
Visualizing the Execution of Java Programs

Wim De Pauw, Erik Jensen, Nick Mitchell,
Gary Sevitsky, John Vlissides, Jeaha Yang

IBM T.J. Watson Research Center
30 Saw Mill River Road, Route 9A

Hawthorne, NY 10532 USA
{wim,erikj,nickm,sevitsky,vlis,jeaha}@us.ibm.com

Introduction

Jinsight is a tool for exploring a program’s run-time behavior visually. It is helpful for
performance analysis, debugging, and any task in which you need to better understand
what your Java program is really doing.

Jinsight is designed specifically with object-oriented and multithreaded programs
in mind. It exposes many facets of program behavior that elude conventional tools. It
reveals object lifetimes and communication, and attendant performance bottlenecks. It
shows thread interactions, deadlocks, and garbage collector activity. It can also help
you find and fix memory leaks, which remain a hazard despite garbage collection.

A user explores program execution through one or moreviews. Jinsight offers sev-
eral types of views, each geared toward distinct aspects of object-oriented and
multithreaded program behavior. The user has several different perspectives from
which to discern performance problems, unexpected behavior, or bugs small and
large. Moreover, the views are linked to each other in many ways, allowing naviga-
tion from one view to another. Navigation makes the collection of views far more
powerful than the sum of their individual strengths.

Object population in the Histogram view

The Histogram view is a basic visualization of resource consumption (CPU and
memory) in terms of classes, instances, and methods. It gives an overview of hot spots
in a program’s execution.

The Histogram view arranges information by class. In Fig. 1, each row shows the
name of a class followed by colored rectangles representing the instances of that
class. Colors for instances and classes can depict various criteria:

• time spent in methods relating to that instance or class
• number of calls
• amount of memory consumed
• number of threads in which the instance or class participates
Hot spots and patterns of resource usage are immediately visible in this view. You

can get more detailed information about individual elements by clicking on them or
merely positioning the mouse cursor over them. The view also gives you a good idea



of when objects are created and garbage collected. (A rectangle turns into an outline
when the object has been collected.) This can help you spot memory leaks, as we
explain later.

The lines in the view represent relationships among objects. For example, Fig. 1
shows all the method calls on objects of class java/lang/Integer. You can tell the view
to indicate how each object calls, creates, or refers to other objects. Seeing connec-
tions among objects is useful for detailed investigation of calling and reference
relationships. However, the combinatorial nature of these relationships will make any
program larger than “Hello world” hard to examine.

Fig. 1. Histogram view

Pattern extraction in the Reference Pattern view

Complexity is indeed a challenge when visualizing the execution of object-oriented
programs. We deal with complexity in a number of ways. First, a good visualization
makes it much easier to interpret complicated behavior than poring through textual
data. In this section we discuss another technique,pattern extraction, that can sim-
plify visualizations by eliminating extraneous detail. Later in this paper we discuss yet
another approach to handling complexity, employing database techniques to structure
the information.

Instead of displaying every nuance of the execution, the pattern extractor analyzes
execution data for recurrences in the calling and reference relationships. Visualiza-



tions can display consolidations of these recurrences, thereby revealing the essential
behavior.

Fig. 2. Reference Pattern view

Fig. 2 shows the result of selecting a Hashtable object in the Histogram view and
then examining its current structure in the Reference Pattern view. Instead of showing
individual instances, the Reference Pattern view groups them by type and reference,
twin squares denoting collections of objects. In the figure we see a square represent-
ing the Hashtable object (far left) that points to an array of Object instances—more
precisely, 329 HashtableEntry objects. These objects contain 413 references to String
objects, which in turn refer to 413 arrays of characters. The original 329 HashtableEn-
try objects themselves refer to 43 others containing references to yet seven others,
along with 75 String instances—and so on. The complete data structure contains more
than 1000 elements, making it difficult to visualize when fully expanded. Visualizing
the pattern of references lets you view and understand this data structure efficiently.

Memory leak analysis

We use the same pattern extraction technique to detect memory leaks. The process for
finding most memory leaks assumes a simple but common scenario. A user-level
operation (for example, the display of a dialog box) creates temporary objects. When
the operation completes (the dialog box is closed), we expect all of the temporary
objects to be released—but some are not.

Fig. 3 illustrates this scenario schematically. The program has reached a stable
state; its object population is shown in the lower area. The user of the program per-
forms an operation that creates temporaries, which appear in the upper area. When the
operation terminates, the program should nullify any reference from the old objects
(lower) to the new objects (upper). As a result, the new objects become garbage to be



collected. Often, however, old objects unexpectedly obtain additional references to
new objects (Fig. 4).

Fig. 3. Ideally, the program will remove any reference from old objects to new ones

Fig. 4. Typically, old objects acquire unaccounted references

A typical case is a registry that acquires a reference to a new object (as shown by
the long arrow on the right in Fig. 4). The programmer may not be aware of this refer-
ence and hence may fail to set this reference to null at the end of the operation. Thus
the garbage collector will not reclaim the new objects.

To debug such a scenario with Jinsight, the programmer identifies a span of execu-
tion that subsumes the lifetime of the temporary objects (for example, the beginning
and end of a user operation). The goal is to identify temporary objects, and any refer-
ences to them, that persist beyond this period.



Fig. 5. Reference Pattern view again

The Reference Pattern view (Fig. 5) helps you identify such objects; they appear in
the gray area of the view. These are the temporary objects that are no longer needed
but cannot be reclaimed due to outstanding references. The white area on the right
contains objects that refer, either directly or indirectly, to the unreclaimed objects.
There are a few common sources of outstanding references to look for:
• References from old-generation objects (sometimes indirectly through other new-

generation objects). Look for names labeled “old” in the white area, which identify
old-generation objects.

• References from static data members. Look for diamonds in the white area, which
represent class objects.

Performance analysis by visualizing event sequences

So far, we have focused on object profiling and memory leaks. Making a program run
faster also requires understanding the structure and sequence of operations in the
program. Performance analysis used to mean finding the hottest method in the pro-



gram, but in most programs that approach would merely return one of Java’s String
methods. Knowing thesequenceof calls in a program is far more helpful.

Consider a sample program from the SQLJ package that retrieves data from a DB2
database. The program executes more slowly than desired. A better understanding of
this program’s execution can be had by examining it in Jinsight’s Execution view
(Fig. 6).

Fig. 6. Execution view

In this view, time proceeds from top to bottom. Each colored stripe represents the
execution of a method on an object. Moving from left to right takes you deeper into
the execution stack. The stripes are color-coded by class. A set (or “lane”) of such



stripes is displayed for each thread in a program. Lanes are arranged left-to-right.
(Only one lane appears in Fig. 6.)

The length of each stripe (reflecting the time spent in each method), the number of
stripes (corresponding to the stack depth), and the colors (denoting classes) character-
ize the behavior of each thread. We can also see the relative timing of events across
threads by comparing lanes.

Four distinct phases are visible in Fig. 6. Passing the mouse cursor over each
phase, the status line at the bottom of the view reveals the methods being invoked:

1. Loading the driver (Class.forName).
2. Making the connection to the database (DriverManager.getConnection).
3. Getting the primary key (sample02_SJProfileKeys.getKey).
4. Getting the results from the database.

Zooming into the final phase reveals a sequence ofnext and println method invoca-
tions, as shown in Fig. 7.

Fig. 7. Portion of final execution phase

Note that theprintln invocations (second stripe from left) are significantly taller
than the interveningnext invocations. This suggests that retrieving results from the
database takes relatively little time. Substantially more time is spent printing them.

The Call Tree view can give us more precise numerical measurements. Fig. 8
shows that in the final phase of the program, 38% of the time is spent printing results,
and 26% is spent printing newlines. Only 32% goes to retrieving the results.



Fig. 8. Call Tree view

This analysis leads to two conclusions:

1. Initialization takes a lot of time (loading the driver, making the connection,
etc.). It is beneficial therefore to pool database connections.

2. The retrieval times were much shorter than expected, thanks to being skewed by
print statements.

Information exploration techniques

A common problem when analyzing program behavior is that information of interest
is scattered, or mingled with unimportant information, making it hard to discern. The
problem can show up as skewed numerical summaries or as visual overload in graphi-
cal views. In any case, key information may be hidden without the right organization.

Fortunately, the user often has valuable knowledge that can help. Jinsight lets users
apply their knowledge to structure the information for visualization and measurement
purposes [2]. Jinsight’s capabilities in this vein are loosely inspired by techniques
commonly found in tools such as OLAP systems for exploring complex databases in
other application domains.

The user can select just a few items of interest (for example, certain unusual-
looking invocations of a method) and navigate to other views to study the detailed or
aggregate behavior of a particular activity. Users may also define their own analysis
units, known asexecution slices,to group related activities together, or to exclude
activity that is outside the scope of study. Execution slices may be used in subsequent
visualizations, for example, as a basis for measurement against other summary units
such as threads, methods, individual invocations, and so forth There are many ways to
define execution slices, ranging from a simple point-and-click in a given view to a full
query capability based on static and dynamic attributes of trace data.



Tracing

Jinsight’s visualizations are based on execution traces. To collect a trace, the user runs
the target program with either a specially instrumented Java virtual machine (for pre-
Java2 platforms) or with a profiling agent and a standard JVM (for Java2 platforms).
The generated trace contains the details of the program’s execution for a user-
specified period of time. Jinsight users have successfully diagnosed numerous prob-
lems on large commercial applications with this approach.

Nevertheless, we have also encountered situations where this approach fell short.
For example, when analyzing high-volume, Web-based applications in vivo, traces
were often too large to visualize feasibly, and the overhead of generating the traces
made the application deviate from its normal behavior. It was necessary to collect
trace information more selectively.

One approach summarizes activity using aggregate statistics: histograms of heap
consumption, tables of method invocation counts and average duration, and aggregate
call graphs. But we found that statistics do not reveal enough of a program’s dynamic
structure (such as the sequence and context of method invocations) to support analy-
ses for which Jinsight had already proven useful. Another approach is to filter
broadly, limiting the trace to invocations of a particular method or class. However,
broad filtering does not scale well, because the filtering criteria are not context-
sensitive. For example, we are likely to be interested not in every String instantiation
but only those driven by a particular type of transaction.

Jinsight supportstask-oriented tracing, which can trace details of a program task
selectively. Task-orientation admits only relevant details while retaining important
contextual and sequencing information. Consider for example a high-volume transac-
tion processing system. While analyzing database activity associated with a certain
type of transaction, you can limit tracing to a few exemplary transactions and the
activity they caused.

Related work

Many systems present program execution information graphically. The work of Zel-
ler, et al. [10, 11], is representative, focusing on the visualization of data structures
and memory. Although the Reference Pattern view presents much the same informa-
tion, Jinsight’s focus is on the combination of control flow and data.

Zeller, et al., also support generalized graph layout for data structure visualization,
within its inherent limitations. Others restrict their visualizations to standardized vis-
ual syntaxes. Mehner [12], for example, employs UML interaction diagrams to reveal
concurrency problems in Java programs. The main limitation of such approaches lies
in their scalability. UML and its competitors were designed in part to be easy for
humans to draw, an irrelevant and limiting constraint in the context of execution visu-
alization.

Still other visualization systems emphasize flexibility. BLOOM [8] has facilities
for static and dynamic data collection and a wide range of data analyses, plus a visual
query language for specifying the data to explore using a variety of 2D and 3D visu-



alizations. Its scripting capabilities promote experimentation with new visualizations.
Stasko, et al. [9], offer similar flexibility for experimenting with visualizations.

Systems like these are well suited to experimentation. In practice, however, it is
more important to have a small number of visualizations optimized for particular
tasks. For example, Jinsight helps reveal memory leaks through a simple process
applied through a specialized visualization, the Reference Pattern view. Admittedly, it
is impractical to expect a predefined view for every conceivable problem. But it is
equally impractical to expect end-users to create effective views on their own, no
matter how flexible the visualization environment. The key to this quandary is to
foster synergies among predefined views, as Jinsight’s navigation and slicing tech-
niques afford. A small number of visualizations may thus address a combinatorial
number of problems.

All this is predicated on visual abstractions that can deal with the glut of execution
information. Various organizing abstractions have been used to filter execution in-
formation or group it into larger units. Sefika, et al. [13], use large architectural units,
and Walker, et al. [14], introduce additional structural units as organizing principles.
Dynamic relationships too are frequently used to organize information, for example,
into call trees as in OptimizeIt [15]. Several systems also use queries of execution
information to let the user filter out extraneous information and focus on an aspect of
interest. The Desert system [16] provides a powerful query capability against static
and dynamic information for various types of program understanding applications, as
Hy+/GraphLog [17] does for analyzing distributed and parallel programs. Snod-
grass [18] allows queries to be used for analyzing operating system behavior, and
Lencenvicius [19] uses queries to debug live programs.

Our approach differs significantly from pure query-based systems. While powerful,
those systems depend on their user to be sophisticated enough to set up meaningful
visualizations and summary computations. By providing a query capability in the
context of higher-level, domain-specific analysis units, Jinsight can introduce task-
oriented specification, visualization, and summarization techniques that hide query
language complexity from the user. Execution slicing coupled with view navigation
offers proven scalability as well, having been employed successfully on production
systems comprising over 5000 classes.

Future work

Jinsight currently assumes the visualized application runs on a single JVM. Yet large
production systems typically employ multiple JVMs, often across a network. Tracing
and visualizing distributed Java programs presents new challenges: events have to be
collected from different machines, timestamps might not be uniform, the system may
have partial failures and concurrency problems, and many more. We are currently
building a distributed version of Jinsight that will permit visualization across JVMs.

Real distributed systems are also heterogeneous, with middleware such as data-
bases, HTTP servers, and message queuing systems in addition to Java components.
We plan to extend our visualization environment to collect trace information from



these non-Java sources. Our intent is to provide integrated visualizations for end-to-
end transaction processing.

Creating Jinsight in an industrial research setting has given us the freedom to ex-
plore while having access to real customers who can put our prototypes through their
paces. Indeed, fieldwork has driven our research. It reveals the problems developers
are struggling with, and it helps us identify future problems and opportunities. Early
customer trials are also invaluable for validating features. Some features may prove
inadequate or irrelevant, while those crucial to solving certain problems prove lack-
ing.

We exploit these characteristics through a three-stage development cycle lasting up
to twelve months. First we exercise each new prototype ourselves on a difficult cus-
tomer case, tweaking the prototype as needed. Then we release the prototype on the
IBM Intranet for our colleagues’ use, carefully noting their feedback. Finally, we
release a version for general consumption onwww.alphaWorks.ibm.com. Underused
features, however intriguing, tend to be weeded out through this process, thus avoid-
ing feature creep and ensuring the remainder has proven worth.

Conclusion

Jinsight offers unique capabilities for managing the information overload typical of
performance analysis. Through a combination of visualization, pattern extraction,
interactive navigation, database techniques, and task-oriented tracing, vast amounts of
execution information may be analyzed intensively, making it easier to understand,
debug, and tune programs of realistic size and running time.

Acknowledgements

We thank our colleagues Olivier Gruber, Ravi Konuru, Harini Srinivasan, and Mark
Wegman for their contributions to Jinsight’s development and for many valuable
discussions. We are also grateful to our interns and to our users for their help and
feedback.

References

[1] De Pauw, W., Mitchell, N., Robillard, M., Sevitsky, G., Srinivasan, H. Drive-by analysis
of running programs.Proceedings for Workshop on Software Visualization, International
Conference on Software Engineering, Toronto, Ontario, May 2001.

[2] Sevitsky, G., De Pauw, W., Konuru, R. An information exploration tool for performance
analysis of Java programs.Proceedings of Technology of Object-Oriented Languages
and Systems (TOOLS Europe), Zürich, Switzerland, March 2001, pp. 85-101.

[3] De Pauw, W., Sevitsky, G. Visualizing reference patterns for solving memory leaks in
Java.Concurrency: Practice and Experience(2000) 12:1431–1454.



[4] De Pauw, W., Sevitsky, G. Visualizing reference patterns for solving memory leaks in
Java. ECOOP ’99, Lisbon, Portugal, June 1999.Lecture Notes in Computer Science
Vol. 1628, Springer Verlag, pp. 116–134.

[5] De Pauw, W., Lorenz, D., Vlissides, J., Wegman, M. Execution patterns in object-
oriented visualization.Proceedings of the Fourth Conference on Object-oriented Tech-
nologies and Systems (COOTS), Santa Fe, New Mexico, April 1998, pp. 219–234.

[6] De Pauw, W., Kimelman, D., Vlissides, J. Modeling object-oriented program execution.
ECOOP ’94, Bologna, Italy, July 1994.Lecture Notes in Computer Science Vol. 821,
Springer Verlag, pp. 163–182.

[7] De Pauw, W., Helm, R., Kimelman, D., Vlissides, J. Visualizing the behavior of object-
oriented Systems,OOPSLA ’93 Conference Proceedings, Washington, D.C., September
1993, pp. 326–337.

[8] Reiss, S. An overview of BLOOM.Proceedings of Program Analysis for Software Tools
and Engineering (PASTE ’01), Snowbird, Utah, June 2001, pp. 2–5.

[9] Jerding, D. and Stasko, J. The information mural: A technique for displaying and navi-
gating large information spaces.IEEE Transactions on Visualization and Computer
Graphics, July–September 1998, 4(3):257–271.

[10] Zimmermann, T. and Zeller, T. Visualizing memory graphs (this volume).
[11] Zeller, A., Lütkehaus, D. DDD—A free graphical front-end for UNIX debuggers.ACM

SIGPLAN Notices, January 1996, 31(1):22–27.
[12] Mehner, K. JaVis: A UML-based visualization and debugging environment for concur-

rent Java programs (this volume).
[13] Sefika, M., Sane, A., Campbell, R. Architecture-oriented visualization.OOPSLA ’96

Conference Proceedings. San Jose, California, October 1996. Published asSIGPLAN No-
tices, 31(10):389–405.

[14] Walker, R. J., Murphy, G., Freeman-Benson, B., Wright, D., Swanson, D., Isaak, J.
Visualizing dynamic software system information through high-level models.
OOPSLA ’98 Conference Proceedings, Vancouver, British Columbia, October 1998.
Published asSIGPLAN Notices, 33(10):271–283.

[15] OptimizeIt Web Site, http://www.optimizeit.com/oproductinfo.html.
[16] Reiss, S. Software Visualization in the desert environment.Proceedings of Program

Analysis for Software Tools and Engineering (PASTE ’98), Montreal, Quebec,
June 1998. pp. 59–66.

[17] Consens, M., Hasan, M., Mendelzon, A. Visualizing and querying distributed event
traces with Hy+.Lecture Notes in Computer Science, Vol. 819, Springer Verlag, 1994,
pp. 123–141.

[18] Snodgrass, R. A relationalapproach to monitoring complex systems.ACM Transactions
on Computer Systems, May 1988, 6(2):157–196.

[19] Lencenvicius R., Hoelzle, U., Singh, A. K. Dynamic query–based debugging. ECOOP
’99, June 1999, Lisbon, Portugal.Lecture Notes in Computer Science, Vol. 1628,
Springer Verlag, pp. 135–160.


