
Precise detection of memory leaks
Jonas Maebe, Michiel Ronsse, Koen De Bosschere

Ghent University, ELIS Department, Belgium

presented by Jaroslav Ševčı́k

Precise detection of memory leaks – p. 1/8



Overview
• Memory leak – failure to release memory.

• Focus on physical memory leaks
• . . . memory block is physically lost
• Does not occur in Java

• Logical memory leaks
• . . . memory block referenced but never used.

• Uses dynamic instrumentation

Precise detection of memory leaks – p. 2/8



Analysis results

Output:

List of memory leaks including:
• Occurence count
• Allocation site
• Information about the last reference

• Where it was created
• Where it was lost

Precise detection of memory leaks – p. 3/8



Detection

• Based on reference counting
• Uses a dynamic instrumentation framework

• Intercepts all memory-related calls and write
operations

• Keeps track of:
• List of all allocated and freed memory blocks
• List of all references in memory
• . . . including stack traces.

• If last reference to block lost
. . . potential (why?) leak is recorded

Precise detection of memory leaks – p. 4/8



Memory leak verification

Why is it potential?

• E.g. reference in registers.

⇒ verification (when the same leak detected or at the
end):

• Was it freed in the meantime?
• Was it used?

. . . then someone had to touch the block, hence
• There must be a reference in a register or
• Hidden reference via pointer arithmetics.

Check succeeds ⇒ the leak is deemed permanent.

Precise detection of memory leaks – p. 5/8



Imprecisions
False positives:

• Returning the last reference in a register.
• References via pointer arithmetics.
• Overwriting only part of a pointer or writing byte

by byte.

False negatives:
• Random memory content = address of a block. . .

. . . C can’t use reflection to tell them apart
• Leaked cycles.

Precise detection of memory leaks – p. 6/8



Evaluation

Tested on
• Vim and lynx – no recurring memory leak.
• Fortran parallel transformer – memory leak

discovered (50000+ lines of C++ code).

Performance impacts:
• Slowdown factor 200-300
• Memory consumption factor - approximately 2

Precise detection of memory leaks – p. 7/8



Conclusion

• The most important features are:
• Dynamic instrumentation
• Information about the last reference

• Lot of C-related technicalities.
• Not very applicable to Java
• Surprisingly low memory overhead . . .
• . . . and surprisingly slow

Precise detection of memory leaks – p. 8/8


	Overview
	Analysis results
	Detection
	Memory leak verification
	Imprecisions
	Evaluation
	Conclusion

