
Isolating Cause-Effect Chains
from Computer Programs

Andreas Zeller
Presented by
Brian Russell

The Basic Idea

• Program execution considered as a
sequence of state transitions.

• Sequence of states for correct execution
will differ from sequence for faulty
execution.

• Differences between state transitions
provides valuable information.

• How to determine the difference?

Isolating Relevant Input

• Separate input files: one for correct
execution, one for faulty execution.

• Input files need not be similar.
• Goal is to find minimal differences

between “correct” and “fault causing”
inputs.

• Method: divide and conquer …

Dividing and Conquering

• Automated isolation of failure inducing
input.

• Basis is a sequence of atomic differences
and an automated test function.

• Differences in execution runs becomes
differences in program input.

Determining Precise Cause of
Failure

• Define initial sets of atomic differences for
correct and faulty outcomes.

• Define tests that determines correct/faulty result
or ? result if program behaves unexpectedly.

• Iterative runs produce new sets of atomic
differences that are more precise.

• When “correct” and “fault inducing” sets are
close enough (1-minimal), stop.

Determining Precise Cause of
Failure (continued)

• Increasingly precise cause requires
intelligent modification of input.

• Automated delta debugging postulates
“smart” splitter function to modify input.

• “Smart” splitting functions are not trivial as
compiler example shows …

• Also assumes existence of automated test
• Input decomposition program in 10

minutes?

Claims

• Number of tests grows with number of
unresolved test outcomes.

• Worst case is quadratic in size of fault
inducing error atoms (How is this true?)

• Worst case does not occur in practice.
• Is exponential behavior more likely worst

case?

Isolating Relevant Program States

• Program execution as series of states.
• Program state is defined in terms of

variables and their values.
• Differences in program input cause

differences in program states.
• Problem: even minimized changes in

input can result in large changes in
program execution state.

Isolating Relevant Program States

• Requires a source-level debugger.
• Map 1-minimal change in input to

corresponding program source where
state transition starts to deviate.

• Examine variables with delta debugging
to find minimal set of variables involved in
transition to fault related states.

• Set involved variables when necessary.

Memory Graphs

• Problem: exact values of pointers not
relevant – what they point to is significant.

• Solution: Memory graph nodes are
values and variables are arcs. Root has
all variables as children.

• All values of same type and location in
same node.

• What if sets of variables differ?

Different Graphs? Common
Subgraphs

• Largest common subgraph NP-complete
in worst case, but most precise.

• Large common subgraphs – compare the
graphs in parallel traversal. O(|V|+|E|).

• When to get largest or just large common
subgraph? Unclear.

• Differences become deltas individually
applied to alter program variable state.

HOWCOME

• Prototype program state extractor.
• Program state redefined: not just

variables and values, now includes
program counter and call stack history.

• Example magnitudes: 27000+ nodes,
42000+ nodes, reduced to one node of
interest.

• Example times: 1.5 hours + 30 minutes.

An important point

• A cause can be determined automatically,
but the fault remains in the eye of the
beholder.

• The programmer still has to fix the code.

A Curious Argument

Does the programmer have to narrow down
the point of transition to a faulty state?

Maybe not:
• Increase granularity of cause-effect chain

for more precision.
• Isolate cause transitions automatically.
• Use heuristics to focus on possible

relevant events.

Surprising Results

• Changing variables to meaningless
values is not entirely haphazard.

• If similar behaviors ensue, changed
variable is irrelevant.

• Good code is easier to deal with than
spaghetti (Duh!).

• Program state is easy to decompose,
program input decomposition is hard.

Admitted Weaknesses

• Requirement of “correct” and “fault-
inducing” inputs and program runs.

• Isolated causes may be only indirectly
informative.

• Only one cause out of many may be
isolated.

• A large difference may not always be
narrowed.

Observed Weaknesses

• Could multiple problems preclude
narrowing to any cause?

• Program state definition is inconsistent
and probably incomplete.

• Postulates use of nontrivial “smart” splitter
of input.

• Automated state extraction takes a long
time.

Related Work - Slicing

• All program statements that could
influence the variable values in a source
statement of interest.

• Static slicing is independent of execution
behavior.

• Dynamic slicing is specific to a program
run and is more precise.

• Slices may still be too large to manage.

And Dicing …

• The difference between dynamic slices.
• Isolates effects under different conditions.
• Also dynamic invariants, which are

dynamic checks on program execution
behavior against an invariant model.

• Making the invariant model is the
challenge.

… And Julienne Fries …

• “Automated” debugging of Prolog
programs.

• Systematic queries about the subclauses.
• Who cares about Prolog?

Conclusions and Contributions

• Debugging as program states.
• Proof of concept: Fully automated means

of narrowing down program states and
runs to those relevant to a given state.

