Isolating Cause-Effect Chains
from Computer Programs

Andreas Zeller
Presented by
Brian Russell

The Basic Idea

Program execution considered as a
sequence of state transitions.

Sequence of states for correct execution
will differ from sequence for faulty
execution.

Differences between state transitions
provides valuable information.

How to determine the difference?

Isolating Relevant Input

Separate input files: one for correct
execution, one for faulty execution.

Input files need not be similar.

Goal is to find minimal differences
between “correct” and “fault causing”
inputs.

Method: divide and conquer ...

Dividing and Conquering

» Automated isolation of failure inducing
input.

» Basis is a sequence of atomic differences
and an automated test function.

» Differences in execution runs becomes
differences in program input.

Determining Precise Cause of
Fallure

Define initial sets of atomic differences for
correct and faulty outcomes.

Define tests that determines correct/faulty result
or ? result if program behaves unexpectedly.

lterative runs produce new sets of atomic
differences that are more precise.

When “correct” and “fault inducing” sets are
close enough (1-minimal), stop.

Determining Precise Cause of
Failure (continued)

Increasingly precise cause requires
intelligent modification of input.

Automated delta debugging postulates
“smart” splitter function to modify input.

“Smart” splitting functions are not trivial as
compiler example shows ...

Also assumes existence of automated test

Input decomposition program in 10
minutes?

Claims

Number of tests grows with number of
unresolved test outcomes.

Worst case is quadratic in size of fault
inducing error atoms (How is this true?)

Worst case does not occur in practice.

Is exponential behavior more likely worst
case?

Isolating Relevant Program States

* Program execution as series of states.

* Program state is defined in terms of
variables and their values.

» Differences in program input cause
differences in program states.

* Problem: even minimized changes in
iInput can result in large changes In
program execution state.

Isolating Relevant Program States

Requires a source-level debugger.

Map 1-minimal change in input to
corresponding program source where
state transition starts to deviate.

Examine variables with delta debugging
to find minimal set of variables involved in
transition to fault related states.

Set involved variables when necessary.

Memory Graphs

Problem: exact values of pointers not
relevant — what they point to is significant.

Solution: Memory graph nodes are
values and variables are arcs. Root has
all variables as children.

All values of same type and location in
same node.

What if sets of variables differ?

Different Graphs? Common
Subgraphs

Largest common subgraph NP-complete
In worst case, but most precise.

Large common subgraphs — compare the

graphs in parallel traversal. O(|V|+|E]).

When to get largest or just large common
subgraph? Unclear.

Differences become deltas individually
applied to alter program variable state.

HOWCOME

Prototype program state extractor.

Program state redefined: not just
variables and values, now includes
program counter and call stack history.

Example magnitudes: 27000+ nodes,
42000+ nodes, reduced to one node of
Interest.

Example times: 1.5 hours + 30 minutes.

An important point

* A cause can be determined automatically,

but the fault remains in the eye of the
beholder.

The programmer still has to fix the code.

A Curious Argument

Does the programmer have to narrow down
the point of transition to a faulty state?

Maybe not:

* Increase granularity of cause-effect chain
for more precision.

* |solate cause transitions automatically.

» Use heuristics to focus on possible
relevant events.

Surprising Results

Changing variables to meaningless
values is not entirely haphazard.

If similar behaviors ensue, changed
variable iIs irrelevant.

Good code is easier to deal with than
spaghetti (Duh!).

Program state is easy to decompose,
program input decomposition is hard.

Admitted Weaknesses

Requirement of “correct” and “fault-
inducing” inputs and program runs.

Isolated causes may be only indirectly
informative.

Only one cause out of many may be
Isolated.

A large difference may not always be
narrowed.

Observed Weaknesses

Could multiple problems preclude
narrowing to any cause?

Program state definition is inconsistent
and probably incomplete.

Postulates use of nontrivial “smart” splitter
of input.

Automated state extraction takes a long
time.

Related Work - Slicing

All program statements that could

influence the variable values in a source
statement of interest.

Static slicing is independent of execution
behavior.

Dynamic slicing is specific to a program
run and Is more precise.

Slices may still be too large to manage.

And Dicing ...

The difference between dynamic slices.
|Isolates effects under different conditions.

Also dynamic invariants, which are
dynamic checks on program execution
behavior against an invariant model.

Making the invariant model is the
challenge.

... And Julienne Fries ...

« “Automated” debugging of Prolog
programs.

» Systematic queries about the subclauses.
* Who cares about Prolog?

Conclusions and Contributions

* Debugging as program states.

* Proof of concept: Fully automated means
of narrowing down program states and
runs to those relevant to a given state.

