
Cadena: An Integrated
Development, Analysis, and

Verification Environment for
Component-based Systems

John Hatcliff, Xinghua Deng, Matthew B. Dwyer, Georg Jung,

Venkatesh Prasad Ranganath

Kansas State University

presented by Jaroslav Ševčı́k

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 1/40

Overview

Goal – use formal methods in software development
process

Cadena – framework for
dependency analysis with varying levels of precision.
extracting checkable models from component
specification.

Based on CORBA component model

Used for real-time systems

Targetted at all mission/safety-critical systems

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 2/40

Formal methods

Reasoning about various aspects of a program

Uses mathematical logic for specifications

Proving program invariants, preconditions,
postconditions

Types of formal methods
Light-weight – unsound and incomplete
Medium-weight – sound, but incomplete
Heavy-weight – sound and complete

Successful applications in hardware

Do not scale well enough for software

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 3/40

Automated Theorem Proving

Heavy-weight technique

Input: (annotated) program

Verification condition generated:
from the code, e.g.

For x.field = 0; we have to prove that x 6= 0.
a[i] = 0; implies i ≤ a.length.

from the annotations, i.e. class invariants, method
pre- and post-conditions etc.

Generate theorems using Hoare logic, weakest
precondition etc.

The verification condition then checked using an
automated theorem prover.

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 4/40

Usage of ATP

ACL2 theorem prover (parts of AMD K7 design)

ESC/Java
unsound and incomplete
. . . e.g. loops, guessing object invariants, or
axiomatization of floating point numbers
More like type checking, but uses heavy-weight tools
“How to shoot sparrows with cannons”

Spec# - formal specification for C#
Similar to ESC/Java, but is sound and under some
assumptions also complete
Powerful precondition, postcondition and invariant
inference

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 5/40

Model checking

Light-weight technique

State-space exploration

Based on a program abstraction (model)
Finite size
Reasonably large state space

Usually used for
Protocols
Hardware
Concurrent programs

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 6/40

SPIN

SPIN is the most widely used model checker

Uses PROMELA language

SPIN model consist of
type declarations
channel declarations
variable declarations
process declarations

No unbounded data, channels or processes

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 7/40

Type declerations

Basic types bool, bit, byte, short, int and
arrays:

bool flag = 1; /* declaration */

byte counter[30];

flag = 0; /* assignment */

Default value is always 0.

Records:
typedef record {

short f1;

byte f2;

}

Record rr;

rr.f1 = ..;

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 8/40

Statements

Two types of statements:
Executable – can be executed immediately
Blocking – cannot be executed

Assignment is always executable

Expression is also a statement
and is executable only if it evaluates to non-zero:
2 < 3 always executable
x < 27 executable if x smaller than 27

skip statement is always executable

assert statement is also always executable

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 9/40

Processes

Process declaration and creation:
proctype Foo(byte x)

{ ... }

init {

int pid2 = run Foo(8);

}

Processes are:

executed concurrently

scheduled non-deterministically

interleaved (no two statements execute at the same
time)

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 10/40

Mutual exclusion

bool x, y, t;

proctype A()

{ x = 1;

t = 1;

(y == 0 || t == 0);

/* critical section */

x = 0 }

proctype B()

{ y = 1;

t = 0;

(x == 0 || t == 1);

/* critical section */

y = 0 }

init

{ run A(); run B() }

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 11/40

Assertions

How to use SPIN to check the correctness for us?

Use a variable that gets incremented and decremented
in every critical section:

mutex++;

mutex--;

. . . and run a process that will guard the variable:
active proctype monitor() {

assert(mutex != 2);

}

If the program is wrong the assert in the sequence
mutex++; /* <- P0 */ mutex++; /* <- P1 */

assert(mutex != 2); /* process monitor */

will fail!
Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 12/40

Atomicity

All statements are atomic

atomic{stmt1; stmt2; ...;stmtn} statement
can be used to define atomic sequences, e.g. atomic
test and set:

atomic{ flag != 1; flag = 1 }

No pure atomicity (even if statement i is blocked, all
statements 1 . . . i will be still executed).

For deterministic sequences use d_step instead of
atomic

No intermediate states are generated.
Reduces state space.
Possibly blocking or non-deterministic statements
cause run-time errors!

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 13/40

Non-deterministic choice

If statement:
int a = 0, x = 1, y = 1;

proctype A() {

if

:: x == 1 -> a = a + 1

:: y == 1 -> a = a - 1

fi }

At the end a = 1 or a = −1, SPIN will make a
non-deterministic choice.

If x 6= 1 and y 6= 1, the statements will block.

do statement similar to if

Loops until an explicit break statement

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 14/40

Communication

Channel declaration:
chan c = [2] of {bit}

The number denotes the size of the message queue.

Sending a message – using ! operator
c ! 1;

If channel full ⇒ the send statement will block

Receiving a message:
c ? 1;

c ? x;

If channel empty or the constant is not the same ⇒ the
receive statement will block

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 15/40

dSPIN

Dynamic extension to SPIN

Adds to the language
Memory management (new and delete)
Functions (function)
Pointers (& operator, type)
Function pointers (ftype type)
Local scoping
Garbage collection

Simplifies object-oriented specification

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 16/40

Bandera

Model-checking framework for Java

Program states typically very large ⇒

Bandera uses
Slicing to eliminate the code that does not relate to
the verified property
Data abstraction to decrease state size

E.g. vector can be often abstracted by a small set
{ItemInV ector, ItemNotInV ector}.

Its back-end supports various model-checkers (SMV,
SPIN etc.)

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 17/40

Cadena architecture I

Centered around CORBA middleware

Components described using
CORBA IDL

Interfaces, data types and components
Cadena Assembly Description (CAD)

Static component allocation and configuration
policy

Cadena Property Specification (CPS)
Dependencies and behaviors

Correctness Properties
. . . using Linear Temporal Logic

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 18/40

Cadena architecture II

Outputs:
Generated code:

Stubs
Skeletons
Implementation (from IDL)
System assembly (from CAD)

dSPIN model

Offers the possibility of graphical views

. . . and spreadsheet views

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 19/40

Cadena methodology

Development steps:

1. Load library of components and their CPS

2. Define new components and CPS

3. Define CAD to specify connections between
components

4. Examine dependencies using the graphical viewer

5. Attach non-functional aspect specification

6. Specify global correctness properties

7. Generate transition system model and model-check
correctness properties

8. Revise system using feedback from analysis tools

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 20/40

Case study

Avionics software based on Boeing Bold Stroke
architecture

The software manages
Cockpit displays
Navigation and tactical sensors
Weapon deployments

Periodic and aperiodic processing

Thousands of operating modes

Technologies: CORBA, C++

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 21/40

Example

Cadena system is demonstrated on a simple running
example

Simple avionics system that shows steering cues on a
pilot’s display

Pilot can choose one of the modes:
Tactical display – mission objectives
Navigation display – navigation objectives

Derived from navigation points entered by
navigator

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 22/40

Components

Components in the avionics system:

GPS component, data sampled at a rate 20Hz

The data passed to an intermediate modal component
AirFrame

NavSteering and TacticalSteering – modal
components producing data for Display component
based on data from the AirFrame component

Navigator - polls for input at a rate 5Hz and pushes
them to NavSteeringPoints

NavSteeringPoints are used by the NavSteering
component

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 23/40

Simple avionics system - diagram

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 24/40

Control-push data-pull

Data transfered in two step process:
1. Data producer publishes DataAvailable event
2. Upon receiving the event data consumer calls get

data accessor method

Advantage – no thread blocking ⇒ less opportunities for
deadlock

The DataAvailable notification sent through an event
connection

The data can be then retrieved through an interface
connection

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 25/40

LazyActive component

Example: AirFrame component

AirFrame does not fetch data from GPS immediately

. . . it only sets dataStatus to stale and sends the
DataAvailable event

When then queried for data it checks the status
If dataStatus = stale it queries GPS for the data,
sets status to fresh and returns the data
If dataStatus = fresh it just returns the (fresh)
data

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 26/40

LazyActive component

module modalsp {

interface ReadData {

readonly attribute any data;

};

eventtype DataAvailable {};

enum LazyActiveMode {stale, fresh};

component LazyActive {

provides ReadData dataOut;

uses ReadData dataIn;

publishes DataAvailable outDataAvailable;

consumes DataAvailable inDataAvailable;

attribute LazyActiveMode dataStatus;

};

};

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 27/40

Cadena Assembly Description

system ModalSPScenario {

import cadena.common, cadena.modalsp;

Rates 1, 5, 20;

Locations 11, 12, 13;

...

Instance AirFrame implements LazyActive on #LALoc {

connect this.inDataAvailable

to GPS.outDataAvailable runRate #LARate;

connect this.dataIn to GPS.dataOut

}

Instance TacticalSteering implements Modal1 on 12 {

connect this.inDataAvailable

to AirFrame.outDataAvailable runRate 5;

connect this.dataIn to AirFrame.dataOut;

}

...

}
Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 28/40

Dependency specification

component LazyActive {

mode dataStatus;

dependencydefault == none;

dependencies {

case dataStatus of {

stale: inDataAvailable -> outDataAvailable;

dataOut.get_data(); -> dataIn.getData();

fresh: inDataAvailable -> outDataAvailable;

}

}

behavior { ... }

...

}

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 29/40

Dependency analysis

The steps for creating and refining dependency
information:
1. Use global dependence default (every input and

output port can be connected)
2. Specify dependency without modal behavior
3. Refine by considering modes
4. Refine by behavioral descriptions (which captures

control-flow)

Basic notions of dependency:
Inter-component dependencies – interface and event
dependencies
Intra-component dependencies – trigger
dependency

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 30/40

Dependency information usage

Some properties can be devised automatically using
the dependency information:

Rate assignment to the ports
The rates can be distributed through the system
If more than one rate identified ⇒ the higher one is
used

Distribution determination

Synchronous dispatch optimization
Every non-correlated? co-located remote event
delivery can be reduced to a synchronous call

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 31/40

Component modeling

Straightforward translation from behaviors:

ftype Ref_NavSteering_dataIn1_getData;

ftype Ref_NavSteering_update;

function Fun_NavSteering_source1 (mtype t) {

if

:: NavSteering_componentState == enabled ->

NavSteering_internalData = Ref_NavSteering_dataIn1_getData();

Ref_NavSteering_update(NavSteering_DataAvailable)

:: else

fi

}

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 32/40

Modeling Middleware

Event publication
. . . is achieved by placing function reference and
event type to the channel thread process.

Thread services
Rate monotonic scheduling:
Higher rate ⇒ higher priority
Encoded using guarded actions

Events modeled using rate groups and interfaces
modeled using direct fuction calls?

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 33/40

Modeling Middleware

Modeling a rate group thread:
proctype RateGroup_1Hz () {

ftype f;

mtype m;

...

do

:: skip ->

S_timeout?b;

...

do

:: Rate1_queue?[f, m] -> Rate1_queue?f(m); f(m)

:: else -> break;

od

od

}

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 34/40

Thread services

function Fun_NavSteering_switch_getData () : int {

atomic {

P <= 1 ->

P = MaxPriority

}

return NavSteering_componentState;

}

...

active proctype PriorityHandler() {

do

:: timeout -> d_step {

if

:: P > 0 -> P = P - 1;

:: else

fi

}

od

}
Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 35/40

Simulating time

No explicit notion of time

Only the relative rate is preserved:
Take m as least common multiple of all rates in the
system
Instantiate a counter t counting from 0 to m − 1 in a
loop
Issue a timeout event for a rate k if
t % m/k == 0.
Can be scaled down by GCD of all the rates.

Modeled using rendezvous channels in SPIN (i.e.
channels with queue size 0).

Each rate group has one channel and one SPIN
process for the timeout events dispatch

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 36/40

Timer for 5, 10, 15Hz

proctype Timer() { int t = 0;

do

:: (t >= 6) -> t = 0

:: (t < 6) ->

if

:: (t \% 2) == 0 -> S_timeout15!1;

:: else

fi;

if

:: (t \% 3) == 0 -> S_timeout10!1;

:: else

fi

if

:: (t \% 6) == 0 -> S_timeout5!1;

:: else

fi;

t = t + 1

od; }
Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 37/40

Property Specification

No explicit examples

User can reason about:
call or return from a component method
publication or consumption of an event
values of component modes

Observations can be qualified by
Component instance
Parameter and return values
Component ports
Rate groups

Timeedit tool for visual editing of time properties

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 38/40

Experience

Without enforcing the rate monotonic scheduling check
aborted with

26 million states
1 GB RAM consumed

With rate-monotonic scheduling:
1.4 million states
130 MB RAM
running time ≤ 1 minute.

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 39/40

Pros and Cons

Advantages:

Formal guarantees of system properties

Incremental dependency analysis

Disadvantages:

Does not seem to scale well

Non-functional modelling non-trivial (it is not clear has
to be done manually and what is done by the tool)

Oriented on very static systems

Overall too tailored to Bold Stroke type systems

Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Systems – p. 40/40

	Overview
	Formal methods
	Automated Theorem Proving
	Usage of ATP
	Model checking
	SPIN
	Type declerations
	Statements
	Processes
	Mutual exclusion
	Assertions
	Atomicity
	Non-deterministic choice
	Communication
	dSPIN
	Bandera
	Cadena architecture I
	Cadena architecture II
	Cadena methodology
	Case study
	Example
	Components
	Simple avionics system - diagram
	Control-push data-pull
	LazyActive component
	LazyActive component
	Cadena Assembly Description
	Dependency specification
	Dependency analysis
	Dependency information usage
	Component modeling
	Modeling Middleware
	Modeling Middleware
	Thread services
	Simulating time
	Timer for 5, 10, 15Hz
	Property Specification
	Experience
	Pros and Cons

