilogue effect on counters attributed to
caller

Claimed to be negligible in practice
Uses trace per-thread cyclic trace buffers for
efficiency

Writing buffers to disk handled concurrently

Handling exceptions:
Exceptions bypass epilogue
Need to instrument exception handling
mechanism

Method-Level Phase Behavior in Java Workloads – p.14/41

Generating trace data

Maximum of 35 bytes per record (37 with thread info)
4 bits for event type
4 bits for # of counters
4 bytes for method ID
8 bytes per counter
(Optional: 2 bytes for thread ID)

Using a single file per thread requires serializing
traces

Can skip instrumenting methods that:
are shorter than 50 bytecodes, and
don’t have a back-edge (i.e. no possibility of
looping)

Method-Level Phase Behavior in Java Workloads – p.15/41

Instrumenting VM services

Finalizer, GC and optimizer run in dedicated threads
Easily profiled using built-in technology

Profiling compiler needs special VM modification

Method-Level Phase Behavior in Java Workloads – p.16/41

Phase Identification

θweight: Method total time threshold.

θgrain: Method average time threshold.

cT : Total execution time (in clock cycles)

cm: Total execution time for method m.

ptotal: Portion of total execution time attributed to m

cm = (ptotal)(cT)

paverage: 1
number of calls to m

cm = (p)(cT)

Goal: ptotal > θweight, paverage > θgrain

Method-Level Phase Behavior in Java Workloads – p.17/41

Statistical Techniques

Need to quantify amount of intra-phase variation
Use Coefficient of Variation (CoV)

V =
σ

µ

CoV measures deviation of a variable from its
mean

Need to quantify inter-phase variations
Use ANOVA (ANalysis Of VAriance) technique
Compute p-value based on level of significance
Most p-values less than 10−16 (i.e. more variation
between phases than within phases)

Method-Level Phase Behavior in Java Workloads – p.18/41

Results

Method-Level Phase Behavior in Java Workloads – p.19/41

Selecting θweight and θgrain

θweight and θgrain affect
Profiling cost
Precision

Must find a tradeoff values based on
Maximum acceptable overhead
Required level of information
Application

Estimate overhead as profiled method invocations
total method invocations

Choose overhead close to 1% (paper says < 1%)

Method-Level Phase Behavior in Java Workloads – p.20/41

Overhead Estimation

How good is the overhead estimate?

Benchmark Est. Measured

Compress 1.84% 1.82%

Jess 1.22% 1.27%

DB 7.17% 5.61%

Javac 2.61% 2.11%

Mpegaudio 10.75% 3.52%

Mtrt 24.68% 7.83%

Jack 3.98% 4.28%

PseudoJBB 3.69% 6.65%

Method-Level Phase Behavior in Java Workloads – p.21/41

Instrumented Method (Jess)

Method-Level Phase Behavior in Java Workloads – p.22/41

Estimated Overhead (Jess)

Method-Level Phase Behavior in Java Workloads – p.23/41

Instrumented Methods (Jack)

Method-Level Phase Behavior in Java Workloads – p.24/41

Estimated Overhead (Jack)

Method-Level Phase Behavior in Java Workloads – p.25/41

Instrumented Methods (PseudoJBB)

Method-Level Phase Behavior in Java Workloads – p.26/41

Estimated Overhead (PseudoJBB)

Method-Level Phase Behavior in Java Workloads – p.27/41

Variability between and within Phases

CoV

Boxplots

Method-Level Phase Behavior in Java Workloads – p.28/41

CoV of CPI

Method-Level Phase Behavior in Java Workloads – p.29/41

CoV of Branch Misprediction

Method-Level Phase Behavior in Java Workloads – p.30/41

CoV of L1 D-Cache Miss

Method-Level Phase Behavior in Java Workloads – p.31/41

CoV of L1 I-Cache Miss

Method-Level Phase Behavior in Java Workloads – p.32/41

Branch Misprediction

Method-Level Phase Behavior in Java Workloads – p.33/41

IPC

Method-Level Phase Behavior in Java Workloads – p.34/41

D-cache misses

Method-Level Phase Behavior in Java Workloads – p.35/41

I-cache misses

Method-Level Phase Behavior in Java Workloads – p.36/41

Analysis of method-level phase behaviour

JVM vs app behaviour

Application bottleneck analysis

Method-Level Phase Behavior in Java Workloads – p.37/41

JVM vs. app behaviour (PseudoJBB)

Method-Level Phase Behavior in Java Workloads – p.38/41

JVM vs. app behaviour (Jack)

Method-Level Phase Behavior in Java Workloads – p.39/41

Application bottleneck analysis

3 fundamental questions
What is the bottleneck?

List phases with highest CPI values
Why does it occur?

Investigate other counters for the same
phase(s)

When does it occur?
Graph CPI over time

Gives some insight, but still not always informative

Method-Level Phase Behavior in Java Workloads – p.40/41

Conclusions

Method-level phase analysis works at an appropriate
granularity level.

Method-level phase behaviour analysis . . .
can reveal some low-level characteristics of Java
workloads.
can be used to study the interaction between the
JVM and the application.
can be used to bridge the gap between dynamic
analysis results and source code.

Method-Level Phase Behavior in Java Workloads – p.41/41

	Outline
	Introduction
	Method-level Phase Behaviour
	Method-level Phase Behaviour (2)
	Experimental Setup
	Experimental Setup -- Hardware
	Experimental Setup -- Virtual Machine
	Experimental Setup -- Benchmarks
	Method-Level Phases
	Method-Level Phases (2)
	Data Gathering
	Instrumentation
	Instrumentation (2)
	Generating trace data
	Instrumenting VM services
	Phase Identification
	Statistical Techniques
	Results
	Selecting 	weight and 	grain
	Overhead Estimation
	Instrumented Method (Jess)
	Estimated Overhead (Jess)
	Instrumented Methods (Jack)
	Estimated Overhead (Jack)
	Instrumented Methods (PseudoJBB)
	Estimated Overhead (PseudoJBB)
	Variability between and within Phases
	CoV of CPI
	CoV of Branch Misprediction
	CoV of L1 D-Cache Miss
	CoV of L1 I-Cache Miss
	Branch Misprediction
	IPC
	D-cache misses
	I-cache misses
	Analysis of method-level phase behaviour
	JVM vs. app behaviour (PseudoJBB)
	JVM vs. app behaviour (Jack)
	Application bottleneck analysis
	Conclusions

