
03/21/05 Delta Debugging, BGR 1

Delta Debugging - Sources
1. A. Zeller, Yesterday my program worked. Today it does not, Why?,

FSE’99
2. A. Zeller, Making students read and review code, Annual ITiCSE conf

on Innovation and Technology in Computer Science Education, 2000
3. *A. Zeller, Isolating Cause-effect Chains from Computer Programs,

FSE’02
4. J. Choi, A. Zeller, Isolating Failure-inducing Thread Schedules,

ISSTA’02
5. A. Zeller, R. Hildebrandt, Simplifying and isolating Failure-inducing

Input, IEEE TSE, Feb 2002, vol 28, no 2
6. A. Zeller, Isolating Cause-effect Chains with AskIgor, International

Workshop on Program Comprehension (IWPC’03)
7. H. Cleve, A. Zeller, Locating causes for failures, ICSE’05

03/21/05 Delta Debugging, BGR 2

Delta Debugging

• Reason for failure is set of differences
between

– Program versions [1]
– Inputs [5]
– Thread schedules [4]
– Program states [3,7]

that distinguish a succeeding program from a
failing one

03/21/05 Delta Debugging, BGR 3

How it Works?

• Repeat
• Apply different subsets of changes to the

original program
• Observe outcome of executing the resulting

intermediate program
• Correlate outcome with “pass”, “fail”,

“inconsistent” with changes applied, thus
narrowing down set of changes responsible for
failure

» Not necessarily a minimal change set

03/21/05 Delta Debugging, BGR 4

Differences
Delta Debug Chianti

• Inconsistent outcomes
– Syntax errors or

indeterminate output

• Explore 2 versions of
program at a time

• Coarse-grained change
categories: pass, fail, ??

• Incurs larger runtime cost
for running tests

• All changed versions compile
(calculate dependences)

• Explore many versions of
program through set of tests

• Fine-grained change
categories: RED, GREEN,
YELLOW, Uncovered

• Only runs certain affected
tests

03/21/05 Delta Debugging, BGR 5

Reference [1]

• Compared code differences between 2
program versions
– Replaced code from fail version with code

from succeed version and tried to locate
error-causing changes

03/21/05 Delta Debugging, BGR 6

Reference [5]
• Wants to achieve a minimal set of changes to input

(I.e., test cases)causing the failure
• Approach (akin to binary search)

• Divide test case into 2 subsets of changed and unchanged
values for inputs such that at least 1 fails (S and U-S are 2
subsets of test cases created from the original failing
case)

– Choose S larger increases chance that the resulting test case
fails

– Choose S smaller and get faster progression in case that test
case fails, but reduces chances that it will fail

03/21/05 Delta Debugging, BGR 7

Procedure

Figure 6 [5]

Changes

Changes
Compliment

ANSWER:
{1,7,8}

03/21/05 Delta Debugging, BGR 8

[5] Case Study

• Gcc
– Passing program is empty input; failing input is bug.c

(their original failing input); changes are insert a single
character

– Mechanically checked many, many program versions w/o
use of sematics

» Code reduced to 77 characters by 733 tests (34
sec)

» Also had to look at GCC options

03/21/05 Delta Debugging, BGR 9

[5] Case Study

• Mozilla
– Input is succession of mouse motions, pressed keys and

clicked buttons and the HTML of a webpage (711 X events)
– Used automatic tester (with time limit) to run tests

» 82 tests (21 min) found 3 out of 95 user actions but they
were not full cause of error

» Looked at HTML code on webpage (minimized #lines then
#chars in error version)

03/21/05 Delta Debugging, BGR 10

Optimizing the Approach
– Allowed to add diffs from passing tests to deleting

diffs from “complement failing” tests
• Each time a test case passes, use it as new passing test

case so as to minimize diff from failing case.

– Claims this is more efficient
• Simplification - make each part of test case relevant
• Isolation - find one relevant part of test case **

– Changes strategy to isolation rather than minimize test case
– For GCC, minimizing took 731 test cases; isolating took 59

test cases

