Vertical Profiling: Understanding
the Behavior of Object-Oriented
Applications

Matthias Hauswirth, Amer Diwan
University of Colorado at Boulder

Peter F. Sweeney, Michael Hind
IBM Thomas J. Watson Research Center

Presented by: Irantha Suwandarathna

Outline

o What is Vertical Profiling
o Motivations

o Implementation

o Case studies

o Conclusions

Motivations

C Program Java

Native Library
Operating System
Hardware

Java Library
Virtual Machine
Native Library
Operating System
Hardware

o Increased Virtualization

o Dynamic recompilation/garbage
collection

Implementation

o One trace file for JikesRVM Thread
Virtual Processor ID, Thread ID,
Real Time, Real Time duration ,
Compiled Method ID, Monitor Values

o Only 1 thread execute in measurement
period

o Real time value to merge trace files &
durations for non-VM Threads

o Meta file for ID > name mappings

Where Monitor values are kept

Java Threads

A §
Scheduler §

POSIK Threads

1:1 Binding {

Kernel Threads

Os
Scheduler

Processors

o Native code Instrumentations
PThread specific storage

o Java level Instrumentations
Virtual Processor object

Measurement Overhead

Benchmark || Production || Vertical Profiling
COIMPress 9.77 || 10.15 3.6%%
db 22,42 || 23.85 6.4%
jack 13.38 || 14.41 7.8
javac 19.14 || 20.57 7.5%
jess 8.23 8.64 5.0%
mpegatidio 8.52 9.69 13.8%
mtrt 7.64 7.99 4.6%
jbb 2717 || 31.84 17.2%
hsql 19.19 || 19.39 1.1%
Average 7.4%

o With 148 Software performance
monitors

Perturbation Analysis

o End-to end perturbation for HPM
Runs with no collection during execution
5 runs & taking the average

o Temporal impact of HPM

Qualitative analysis with their knowledge
o Impact of SPMs on HPMs

Runs with & without SPMs

o Impact of SPMs on SPMs
Qualitative analysis with their knowledge

Validation

o Hypothesis about the cause
o Eliminate the cause
o See whether phenomenon is gone

Case Studies

o Primary performance Metric
Instructions Per Cycle (IPC)

0.568

compress

0.837

i —— [e]

hsq|

— = : - - . ‘il

0.619

gl S

eeeeeeeeeeee

db

0484

Gradual Increase in jbb

—p—— ’ I
W - g
-~ p—— Elas . —~ o AT P - gy oy e aaad e g e W e penme]
.2 >
‘# L 2
. -

.ﬁ“w..'“_ P i .. : A e P ey W

- b 0.568

o 50 transactions per time slice

o From previous studies
Optimized code has 32% higher IPC

Increase IPC -2 low LSU flushes
0 15.2% LSU flushes in optimized code
0 0.1% LSU flushes in un-optimized code

Gradual Increase in jbb ...

v

[— ’ I
—ch— e . ~ PIITLALTE, e rerinnmny PRI L) o s reerpy B M i
. -, - . b " . e
, W P . haabns
Bl
. " p -~ .

ibb

=

0.568

o Measure time spent on optimized &
un-optimized code

o Approximate- Number of
synchronized methods executed

o Different synchronized method
entry points for optimized & un-
optimized code

o Validate with AOS disabled

Gradual Increase in jbb ...

IPC

LsuFlush/Cyc

% unoptimized MonitorEnters

CPI

LsuFlush/Cyc

% unoptimized MonitorEnter

0.963

LsuFlushiCyc

Sudden Increase in compress

COMpress

o Two long running methods
Compress & decompress

o 1t jump = compress optimized
o 2" jump = decompress optimized

o Instrumentation
Top of the stack method ID
Most recently optimized method

0.837

Sudden Increase in compress ...

@ | O ©

-t] [|
IPC it T e e s i e P

PN S S S e — e

. - - £ -
- T P » 5 =
H e
_ﬂ__(" _‘_; J__,-‘ s 3§ g

Flush

- N - - et = T " . '__ - . - - =
I F C] Pl TR N el et | wEE e oo i
- : -~ - - - = B

S ———
——arr
- e

Flush

Dip before GC in HSQL

i, embleipinkity w—— - R PP [—

hsgl 0.619

s

- - T T T .

o Adaptive heap resizing
o App. runs out of memory-> Trigger GC
o page fault exceptions 2 low IPC

o Instrumentation
Number of virtual page requests
CPU cycles with exceptions disabled
Number of bytes allocated in JAVA

Dip before GC in HSQL ...

1PC

EeOff/I Cyc

MmapCalls

AllocBytes

o Cross correlation
MmapBytes & AllocBytes - 0.9995

o Validation - disable adaptive heap resizing

Periodic Pattern in Db

) N LTI

db

0.484

o Each Pattern corresponds to a Shell

sort run

o L2 cache not enough to keep the
working set - drop in IPC

o -0.916 correlation between IPC &
L2 cache miss rate

o Measure set size

Periodic Pattern in Db ...

IPC
=
log2Z2(set size)
£
L2 miss rate
. [=
o Validation

Object in lining
IPC drop start at larger set size

Why lot of small time slices in Multi-
Threaded benchmarks?

o For jbb

1 worker thread - 2221 time slices
More than 1 - 10,441 time slices

o Small time slices

o High lock contention

Thread yield =2 end time slice
prematurely

Why lot of small time slices in Multi-
Threaded benchmarks?

Benchmark | Scale | Wall time (M.%) | CPU time (M%) | Samples | Sample D. (M) | Lock Yields
mtrt Lonl | 1070 1007 | 828 100% 575 1440 (
mrt Jon2 | 754 0% 957 116% 694 1.379 40
mtrt fond | 666 620, | 1224 148% | 1129 1.084 302

o Decrease in wall clock time
o Increase in CPU time
o Samples - Lock Yields = constant

Where Lock contention Happens

Benchmark | Lock Yields || Library | VM App
mtrt () () () ()
mtrt 40 40 () ()
mtrt 350 134 216 ()
ibb 0 1 0 0
jbb 2.704 0] 2.703 1
ibb 8.013 113 | 7.843 57
hsql 0) 0 0
hsql 28.600 2 0 | 28,598
hsql 72.012 143 149 | 71.720

Instrumentation & Layers

Case Study

Gradual Increase

Sudden Increase

Scalability

Dip Before GC

Periodic Pattern

Layer in jbb in compress in mirt, jbb, hsql | in hsql in db
Application SetSize
Framework
Java Libraries
Virtual Machine OptMonitorEnter TopOfStackMethodld | LockYieldCount | AllocBytes
UnoptMonitorEnter | OptimizedMethodld | LockYieldTypeld
Native Libraries
Operating System EeOff
MmapCalls
MmapBytes
Hardware Cye Cyce Cye Cye Cye
[nstCmpl [nstCmpl InstCmpl InstCrupl
LsuFlush L2Misses

o Approac

N

Browsing
Searching

Problems with statistical correlation

o Low even frequency

o No linear relationships
o Leverage points

o Direction of causality

Difficulties of this approach

o Knowledge on all layers

H/W ,0S, VM ,Libraries , Application
o Required metrics not known
o Perturbation

o Not automated

Thousands of metrics to manually
iInspect

Conclusions

o Vertical profiling can be used to
understand performance phenomena
in modern multi layers systems.

