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Motivation
• Requests for internet services very often travel 

through many components:
– front-end load balancers
– web servers
– Frameworks
– Databases
– Everything else in between

• Hard to determine the cause of unanticipated 
faults among components

• Need to develop dynamic analysis methodology 
to detect problems and isolate root causes



Goals of the Methodology

• To dynamically trace internet requests 
through a multi-layered system without 
human intervention.

• To record the outcome (success or failure) 
and the components that service them

• Use data clustering and statistical 
techniques to correlate failure to 
components



Overview

• Assumptions
• Pinpoint Framework

– Client request tracing
– Failure Detection
– Analysis

• Implementation
• Experiments
• Limitations of Pinpoint
• Conclusion



Assumptions

• Different combinations of components are 
used for different requests
– Granularity at the component level

• Failure of a request is independent of the 
activities of other requests
– Highly replicated internet services clusters
– Minimized single-point of failure



Pinpoint Framework



Client Request Tracing
• Each request is assigned a requestID
• Instrument the middleware and communication 

layers to record <requestID, component_ID> 
pairs

• Request ID is passed from component to 
component by the middleware along with the call 
data

• Collect machine, cluster, component, component 
version, database table, configuration file 
information

• Depends on inter-component communication 
protocol

• Generates the trace log



Failure Detection

• Internal Failure Detection
– Report failures that might be masked
– Options to track assertions and exceptions 

generated by the application components
• External Failure Detection

– Failures that are visible to users
– Include infrastructure and application failures

• Generates the failure/success log



Data Analysis

• Use data clustering algorithm
– Groups similar data points together
– Correlates failure with a set of components 

cluster



Implementation of Pinpoint

• J2EE instrumentation
• Layer 7 Packet Sniffer
• Data Analyzer



J2EE Instrumentation

• Pinpoint sits on top of J2EE middleware
• No modifications at application level
• Instruments three types of components:

– Enterprise JavaBeans (business/application 
logic)

– Java Scripting Pages (dynamic HTML)
– JSP tags that extends JSP

• Can be extended for any J2EE 
applications



J2EE Instrumentation

• Request ID stores in a thread-specific 
local variable
– Assume components do not create threads
– Does not support clustering

• Internal fault detector logs exceptions that 
pass component boundaries

• Request ID is passed to the external fault 
detector using the HTTP header



Layer 7 packet Sniffer

• Snifflet is the external fault detector
– Built to capture TCP packets
– Monitor TCP and HTTP failures (timeouts, 

resets, 404 not found, 500 Internet server 
error, etc.)

– Can be programmed for customized failure 
detection



Data Clustering Analyzer

• Use hierarchical clustering method
– Unweighted pair-group method using 

arithmetic averages (UPGMA)
• Distance between clusters = average distance 

among all pairs of points within the clusters
– Jaccard similarity coefficient

• Distance between 2 points = number of requests 
they appear in together/all the requests the 2 
points appear in total



Experiments

• System setup
• Metrics: accuracy versus precision
• Results



Experiments - Setup

• One machine with J2EE server
• One machine with a client browser 

emulator
• Use the PetStore demo application
• Executed 133 tests

– Application server restarted after each test
– 1 transaction active at any time
– Each transaction exercise different sets of 

components



Experiments - Setup

• Each test is injected with faults:
– Declared exceptions (masked by application)
– Undeclared exceptions (often caught by 

middleware)
– Infinite loops (TCP timeouts)
– Null calls (detectable through other faults)

• Fault is always injected to the last 
component used in a request



Experiments - Metrics

• Accuracy
– How often all components causing a fault are 

correctly identified
• Precision

– Ratio between correctly identified faults and 
predicted faults

• Increasing accuracy can result in many 
false positives



Experiments - Results

• Compare Pinpoint to 2 other techniques 
(detection and dependency checking) in terms of 
accuracy and precision

• Detection:
– Similar to Pinpoint’s internal fault detector
– Return component where a failure is manifesting

• Dependency Checking:
– Returns components that the failed requests used
– Ignore successful requests



Experiments - Results

• Online overhead is 
about 8.4%

• Pinpoint has higher 
accuracy and 
precision than the 
other techniques



Experiments - Results

• Pinpoint does 
well for single-
component 
failures



Experiments - Results

• Effectiveness of 
Pinpoint 
decreases as 
fault length 
increases

• Fault length is the 
number of 
interacting 
components that 
causes a failure



Experiments - Results

• Dependency 
always has low 
precision

• Not affected by 
fault length



Experiments - Results

• Detection is 
extremely 
sensitive to fault 
length

• Precision is 
about 30%

• Accuracy 
ranges from 
50% to 0%



Limitations

• Pinpoint cannot distinguish tightly coupled 
components

• Pinpoint does not work for non-
independent requests

• Pinpoint does not distinguish between bad 
inputs and failures

• Pinpoint does not capture masked faults 
that result in decrease in performance



Conclusion

• Presents a new problem determination 
framework for large, dynamic system

• Prototype Pinpoint has higher accuracy 
and precision that 2 other traditional 
techniques
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