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Delta Debugging

• Reason for failure is set of differences
between

– Program versions [1]
– Inputs [5]
– Thread schedules [4]
– Program states [3,7]

that distinguish a succeeding program from a
failing one



03/21/05 Delta Debugging, BGR 3

How it Works?

• Repeat
• Apply different subsets of changes to the

original program
• Observe outcome of executing the resulting

intermediate program
• Correlate outcome with “pass”, “fail”,

“inconsistent” with changes applied, thus
narrowing down set of changes responsible for
failure

» Not necessarily a minimal change set
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Differences
Delta Debug Chianti

• Inconsistent outcomes
– Syntax errors or

indeterminate output

• Explore 2 versions of
program at a time

• Coarse-grained change
categories: pass, fail, ??

• Incurs larger runtime cost
for running tests

• All changed versions compile
(calculate dependences)

• Explore many versions of
program through set of tests

• Fine-grained change
categories: RED, GREEN,
YELLOW, Uncovered

• Only runs certain affected
tests
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Reference [1]

• Compared code differences between 2
program versions
– Replaced code from fail version with code

from succeed version and tried to locate
error-causing changes
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Reference [5]
• Wants to achieve a minimal set of changes to input

(I.e., test cases)causing the failure
• Approach (akin to binary search)

• Divide test case into 2 subsets of changed and unchanged
values for inputs such that at least 1 fails (S and U-S are 2
subsets of test cases created from the original failing
case)

– Choose S larger increases chance that the resulting test case
fails

– Choose S smaller and get faster progression in case that test
case fails, but reduces chances that it will fail
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Procedure

Figure 6 [5]

Changes

Changes 
Compliment

ANSWER: 
{1,7,8}
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[5] Case Study

• Gcc
– Passing program is empty input; failing input is bug.c

(their original failing input); changes are insert a single
character

– Mechanically checked many, many program versions w/o
use of sematics

» Code reduced to 77 characters by 733 tests (34
sec)

» Also had to look at GCC options
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[5] Case Study

• Mozilla
– Input is succession of mouse motions, pressed keys and

clicked buttons and the HTML of a webpage (711 X events)
– Used automatic tester (with time limit) to run tests

» 82 tests (21 min) found 3 out of 95 user actions but they
were not full cause of error

» Looked at HTML code on webpage (minimized #lines then
#chars in error version)
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Optimizing the Approach
– Allowed to add diffs from passing tests to deleting

diffs from “complement failing” tests
• Each time a test case passes, use it as new passing test

case so as to minimize diff from failing case.

– Claims this is more efficient
• Simplification - make each part of test case relevant
• Isolation - find one relevant part of test case **

– Changes strategy to isolation rather than minimize test case
– For GCC, minimizing took 731 test cases; isolating took 59

test cases


