
Vertical Profiling: Understanding
the Behavior of Object-Oriented
Applications

Matthias Hauswirth, Amer Diwan
University of Colorado at Boulder

Peter F. Sweeney, Michael Hind
IBM Thomas J. Watson Research Center

Presented by: Irantha Suwandarathna

Outline

 What is Vertical Profiling
 Motivations
 Implementation
 Case studies
 Conclusions

Motivations

 Increased Virtualization
 Dynamic recompilation/garbage

collection

Application
Framework
Java Library
Virtual Machine
Native Library
Operating System
Hardware

Java

Application
Native Library
Operating System
Hardware

C Program

Implementation

 One trace file for JikesRVM Thread
 Virtual Processor ID, Thread ID,
 Real Time, Real Time duration ,
 Compiled Method ID, Monitor Values

 Only 1 thread execute in measurement
period

 Real time value to merge trace files &
durations for non-VM Threads

 Meta file for ID  name mappings

Where Monitor values are kept

 Native code Instrumentations
 PThread specific storage

 Java level Instrumentations
 Virtual Processor object

Measurement Overhead

 With 148 Software performance
monitors

Perturbation Analysis

 End-to end perturbation for HPM
 Runs with no collection during execution
 5 runs & taking the average

 Temporal impact of HPM
 Qualitative analysis with their knowledge

 Impact of SPMs on HPMs
 Runs with & without SPMs

 Impact of SPMs on SPMs
 Qualitative analysis with their knowledge

Validation

 Hypothesis about the cause
 Eliminate the cause
 See whether phenomenon is gone

Case Studies

 Primary performance Metric
 Instructions Per Cycle (IPC)

Gradual Increase in jbb

 50 transactions per time slice
 From previous studies

 Optimized code has 32% higher IPC
 Increase IPC  low LSU flushes

 15.2% LSU flushes in optimized code
 0.1% LSU flushes in un-optimized code

Gradual Increase in jbb …

 Measure time spent on optimized &
un-optimized code

 Approximate- Number of
synchronized methods executed

 Different synchronized method
entry points for optimized & un-
optimized code

 Validate with AOS disabled

Gradual Increase in jbb …

Sudden Increase in compress

 Two long running methods
 Compress & decompress

 1st jump  compress optimized
 2nd jump  decompress optimized
 Instrumentation

 Top of the stack method ID
 Most recently optimized method

Sudden Increase in compress …

Dip before GC in HSQL

 Adaptive heap resizing
 App. runs out of memory Trigger GC
 page fault exceptions  low IPC
 Instrumentation

 Number of virtual page requests
 CPU cycles with exceptions disabled
 Number of bytes allocated in JAVA

Dip before GC in HSQL …

 Cross correlation
 MmapBytes & AllocBytes  0.9995

 Validation – disable adaptive heap resizing

Periodic Pattern in Db

 Each Pattern corresponds to a Shell
sort run

 L2 cache not enough to keep the
working set  drop in IPC

 -0.916 correlation between IPC &
L2 cache miss rate

 Measure set size

Periodic Pattern in Db …

 Validation
 Object in lining
 IPC drop start at larger set size

Why lot of small time slices in Multi-
Threaded benchmarks?

 For jbb
 1 worker thread – 2221 time slices
 More than 1 – 10,441 time slices

 Small time slices
 High lock contention

 Thread yield  end time slice
prematurely

Why lot of small time slices in Multi-
Threaded benchmarks?

 Decrease in wall clock time
 Increase in CPU time
 Samples – Lock Yields = constant

Where Lock contention Happens

Instrumentation & Layers

 Approach
 Browsing
 Searching

Problems with statistical correlation

 Low even frequency
 No linear relationships
 Leverage points
 Direction of causality

Difficulties of this approach

 Knowledge on all layers
 H/W ,OS, VM ,Libraries , Application

 Required metrics not known
 Perturbation
 Not automated

 Thousands of metrics to manually
inspect

Conclusions

 Vertical profiling can be used to
understand performance phenomena
in modern multi layers systems.

