Precise detection of memory leaks

Jonas Maebe, Michiel Ronsse, Koen De Bosschere

Ghent University, ELIS Department, Belgium

presented by Jaroslav Sev&ik

Precise detection of memorv leaks —= n. 1/8



Overview
* Memory leak — failure to release memory:.

* Focus on physical memory leaks
 ...memory block is physically lost
 Does not occur In Java

 Logical memory leaks
 ...memory block referenced but never used.

 Uses dynamic instrumentation

Precise detection of memorv leaks — p. 2/8



Analysis results

Output:

List of memory leaks including:
e Occurence count
« Allocation site

» Information about the last reference
 Where It was created
 \Where i1t was lost

Precise detection of memorv leaks — p. 3/8



Detection

 Based on reference counting

« Uses a dynamic instrumentation framework
* Intercepts all memory-related calls and write
operations
» Keeps track of:
« List of all allocated and freed memory blocks
« List of all references in memory
« ...Including stack traces.

« If last reference to block lost
... potential (why?) leak is recorded

Precise detection of memorv leaks — n. 4/8



Memory leak verification

Why is It potential?
« E.g. reference In registers.

= verification (when the same leak detected or at the
end):

o Was It freed in the meantime?

e \Was It used?
...then someone had to touch the block, hence

» There must be a reference in a register or
» Hidden reference via pointer arithmetics.

Check succeeds =- the leak Is deemed permanent.

Precise detection of memorv leaks — np. 5/8



Imprecisions

False positives:
 Returning the last reference in a register.
» References via pointer arithmetics.

« Overwriting only part of a pointer or writing byte
by byte.

False negatives:

« Random memory content = address of a block. . .
... C can’t use reflection to tell them apart

 Leaked cycles.

Precise detection of memorv leaks — n. 6/8



Evaluation

Tested on
* Vimand lynx — no recurring memory leak.

 Fortran parallel transformer — memory leak
discovered (50000+ lines of C++ code).

Performance impacts:
 Slowdown factor 200-300
« Memory consumption factor - approximately 2

Precise detection of memorv leaks — p. 7/8



Conclusion

« The most important features are:
« Dynamic instrumentation
« Information about the last reference

Lot of C-related technicalities.

* Not very applicable to Java

« Surprisingly low memory overhead ...
e ...and surprisingly slow

Precise detection of memorv leaks — p. 8/8



	Overview
	Analysis results
	Detection
	Memory leak verification
	Imprecisions
	Evaluation
	Conclusion

