
3/21/05 CS674 BGR 1

Issues in the Development of
Transactional Web Applications

R. D. Johnson
D. Reimer

IBM Systems Journal
Vol 43, No 2, 2004

Presenter: Barbara Ryder

3/21/05 CS674 BGR 2

Web Applications

• Transactional processing at their core
– Resource management & utilization
– Concurrency & parallelism
– Failure management
– Persistent data
– Configuration management

• Non-transactional issues
– Memory leaks, Data thru-put, Dealing with overly

general frameworks/components

3/21/05 CS674 BGR 3

Topology of Web Apps

• Web server between application servers and
Internet
– Static content handled by web server
– Dynamic content handled by requests to

application server (e.g, servlets, JSPs, EJBs, back-
end data)

• Choices
– Vertical scaling: several app servers on one node
– Horizontal scaling: several app server nodes

3/21/05 CS674 BGR 4

Web-based computing

Database(s)Business
logic

Presentation
Logic

(Fig 1, in Websphere paper)

(App Server)

3/21/05 CS674 BGR 5

Transactional Processing

• Different from client-side software
• Unit-of-work properties:

– Executes with only initial user input
– Output not done until completion
– Once started, must complete, unless aborted
– Concurrency model is complete serializability, but

this is not always true
– Server runs forever
– Uses notion of requests and responses

3/21/05 CS674 BGR 6

‘Best Practices’ Rules
for Web SW Developers

• Many client-side or native libraries should not be
used
– Are not re-entrant or are multi-threaded

• Must adhere to 2-phase resource-acquisition
discipline (more to come)

• Need to know resource budget (e.g., CPU, memory,
I/O, locks) per transaction

• Avoid concurrency
• Legitimate multi-threading use for requests to

multiple back-end systems to overlap latencies
• Do not retry failures or errors

3/21/05 CS674 BGR 7

Issues

– Resource management & utilization
– Concurrency & parallelism
– Failure management
– Persistent data
– Configuration management

3/21/05 CS674 BGR 8

Resource Management
• Pool shared resources to avoid creation/

deletion during execution
– E.g., threads, network or DB connections

• Consider true resource consumption of code
– Diff from client code where response time

emphasized over resource usage
– Need to know per transaction CPU secs, #DB

operations, read/writes wrt DB, scope/duration of
locks etc

• Important to avoid some transactions ‘freezing’ entire
system

3/21/05 CS674 BGR 9

Resource Management

• Use 2-phase resource management
– Upon acquiring a resource, do not release it

until it is no longer needed by the
remainder of the transaction

– Likewise, make sure all sub-operations can
find the resource when needed

3/21/05 CS674 BGR 10

Issues

– Resource management & utilization
– Concurrency & parallelism
– Failure management
– Persistent data
– Configuration management

3/21/05 CS674 BGR 11

Concurrency

• Server code should be re-entrant
• Server code assumes that any two

instructions can be separated by a context
switch
– Programmers should not explicitly manage shared

state
– Programmers should avoid writing code for DB

connection pools or thread pools

3/21/05 CS674 BGR 12

Concurrency

• Issues involving contended objects,
locking and hot locks
– If shared state accessed frequently and

locks used and held for long time periods,
then there is contention among threads for
access to the locked shared state
• Degrades performance

3/21/05 CS674 BGR 13

Issues

– Resource management & utilization
– Concurrency & parallelism
– Failure management
– Persistent data
– Configuration management

3/21/05 CS674 BGR 14

Failure Management

• Client apps options in face of failure
• Automatically retry
• Communicate with user for instructions
• Exit, crash, cancel or stop

• Server apps are different
• Need to determine whether failure is transient or

persistent, whether retries may aggravate something else
• Some operations cannot be retried
• Programmers should abort their transaction and allow

higher-level mechanisms to retry
– Need to unwind any side effects, unless the transaction is a

non-failure

3/21/05 CS674 BGR 15

Failure Management
• Exception handling

– Need to record exception info in log files BEFORE
attempting remedial action

– Never catch one exception and raise another,
without logging the original exception or wrapping
it in the 2nd exception

– Never use high-level serv ices (e.g., DBs,
publish/subscribe or messaging mechanisms) to log
or deal with exceptions

– Otherwise, problem determination when failure
occurs can be impossible

3/21/05 CS674 BGR 16

Failure Management

• Minimize number of components and
complexity involved
– Independent failures in multiple

components may lead to complex failures
– Note this goes against design principles of

data abstraction which encourages the
‘separation of concerns’ in implementation
• E.g., presentation vs business logic

3/21/05 CS674 BGR 17

Issues

– Resource management & utilization
– Concurrency & parallelism
– Failure management
– Persistent data
– Configuration management

3/21/05 CS674 BGR 18

Persistent Data

• DBs have to contend with persistent and non-
persistent (derived) data
– Cost of transferring data from persistent storage

may be prohibitive
– Cost of converting data to and from persistent

form may be prohibitive
– Data may be ‘captured’ as persistent when it does

not need to be
– Confusion may result if an object is persisted and

then brought back while a live original version still
exists

3/21/05 CS674 BGR 19

Persistent Data
• High-level frameworks shield

programmer from details
– Container-managed persistence (but may

persist more info than necessary)
– Automatic HTTP persistence may result in

saving of arbitrarily large data objects and
even illegitimate objects (e.g., DB
connection)

3/21/05 CS674 BGR 20

Problems with Hiding
Details of Persistence

• Programmers unaware of sizes of
serialized objects (and its resource
needs)

• Programmers use session state as a
place to store ‘transient’ objects, which
end up persisted -- bad for performance

• Objects can be unsafe to persist (e.g.,
objects with native components)

3/21/05 CS674 BGR 21

Issues

– Resource management & utilization
– Concurrency & parallelism
– Failure management
– Persistent data
– Configuration management

3/21/05 CS674 BGR 22

Configuration

• How to deploy and update a Web app?
– Depends on configuration data stored at

various nodes of distributed system
• Cached in central DB with local caches per node

– Live update possible

• Stored on each node separately
– May require address space restarts

– Neither ensures atomic update across
system or even atomicity for a node

3/21/05 CS674 BGR 23

Configuration

• Observations
• Updates to config parameters at high-load times
• Updates to program files (e.g., JSP) during high-

load periods
• Configuration changes under operator

verification

– All may be causes of instability and lack of
reproducibility of consequent errors

3/21/05 CS674 BGR 24

Configuration Updates
• Best practices

• Do configuration operations for Web apps during nonload
periods (I.e., service window)

• To minimize time taken, use scripts for configuration
operations and deploy NEW modified version (do not
modify in “real time”)

• Web app is complex distributed DB
• Extremely difficult to impossible

– Ensure that the running app reflect DB config at all times
– Allow arbitrary series of updates to be reflected aomically

in running app configuration
– Allow arbitrary rollback of changes, automatically reflected

in running app configuration

3/21/05 CS674 BGR 25

Configuration Updates

• Hot-swap app
• Build new version of app and hot-swap in running code

(cannot always do with data)
– Difficult, requires more HW

• Scripted upgrades
• Use automated scripts to apply and undo upgrades, and

use backups

• Both require a service window to minimize
effect on users

3/21/05 CS674 BGR 26

Non-transactional Issues

• Native memory leaks
• C/C++ apps which do not free memory
• Fragmentation due to native allocators

• GC memory leaks
• For Java, having long-lived object point to

memory and never discard
– E.g. HTTP table w non-expiring session objects

• Recomputation of temporary values

3/21/05 CS674 BGR 27

Non-transactional Issues
• Inadequate reuse of complex intermediate

values or buffers
• Reuse of objects within and across transactions (e.g.,

formatters)

• Overly general and factorized frameworks
• Too many layers of interface

• Many good client-side tools cannot be used
with transactional apps due to

• Performance cost
• Difficulty start/stopping transactional servers in

production environment
• Issues of distribution

3/21/05 CS674 BGR 28

Research Issues
• Can analysis help?

• Framework layers limits abilities of static analysis given loose coupling and
dynamic binding used

• Dynamic analysis of app-only seems insufficient
• Possible combination of techniques for specific problem areas
• Possible pre-analysis of frameworks layers?

• Performance issues
• How to observe a transaction-based system discreetly?
• How to separate out effects of different layers?
• What areas of CS are involved here? O/S, PLs, DBs?

• Testing approaches
• How to get realistic moderate-sized systems to test ideas?
• What aspects of problem would be the best to address?
• How is all this related to problems in general distributed systems?

Personal Observations

