WebSphere Application Server:
A foundation for on demand
computing

E.N. Herness
R. H. High, Jr.
J.R. McGee
IBM Systems Journal
Vol 43, No 2, 2004

Presenter: Barbara Ryder

Personal Observations

Motivation

» Want to understand the analyses useful
for applications written on frameworks
and middleware

* Need to understand structure of such
systems and part played by application
code vs. library/framework vs.
middleware

2/28/05 CS674 BGR

IBM's Websphere

+ Web Application Server

+ Example of middleware for "on-demand”
computing
- Separates data persistence and behavior,
presentation, and control, to facilitate clean SW
design

- Manages application components and the resources they
depend upon

- For component-based, service-oriented, distributed,
and message-driven computing

2/28/05 CS674 BGR

J2EE

» Java platform for building distributed
enterprise applications

- Components:

- Enterprise JavaBeans (EJBs), JavaServer Pages
(JSPs), Java servlets

- Interfaces for linking to databases

- Deployed in "containers” that provide services for
those components (e.g., servlets are deployed into a
Web container)

2/28/05 CS674 BGR

Model-view-controller

(MVC) Architecture

+ Common to J2EE applications

- Centralized controller

- Implemented as Java servlet and associated
classes

- Mediates between presentation view and
business logic

- Co-ordinates application flow

2/28/05 CS674 BGR

Models for E-Business Sys

* Multi-tiered distributed business computing

- Clean separation between presentation, data,
business elements of system

- Often uses Enterprise Java Beans (EJBs) formal
component model for business logic

* Has runtime manager for bean objects to control caching of
state (for efficiency) and bean creation, use, etc

* Protection of access
- Distribution, communication, addressing
* Maintains single-level-store programming model

2/28/05 CS674 BGR

Models, cont

*+ Web-based computing

- Access through Web browser or hand-held device
(e.g., mobile phone) - fixed function devices

- Originally for extending web browsers with page
content derived dynamically through interaction
with business logic and databases

* Dynamic content

- Has presentation logic and business logic in the

application server layer

2/28/05 CS674 BGR

2/28/05 CS674 BGR

W
N &\

O
S8~

Presentation Business

Logic logic

(Fig 1, in paper)

\&\'

~

Database(s)

Models, cont.

* Integrated enterprise computing

- Problem: how to introduce new apps into
established enterprise system (with
assumptions)

- Issues: data integrity, security, traceability,
configuration (I.e., deployment, management)

- Java 2 Connector Architecture, Java Messaging
Service(JMS)

- Scripting languages for business processes

2/28/05 CS674 BGR

Message-oriented
Business Sys

PREL N

Integrated Enterprise Sys

>
Application IMS
Adapter
g
N~
L Database(s)
J2CA
Presentation Business Resource
Logic logic Adapters

(F'g 2 in paper) Legacy Business Sys

2/28/05 CS674 BGR 10

Enterprise JavaBeans, R. Monson-Haefel, O'Reilly 2004.

Enterprise Java Beans

- Standard server-side component model for
distributed business applications

- Designed for interprocess components

- RMI-based distributed object support

- Asynchronous messaging support (JMS)
- Distributed object system layers

- First tier - Presentation

- Second tier - Business logic
- Third tier - Backend

2/28/05 CS674 BGR

11

Models, cont.

»+ Service-oriented architecture (SOA)

- Business services exposed for use within and outside
of an organization
- Policies to monitor and secure services
- Standardized interfaces for ease of composition
using
- Web Services Defn Lang (WSDL), Simple Object Protocol

(SOAP), Universal Description, Discovery and Integration
(UDDI)

- Loosely coupled distributed computing model

2/28/05 CS674 BGR

12

Enterprise JavaBeans, R. Monson-Haefel, O'Reilly 2004.

Web Services

* Network apps that use SOAP and WSDL
to exchange information in XML docs

- SOAP - XML grammar under W3C appln
protocol for RPC and asynch messaging
- Extensible and endorsed by all vendors
- WSDL - XML grammar under W3C for
interface defn lang to describe web services

message format, Internet protocol used,
Internet address, etc.

2/28/05 CS674 BGR 13

Coupling
» Temporal affinity
- Measure of effect on system of temporal

constraints among components

- Loosely coupled systems avoid temporal constraints

- Avoid resource contention among components even at expense
of longer execution times of requests

» Organizational affinity
- How changes in one part of system affect rest of
system

- E.g. versioning of components

- Loosely coupled systems have high tolerance for
mismatches between components

2/28/05 CS674 BGR 14

Coupling

- Also a measure of uniformity of administrative
policies across a system
- Loosely coupled systems have federated, separate policies

+ Technology affinity

- Degree of same technology base across system

- Loosely coupled systems expect to accomplish integration
with relatively few assumptions about underlying technology

2/28/05 CS674 BGR 15

Programming with

Frameworks

+ Temptation to work outside the model

- E.g., directly invoke system calls in
application rather than through framework
interface

» Ties application to a particular set of service
technologies and database schema

» Builds a brittle system
* Middleware can 'do it better’ (e.g., caches)

2/28/05 CS674 BGR

16

Developing an Application on
Websphere

- Need to create
- Logic elements (code in servlets and classes)

- Declarative metadata (info in XML to control
deployment and execution of app)

- Indirection in specification of needed resources allows late
binding of logical resource by administrator to specific
physical resource

» Can include caching policy, security policy, performance
setting, persistent field info, description of application
elements (e.g., which EJBs)

2/28/05 CS674 BGR

17

Developing an Application on
Websphere

+ Deployment
- Process of installing application on application server and
making it available for execution
- Steps:
- Make app understandable by runtime

Generate additional logic elements where needed

Bind to environment after code generation

Choose servers for components

Specify configuration and tuning params

Distribute app to all machines and start

2/28/05 CS674 BGR

18

Example

- Demand manager monitors system load

- Sees server A is underutilized and B is overloaded with
requests on multiple applications

- System could move an app from server B to A for load
balancing

- Automatically stops app on A, removes binaries from A, moves
the binaries to B, starts new app on B,

- Performs changes transparently to user and app

2/28/05 CS674 BGR 19

Rapid Deployment Features

Annotation-based programming

- Metadata in the source code to cause generation of
additional element for app

- E.g., change in EJB implementation class automatically
reflected in EJB remote interface

/**
*@efj.interface-method view-type= remote
*/

- Allows override by external XML metadata

Deployment automation

- Handles code generation, compilation, installation
automatically using actively monitored directory

2/28/05 CS674 BGR

20

Management System

+ Key idea - system has to be dynamically
changeable

- Need for accurate, consistent data about
current state of environment (collection of
systems)

+ Java Management Extensions (JMX) Mbeans
allow polling of status of associated component
- Logs of errors and events availble

- JMX notifications of critical problems

2/28/05 CS674 BGR

21

Performance Monitoring

+ PMI - set of configurable counters in
Websphere runtime that track statistics on all

requests

- E.g., measure average wait time to obtain JDBC database
connection from pool

« Can be tuned for how much info to collect

- Log time spent in major subsystems (e.g., Web container,
database) can be written fo ARM agents used by monitoring
tools

- IBM Tivoli performance viewer

- Performance advisors

- Use data collected over time and rules from real-world
systems to make concrete recommendations for

2/28/05 cse74 8o rf ormance improvement *

Tivoli Performance Manager

Fgue d viewing PMI data through Tivoli Performance Viewsr

T ORNSIAM R R0SIAM IMEEPN SREAN ENHM RS

| Desarption

Sir o0 G VIRDoMon smee ol query

£rvars0n G VIRTAMON SeCe Tve B8 & ermbied
at free mewry On ¥B)

Retosh rate: 18 50¢ Baffer size 40 Wew

2/28/05 CS674 BGR

Performance Advisor

Fgure 7 Example ot Perfarmancs Advisor display

Y Performance Advisor Message Detail

[RHIGHLT2 -= server!] TUNEOSO3W: Number of threads
working in Orb Service Thread Pool is low, but the system
does not seem {0 be under stress.

The CPU Wtilization of this system is unusually low. Please
run the performance advisor with a representative

workioad. If CPU utilzation Is expected to be this low, then
consider decreasing the size of the thread pool. If not, the
bottleneck may exist elsewhere in the system, preventing

To decrease the size of the thread pool: For the Web
container, click: Appication Servers > Server » Web
Container > Thread Pool.

For the ORB Service, click: Application Servers » Server »
ORB Service » Thread Pool.

Pool utilization: 09%.

CPU usage: 19%.

Number of threacis in poot 0.
Average number of threads: 0.

2/28/05 CS674 BGR

Workload Management

* Load balancing is main optimization for

performance
* Maximize utility from resources and soften impact of large
spikes in workload within computing goals
- Cluster- <=2 app server instances w own JVM

* Granularity: can start/stop indiv server instances, indiv
apps, or entire cluster

» Client thinks of cluster as 1 app instance running on 1 app
server instance
- Multiple app server instances on one computer
(Vertical) or different computers (Horizontal) or
combo

2/28/05 CS674 BGR 25

Many Faces of a Reusable
Component

» Customer Account object

* Maintains balance of account, operations to getBalance,
creditAcct, debitAcct

- Banking app - needs balance data to be updated for every
access to catch ALL updates (including system)

- Demographic app - needs to read large number of balances
efficiently to track trends; value can be approx (avoid going

to disk)

- Interest computation app - needs to have AccountHistory
and Account objects with simultaneous values

2/28/05 CS674 BGR 26

Ensuring High Availability

- Outages

* Handled by same technology as cluster workload
management

* What to do about ‘orphaned’ work?

- (future) Message queue manager on failed machine must
be moved automatically with appropriate fixups

- Worst failure - entire data center fails

- Correction: build more than one geographically
dispersed data centers with broadband connectivity

2/28/05 CS674 BGR 27

Personal Observations

Research Issues

- Many layers of these systems make static analysis
limited given loose coupling and dynamic binding used
- Also issues of scalability

- Dynamic analysis of app-only seems insufficient

- Possible combination of techniques for specific
problem areas

- Possible pre-analysis of frameworks layers?

- How to accomplish good performance? Code reuse?
App understanding?
* With the aid of program analysis?
* Need to include O/S or HW measurement?

- Relation to autonomic computing?

2/28/05 CS674 BGR

28

