
a way to track
data structure evolution,
cheaply and automatically

Nick Mitchell
nickm@us.ibm.com

IBM TJ Watson Research Center
Hawthorne, New York, USA

December 4, 2003

our three constraints
(framework-intensive applications are fun!)

● as automated as possible
– no shallow patterns identify the bug

(not dominant type or allocation site or biggest data structure, not even diff'd over time)

– application-level memory management
(caches, pools, lazy pools, lazy or asynchronous deallocation policies)

– sandwiching effects
(the framework is the driver, your application is just along for the ride)

● scale to gigantic heaps
– e.g. 40 million objects on a laptop, analyzed in a few minutes

● impose minimal perturbation
– time and space perturbation on the server must be in the noise

the common datatypes don't
help diagnose problems with

structure evolution

live instances
java/lang/String 230025
com/ibm/servlet/util/HashtableEntry 92825
java/util/Hashtable$Entry 59727
org/apache/xerces/dom/TextImpl 15627
org/apache/xerces/dom/AttrImpl 11278
org/apache/xalan/xpath/xml/StringToStringTable 11204
... ...
org/apache/xerces/dom/DocumentImpl 52

the big data structures
are... big, not bugs

 # constituents
com/ibm/servlet/DynamicClassLoader 82882
com/ibm/servlet/DynamicClassLoader 73537
com/.../XSLTransform 71628
com/.../PropertiesFactory 66957
elements of Finalizer queue 39886
org/apache/xalan/xslt/TemplateList 28969
owned by native code 18829
... ...

if we wait long enough, then the
leaking data structure will float to the top;

otherwise, noise effects dominate

our three constraints
(framework-intensive applications are fun!)

● as automated as possible
– no shallow patterns identify the bug

(not dominant type or allocation site or biggest data structure, not even diff'd over time)

– application-level memory management
(caches, pools, lazy pools, lazy or asynchronous deallocation policies)

– sandwiching effects
(the framework is the driver, your application is just along for the ride)

● scale to gigantic heaps
– e.g. 40 million objects on a laptop, analyzed in a few minutes

● impose minimal perturbation
– time and space perturbation on the server must be in the noise

object reference graphs are
getting very large

m
il

li
on

s
of

 o
bj

ec
ts

250 thousand in 1/2002

14 million in 11/2003

our three constraints
(framework-intensive applications are fun!)

● as automated as possible
– no shallow patterns identify the bug

(not dominant type or allocation site or biggest data structure, not even diff'd over time)

– application-level memory management
(caches, pools, lazy pools, lazy or asynchronous deallocation policies)

– sandwiching effects
(the framework is the driver, your application is just along for the ride)

● scale to gigantic heaps
– e.g. 40 million objects on a laptop, analyzed in a few minutes

● impose minimal perturbation
– time and space perturbation on the server must be in the noise

categories of
evolution

the whole reference graph

categories of
region evolution

XML
documents

a region is a subset of objects
equivalent in the way they evolve

categories of
region evolution

XML
documents

categories of
region evolution

growing
without bound

(a leak)

categories of
region evolution

growing
without bound

(a leak)

transient
(transaction-local)

constituency
is in flux
(hot cache)

constituency
doesn't change

(a pool)

shrinking
(cold cache)

regions as equivalence clases

XML
documents

a region is a subset of objects
equivalent in the way they evolve

category
of evolution

canonical
equivalence key

region k , c

when a region grows...

when a region grows...

XML

 doh! leaked an XML document

when a region grows...

XML

 doh! leaked an XML document

 currently on the fringe
(i.e. a newbie pointed

to by an oldie)

when a region grows...

we can observe a fringe

XML

XML
 currently on the fringe

for each region, we can also

infer a historic fringe

XML

XML

currently on the fringe

at some point in the past, on the fringe

finally, verify that the
region evolves as expected

XML

XML

currently on the fringe

at some point in the past, on the fringe

XML?

(maybe) in the future, on the fringe

three tasks of
evolution analysis

XML

XML

observe the present

infer the past

validate using future info

XML?

a way to diagnose heap
evolution, in production

● collect a few heap snapshots

● observe what is on the fringe
– yields a set of “seed” region keys

● infer what was on the fringe
– yields regions populated based on region key equality

● validate by adaptive tracing
– generate a set of change detectors that monitor violations or

confirmations of a region's category of evolution

– periodically execute a detector to refine category, set of change
detectors, and quantification of how evolution is progressing

how do we implement all that?

● what's a region key?
– a tuple of features that summarize that region's evolution

– each object gets a key, set of canonical keys is the set of regions

● can we avoid presenting, tracking every region?
– yup! a mixture model reduces from millions of regions to a handful

● what's a region change detector?
– a short path traversal of the program's running heap that sees if

additions, removals, or internal relinking of a region has occured

● can we avoid modeling every region?
– use the historic fringe to identify and model only the subsets of the

reference graph likely to evolve in ways the analysis cares about

how do we implement all that?

● what's a region key?
– a tuple of features that summarize that region's evolution

– each object gets a key, set of canonical keys is the set of regions

● can we avoid presenting, tracking every region?
– yup! a mixture model reduces from millions of regions to a handful

● what's a region change detector?
– a short path traversal of the program's running heap that sees if

additions, removals, or internal relinking of a region has occured

● can we avoid modeling every region?
– use the historic fringe to identify and model only the subsets of the

reference graph likely to evolve in ways the analysis cares about

how do we implement all that?

● what's a region key?
– a tuple of features that summarize that region's evolution

– each object gets a key, set of canonical keys is the set of regions

● can we avoid presenting, tracking every region?
– yup! a mixture model reduces from millions of regions to a handful

● what's a region change detector?
– a short path traversal of the program's running heap that sees if

additions, removals, or internal relinking of a region has occured

● can we avoid modeling every region?
– use the historic fringe to identify and model only the subsets of the

reference graph likely to evolve in ways the analysis cares about

how do we implement all that?

● what's a region key?
– a tuple of features that summarize that region's evolution

– each object gets a key, set of canonical keys is the set of regions

● can we avoid presenting, tracking every region?
– yup! a mixture model reduces from millions of regions to a handful

● what's a region change detector?
– a short path traversal of the program's running heap that sees if

additions, removals, or internal relinking of a region has occured

● can we avoid modeling every region?
– use the historic fringe to identify and model only the subsets of the

reference graph likely to evolve in ways the analysis cares about

when are two objects
in the same region?

Vector [ObjectXSLTEngineImplXSLTransform

DocumentImpl ElementImpl

ElementImplDocumentImpl

recall that we're leaking XML documents
(and so these two dudes are on the historic fringe)

...

...

...

...

when are two objects
in the same region?

Vector [ObjectXSLTEngineImplXSLTransform

DocumentImpl ElementImpl

ElementImplDocumentImpl

all objects “below” the historic fringe
have equal region keys

(each DocumentImpl is a proxy
for its dominated evolution)

...

...

...

...

k
1

k
2

k
3

k
4

k 1=k 2=k 3=k 4=k

these two objects
have different keys

Vector [ObjectXSLTEngineImplXSLTransform

DocumentImpl

DocumentImpl

Keytable

...

...

k
5

region=leak , k 

same array, but not on
the same historic fringe

k5≠k

feature #1:

historic fringe datatype

Vector [ObjectXSLTEngineImplXSLTransform

DocumentImpl

DocumentImpl

Keytable

...

...

these two objects also
have different keys

Vector [ObjectXSLTEngineImplXSLTransform

DocumentImpl

DocumentImpl

[Hashtable$EntryHashtableTemplateCache DocumentImpl

k
5

...

...

region=leak , k 

same fringe type, but
different data structure

k5≠k

feature #2:
root data structure

Vector [ObjectXSLTEngineImplXSLTransform

DocumentImpl

DocumentImpl

[Hashtable$EntryHashtableTemplateCache DocumentImpl

...

...

these two objects also
have different keys

Vector [ObjectXSLTEngineImplXSLTransform

DocumentImpl

DocumentImpl

DocumentImplStack [Object

region=leak , k 

...

...

same owner, same fringe type,
but different path between them

k5≠k k
5

feature #3:

owning container

Vector [ObjectXSLTEngineImplXSLTransform

DocumentImpl

DocumentImpl

DocumentImplStack [Object

...

...

to each object,
a region key tuple

Vector [ObjectXSLTEngineImplXSLTransform

C: change proxy

DocumentImpl ElementImpl

ElementImplDocumentImpl

L: leak root

O: owner proxy

...

...

...

...

k=[L ,O , typeof C ]

how do we implement all that?

● what's a region key?
– a tuple of features that summarize that region's evolution

– each object gets a key, set of canonical keys is the set of regions

● can we avoid presenting, tracking every region?
– yup! a mixture model reduces from millions of regions to a handful

● what's a region change detector?
– a short path traversal of the program's running heap that sees if

additions, removals, or internal relinking of a region has occured

● can we avoid modeling every region?
– use the historic fringe to identify and model only the subsets of the

reference graph likely to evolve in ways the analysis cares about

how do we avoid presenting
and tracking every region?

Define leak root metric, LRM=B°M°G, such that each
leaking region has one o with LRM(o)>0, and few
o's have LRM(o)>.

● B: eight binary rules to rule out impossible
– (be Sherleak Holmes!)

– narrow from a million to a hundred

● M: mixture model to rank the remaining
– narrow from a hundred to tens

● G: global fixpoint to ensure uniqueness
– narrow from tens to a handful of highly-ranked leak roots

B: ruling out the impossible
(using structural information)

 fraction of objects remaining
objects -A -A-B -A-B-C -A-B-C-D

phone company 267,956 0.67 0.59 0.09 0.06
IDE 350,136 0.61 0.55 0.09 0.07
brokerage1 838,912 0.65 0.62 0.07 0.03
brokerage2 1,015,112 0.71 0.70 0.02 0.01
credit bureau 1,320,953 0.60 0.56 0.11 0.08

A. objects pointing to nothing
aren't very interesting

B. arrays themselves don't leak
(but their dominating containers might)

C. ibid for objects not at the head
of a single-entry region

D. objects which don't uniquely own
anything also aren't interesting

A
D

D
C B

D

A

B: ruling out the impossible
(using temporal information)

objects remaining
objects -structural -E -E-F -E-F-G all told

phone company 267,956 16,346 73 73 72 29
IDE 350,136 25,653 99 99 29 10
brokerage1 838,912 26,291 97 82 81 67
brokerage2 1,015,112 12,020 102 102 64 17
credit bureau 1,320,953 160,900 579 519 518 242

E. ignore structures that contain
only old or only new objects

(e.g. an already-primed pool)

F. structures that contain only
new arrays are borinng

(theres nothing new in those arrays) H. structures that contain no objects
on the fringe are safe to ignore

G. ignore structures with no overlap
in datatypes over time

constituents size rank LRM(o)
com/.../EventNotifier 377276 1 0.895
com/.../FormProperties 270 157 0.658
com/.../XslTemplateCollection 32 841 0.463
com/.../VerifySignonScenario 18 1050 0.420

of the highest-ranked candidate roots,
the top two indeed leak

(from 1,015,112 live objects)

LRM=B°M°G, for example
(before applying the bug fixes)

LRM=B°M°G, for example
(after applying the bug fixes)

constituents size rank LRM(o)
com/websphere/AlarmThread 399 130 0.322
com/.../ContextModel 837 86 0.266
com/websphere/PoolManager 391 134 0.260
com/websphere/PoolEpm 385 137 0.254

after fixing the leak,
there are no stand-out candidates

(from 779,540 live objects)

how do we implement all that?

● what's a region key?
– a tuple of features that summarize that region's evolution

– each object gets a key, set of canonical keys is the set of regions

● can we avoid presenting, tracking every region?
– yup! a mixture model reduces from millions of regions to a handful

● what's a region change detector?
– a short path traversal of the program's running heap that sees if

additions, removals, or internal relinking of a region has occured

● can we avoid modeling every region?
– use the historic fringe to identify and model only the subsets of the

reference graph likely to evolve in ways the analysis cares about

detecting evolution cheaply

● a region evolves when elements are
– added to

– removed from

– relinked within

● track evolution with region change detectors

detecting evolution cheaply

● a region evolves when elements are
– added to

– removed from

– relinked within

● track evolution with region change detectors

● a detector is a tuple [R,H,T,B,P,M]
– R: region to detect changes in

– H,T: the head and tail of a short, bounded-size traversal

– B: a sample bias

– P: a match precondition

– M: a mutator, updates the set of existing detectors

leakbot in action

just after
initial analysis

about one
minute later

and another
few minutes...

is downgraded

a non-leaking
region

over time...

final stuff

● analysis handles 40 million objects with 600M
● adaptive, online tracing slows app down only 2%
● can identify very slow leaks in a few minutes
● implemented as a JVMPI agent (written in C++)

and an analyzer (written in Java)
● going into WebSphere and Rational Studio

final stuff

● analysis handles 40 million objects with 600M
● adaptive, online tracing slows app down only 2%
● can identify very slow leaks in a few minutes
● implemented as a JVMPI agent (written in C++)

and an analyzer (written in Java)
● going into WebSphere and Rational Studio

● thanks to the team! Bowen Alpern, Glenn Ammons, Vas Bala,
Herb Derby, Todd Mummert, Darrell Reimer, Gary Sevitsky,
Edith Schonberg, Harini Srinivasan, Kavitha Srinivas

– JIT/BCI interface for efficient bytecode-level probing (going into J9)

– rules-based validation system (going into Rational Studio)

– automated performance analysis (ongoing)

factoring out objects via heap
differencing is insufficient

“new” live instances
java/lang/String 9444
org/apache/xerces/dom/TextImpl 6810
org/apache/xerces/dom/AttrImpl 5290
java/util/Hashtable$Entry 3244
org/apache/xerces/dom/NamedNodeMapImpl 2713
org/apache/xerces/dom/ElementImpl 2123
... ...
org/apache/xerces/dom/DocumentImpl 27

an atom of a leak
(every leaking operation leaks lots of these objects)

you're leaking Strings
String

a bowl leaks
(every leaking operation leaks one of these data structures)

String

a whole leaking
bowl of spaghettiDocumentImpl

TextImplTextImpl

NamedNodeMapImplNamedNodeMapImpl

AttrImplAttrImpl

ElementImplElementImpl

VectorVector

arraysarrays AttrImplAttrImpl
(an XML document)

leakbot and its loops

snapshot the heap

recontruct regions

generate region change detectors

rank regions

dotimes(N) {
d=next detector
if(d.B > rand()) {

traverse from d.H to d.T
if(d.P(d.T)) {

d.M()
}

}
sleep

}

sleep

Strategies for Dissecting
Leaks

(and some problems with each)

● histogram by datatype
– Strings are in every data structure

● histogram by allocation site
– Strings are allocated everywhere

– expensive (c.f. HPROF's 5-10x slowdown)

● visualize reference graph
– an application doesn't just leak objects, it leaks entire (and entirely

ugly) data structures

– c.f. Jinsight, JProbe, Purify

Summary of the LeakBot
Technique

● structure live objects into Co-evolving Regions
– portions of data structures which change in similar ways

● rank regions according to likelihood of problem
– only present to user those regions likely to leak, the suspects

– e.g. of Schwab's 1M live objects, leakbot identifies three suspects

● track evolution of regions as program runs
– treat structuring and ranking as initial estimates

● e.g. we might have caught a pool being populated – it'll eventually plateau

– from them, derive a scheme for very lightweight probing

– verify whether initial estimates correct, and update ranking

o
n

lin
e
 m

o
d

e
o
fflin

e
 m

o
d

e

M: the mixture model

● no single property is entirely indicative
● instead, use gated mixure of them all

instances newer on-stack on-fringe type overlap
EventNotifier 377,276 34% 0 44 33%
ThreadDiscriminator 274,433 2% 455 52 13%
FormProperties 270 97% 50 3 100%
XslTemplateCache 32 90% 0 1 40%
VerifySignonScenario 18 11% 1 1 50%

e.g. gating function

this application had two leaks

