
Pinpoint: Problem Determination 
in Large, Dynamic Internet 

Services

Mike Y. Chen, Emre Kiciman, Eugene Fratkin, 
Armando Fox, Eric Brewer

Univ of CA, Berkeley
Stanford Univ

Presented by
Ophelia Chesley



Motivation
• Requests for internet services very often travel 

through many components:
– front-end load balancers
– web servers
– Frameworks
– Databases
– Everything else in between

• Hard to determine the cause of unanticipated 
faults among components

• Need to develop dynamic analysis methodology 
to detect problems and isolate root causes



Goals of the Methodology

• To dynamically trace internet requests 
through a multi-layered system without 
human intervention.

• To record the outcome (success or failure) 
and the components that service them

• Use data clustering and statistical 
techniques to correlate failure to 
components



Overview

• Assumptions
• Pinpoint Framework

– Client request tracing
– Failure Detection
– Analysis

• Implementation
• Experiments
• Limitations of Pinpoint
• Conclusion



Assumptions

• Different combinations of components are 
used for different requests
– Granularity at the component level

• Failure of a request is independent of the 
activities of other requests
– Highly replicated internet services clusters
– Minimized single-point of failure



Pinpoint Framework



Client Request Tracing
• Each request is assigned a requestID
• Instrument the middleware and communication 

layers to record <requestID, component_ID> 
pairs

• Request ID is passed from component to 
component by the middleware along with the call 
data

• Collect machine, cluster, component, component 
version, database table, configuration file 
information

• Depends on inter-component communication 
protocol

• Generates the trace log



Failure Detection

• Internal Failure Detection
– Report failures that might be masked
– Options to track assertions and exceptions 

generated by the application components
• External Failure Detection

– Failures that are visible to users
– Include infrastructure and application failures

• Generates the failure/success log



Data Analysis

• Use data clustering algorithm
– Groups similar data points together
– Correlates failure with a set of components 

cluster



Implementation of Pinpoint

• J2EE instrumentation
• Layer 7 Packet Sniffer
• Data Analyzer



J2EE Instrumentation

• Pinpoint sits on top of J2EE middleware
• No modifications at application level
• Instruments three types of components:

– Enterprise JavaBeans (business/application 
logic)

– Java Scripting Pages (dynamic HTML)
– JSP tags that extends JSP

• Can be extended for any J2EE 
applications



J2EE Instrumentation

• Request ID stores in a thread-specific 
local variable
– Assume components do not create threads
– Does not support clustering

• Internal fault detector logs exceptions that 
pass component boundaries

• Request ID is passed to the external fault 
detector using the HTTP header



Layer 7 packet Sniffer

• Snifflet is the external fault detector
– Built to capture TCP packets
– Monitor TCP and HTTP failures (timeouts, 

resets, 404 not found, 500 Internet server 
error, etc.)

– Can be programmed for customized failure 
detection



Data Clustering Analyzer

• Use hierarchical clustering method
– Unweighted pair-group method using 

arithmetic averages (UPGMA)
• Distance between clusters = average distance 

among all pairs of points within the clusters
– Jaccard similarity coefficient

• Distance between 2 points = number of requests 
they appear in together/all the requests the 2 
points appear in total



Experiments

• System setup
• Metrics: accuracy versus precision
• Results



Experiments - Setup

• One machine with J2EE server
• One machine with a client browser 

emulator
• Use the PetStore demo application
• Executed 133 tests

– Application server restarted after each test
– 1 transaction active at any time
– Each transaction exercise different sets of 

components



Experiments - Setup

• Each test is injected with faults:
– Declared exceptions (masked by application)
– Undeclared exceptions (often caught by 

middleware)
– Infinite loops (TCP timeouts)
– Null calls (detectable through other faults)

• Fault is always injected to the last 
component used in a request



Experiments - Metrics

• Accuracy
– How often all components causing a fault are 

correctly identified
• Precision

– Ratio between correctly identified faults and 
predicted faults

• Increasing accuracy can result in many 
false positives



Experiments - Results

• Compare Pinpoint to 2 other techniques 
(detection and dependency checking) in terms of 
accuracy and precision

• Detection:
– Similar to Pinpoint’s internal fault detector
– Return component where a failure is manifesting

• Dependency Checking:
– Returns components that the failed requests used
– Ignore successful requests



Experiments - Results

• Online overhead is 
about 8.4%

• Pinpoint has higher 
accuracy and 
precision than the 
other techniques



Experiments - Results

• Pinpoint does 
well for single-
component 
failures



Experiments - Results

• Effectiveness of 
Pinpoint 
decreases as 
fault length 
increases

• Fault length is the 
number of 
interacting 
components that 
causes a failure



Experiments - Results

• Dependency 
always has low 
precision

• Not affected by 
fault length



Experiments - Results

• Detection is 
extremely 
sensitive to fault 
length

• Precision is 
about 30%

• Accuracy 
ranges from 
50% to 0%



Limitations

• Pinpoint cannot distinguish tightly coupled 
components

• Pinpoint does not work for non-
independent requests

• Pinpoint does not distinguish between bad 
inputs and failures

• Pinpoint does not capture masked faults 
that result in decrease in performance



Conclusion

• Presents a new problem determination 
framework for large, dynamic system

• Prototype Pinpoint has higher accuracy 
and precision that 2 other traditional 
techniques


	Pinpoint: Problem Determination in Large, Dynamic Internet Services
	Motivation
	Goals of the Methodology
	Overview
	Assumptions
	Pinpoint Framework
	Client Request Tracing
	Failure Detection
	Data Analysis
	Implementation of Pinpoint
	J2EE Instrumentation
	J2EE Instrumentation
	Layer 7 packet Sniffer
	Data Clustering Analyzer
	Experiments
	Experiments - Setup
	Experiments - Setup
	Experiments - Metrics
	Experiments - Results
	Experiments - Results
	Experiments - Results
	Experiments - Results
	Experiments - Results
	Experiments - Results
	Limitations
	Conclusion

