
1

E.N. Herness
R. H. High, Jr.

J.R. McGee
IBM Systems Journal
 Vol 43, No 2, 2004

Presenter: Barbara Ryder

WebSphere Application Server:
A foundation for on demand

computing

2/28/05 CS674 BGR 2

Motivation

• Want to understand the analyses useful
for applications written on frameworks
and middleware

• Need to understand structure of such
systems and part played by application
code vs. library/framework vs.
middleware

Personal Observations

2/28/05 CS674 BGR 3

IBM’s Websphere
• Web Application Server
• Example of middleware for “on-demand”

computing
– Separates data persistence and behavior,

presentation, and control, to facilitate clean SW
design

• Manages application components and the resources they
depend upon

– For component-based, service-oriented, distributed,
and message-driven computing

2/28/05 CS674 BGR 4

J2EE

• Java platform for building distributed
enterprise applications

• Components:
– Enterprise JavaBeans (EJBs), JavaServer Pages

(JSPs), Java servlets
– Interfaces for linking to databases
– Deployed in “containers” that provide services for

those components (e.g., servlets are deployed into a
Web container)

2/28/05 CS674 BGR 5

Model-view-controller
(MVC) Architecture

• Common to J2EE applications
• Centralized controller

– Implemented as Java servlet and associated
classes

– Mediates between presentation view and
business logic

– Co-ordinates application flow

2/28/05 CS674 BGR 6

Models for E-Business Sys

• Multi-tiered distributed business computing
– Clean separation between presentation, data,

business elements of system
– Often uses Enterprise Java Beans (EJBs) formal

component model for business logic
• Has runtime manager for bean objects to control caching of

state (for efficiency) and bean creation, use, etc
• Protection of access
• Distribution, communication, addressing
• Maintains single-level-store programming model

2/28/05 CS674 BGR 7

Models, cont

• Web-based computing
– Access through Web browser or hand-held device

(e.g., mobile phone) - fixed function devices
– Originally for extending web browsers with page

content derived dynamically through interaction
with business logic and databases

• Dynamic content

– Has presentation logic and business logic in the
application server layer

2/28/05 CS674 BGR 8

Web-based computing

Database(s)Business
logic

Presentation
Logic

(Fig 1, in paper)

2/28/05 CS674 BGR 9

Models, cont.

• Integrated enterprise computing
– Problem: how to introduce new apps into

established enterprise system (with
assumptions)

– Issues: data integrity, security, traceability,
configuration (I.e., deployment, management)
• Java 2 Connector Architecture, Java Messaging

Service(JMS)
• Scripting languages for business processes

2/28/05 CS674 BGR 10

Integrated Enterprise Sys

Database(s)

Business
logic

Presentation
Logic

Message-oriented
Business Sys

Legacy Business Sys(Fig 2 in paper)

JMSApplication
Adapter

J2CA
Resource
Adapters

2/28/05 CS674 BGR 11

Enterprise Java Beans

• Standard server-side component model for
distributed business applications
– Designed for interprocess components
– RMI-based distributed object support
– Asynchronous messaging support (JMS)

• Distributed object system layers
– First tier - Presentation
– Second tier - Business logic
– Third tier - Backend

Enterprise JavaBeans, R. Monson-Haefel, O’Reilly 2004.

2/28/05 CS674 BGR 12

Models, cont.

• Service-oriented architecture (SOA)
– Business services exposed for use within and outside

of an organization
– Policies to monitor and secure services
– Standardized interfaces for ease of composition

using
• Web Services Defn Lang (WSDL), Simple Object Protocol

(SOAP), Universal Description, Discovery and Integration
(UDDI)

• Loosely coupled distributed computing model

2/28/05 CS674 BGR 13

Web Services

• Network apps that use SOAP and WSDL
to exchange information in XML docs
– SOAP - XML grammar under W3C appln

protocol for RPC and asynch messaging
• Extensible and endorsed by all vendors

– WSDL - XML grammar under W3C for
interface defn lang to describe web services
message format, Internet protocol used,
Internet address, etc.

Enterprise JavaBeans, R. Monson-Haefel, O’Reilly 2004.

2/28/05 CS674 BGR 14

Coupling
• Temporal affinity

– Measure of effect on system of temporal
constraints among components

• Loosely coupled systems avoid temporal constraints
– Avoid resource contention among components even at expense

of longer execution times of requests

• Organizational affinity
– How changes in one part of system affect rest of

system
• E.g. versioning of components
• Loosely coupled systems have high tolerance for

mismatches between components

2/28/05 CS674 BGR 15

Coupling
– Also a measure of uniformity of administrative

policies across a system
• Loosely coupled systems have federated, separate policies

• Technology affinity
– Degree of same technology base across system

• Loosely coupled systems expect to accomplish integration
with relatively few assumptions about underlying technology

2/28/05 CS674 BGR 16

Programming with
Frameworks

• Temptation to work outside the model
– E.g., directly invoke system calls in

application rather than through framework
interface
• Ties application to a particular set of service

technologies and database schema
• Builds a brittle system
• Middleware can ‘do it better’ (e.g., caches)

2/28/05 CS674 BGR 17

Developing an Application on
Websphere

• Need to create
– Logic elements (code in servlets and classes)
– Declarative metadata (info in XML to control

deployment and execution of app)
• Indirection in specification of needed resources allows late

binding of logical resource by administrator to specific
physical resource

• Can include caching policy, security policy, performance
setting, persistent field info, description of application
elements (e.g., which EJBs)

2/28/05 CS674 BGR 18

Developing an Application on
Websphere

• Deployment
• Process of installing application on application server and

making it available for execution
• Steps:

– Make app understandable by runtime
– Generate additional logic elements where needed
– Bind to environment after code generation
– Choose servers for components
– Specify configuration and tuning params
– Distribute app to all machines and start

2/28/05 CS674 BGR 19

Example

• Demand manager monitors system load
• Sees server A is underutilized and B is overloaded with

requests on multiple applications
• System could move an app from server B to A for load

balancing
– Automatically stops app on A, removes binaries from A, moves

the binaries to B, starts new app on B,
– Performs changes transparently to user and app

2/28/05 CS674 BGR 20

Rapid Deployment Features
• Annotation-based programming

– Metadata in the source code to cause generation of
additional element for app

• E.g., change in EJB implementation class automatically
reflected in EJB remote interface

/**
*@efj.interface-method view-type= remote
*/

• Allows override by external XML metadata

• Deployment automation
– Handles code generation, compilation, installation

automatically using actively monitored directory

2/28/05 CS674 BGR 21

Management System

• Key idea - system has to be dynamically
changeable
– Need for accurate, consistent data about

current state of environment (collection of
systems)
• Java Management Extensions (JMX) Mbeans

allow polling of status of associated component
– Logs of errors and events availble
– JMX notifications of critical problems

2/28/05 CS674 BGR 22

Performance Monitoring
• PMI - set of configurable counters in

Websphere runtime that track statistics on all
requests

• E.g., measure average wait time to obtain JDBC database
connection from pool

• Can be tuned for how much info to collect
• Log time spent in major subsystems (e.g., Web container,

database) can be written to ARM agents used by monitoring
tools

• IBM Tivoli performance viewer

• Performance advisors
• Use data collected over time and rules from real-world

systems to make concrete recommendations for
performance improvement

2/28/05 CS674 BGR 23

Tivoli Performance Manager

2/28/05 CS674 BGR 24

Performance Advisor

2/28/05 CS674 BGR 25

Workload Management

• Load balancing is main optimization for
performance

• Maximize utility from resources and soften impact of large
spikes in workload within computing goals

– Cluster- <=2 app server instances w own JVM
• Granularity: can start/stop indiv server instances, indiv

apps, or entire cluster
• Client thinks of cluster as 1 app instance running on 1 app

server instance

– Multiple app server instances on one computer
(Vertical) or different computers (Horizontal) or
combo

2/28/05 CS674 BGR 26

Many Faces of a Reusable
Component

• Customer Account object
• Maintains balance of account, operations to getBalance,

creditAcct, debitAcct
• Banking app - needs balance data to be updated for every

access to catch ALL updates (including system)
• Demographic app - needs to read large number of balances

efficiently to track trends; value can be approx (avoid going
to disk)

• Interest computation app - needs to have AccountHistory
and Account objects with simultaneous values

2/28/05 CS674 BGR 27

Ensuring High Availability

• Outages
• Handled by same technology as cluster workload

management
• What to do about ‘orphaned’ work?

– (future) Message queue manager on failed machine must
be moved automatically with appropriate fixups

• Worst failure - entire data center fails
– Correction: build more than one geographically

dispersed data centers with broadband connectivity

2/28/05 CS674 BGR 28

Research Issues
– Many layers of these systems make static analysis

limited given loose coupling and dynamic binding used
• Also issues of scalability

– Dynamic analysis of app-only seems insufficient
– Possible combination of techniques for specific

problem areas
– Possible pre-analysis of frameworks layers?
– How to accomplish good performance? Code reuse?

App understanding?
• With the aid of program analysis?
• Need to include O/S or HW measurement?

– Relation to autonomic computing?

Personal Observations

