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Overview
* Memory leak — failure to release memory:.

* Focus on physical memory leaks
 ...memory block is physically lost
 Does not occur In Java

 Logical memory leaks
 ...memory block referenced but never used.

 Uses dynamic instrumentation
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Analysis results

Output:

List of memory leaks including:
e Occurence count
« Allocation site

» Information about the last reference
 Where It was created
 \Where i1t was lost
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Detection

 Based on reference counting

« Uses a dynamic instrumentation framework
* Intercepts all memory-related calls and write
operations
» Keeps track of:
« List of all allocated and freed memory blocks
« List of all references in memory
« ...Including stack traces.

« If last reference to block lost
... potential (why?) leak is recorded
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Memory leak verification

Why is It potential?
« E.g. reference In registers.

= verification (when the same leak detected or at the
end):

o Was It freed in the meantime?

e \Was It used?
...then someone had to touch the block, hence

» There must be a reference in a register or
» Hidden reference via pointer arithmetics.

Check succeeds =- the leak Is deemed permanent.
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Imprecisions

False positives:
 Returning the last reference in a register.
» References via pointer arithmetics.

« Overwriting only part of a pointer or writing byte
by byte.

False negatives:

« Random memory content = address of a block. . .
... C can’t use reflection to tell them apart

 Leaked cycles.
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Evaluation

Tested on
* Vimand lynx — no recurring memory leak.

 Fortran parallel transformer — memory leak
discovered (50000+ lines of C++ code).

Performance impacts:
 Slowdown factor 200-300
« Memory consumption factor - approximately 2
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Conclusion

« The most important features are:
« Dynamic instrumentation
« Information about the last reference

Lot of C-related technicalities.

* Not very applicable to Java

« Surprisingly low memory overhead ...
e ...and surprisingly slow
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