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PROLANGS

http://prolangs.rutgers.edu

- Research projects at boundary of Programming
Languages/Compilers and Software Engineering

- Algorithm design and prototyping

* Mature research projects
- Pointer analysis of C programs

- Side-effect analysis of C systems

- Semantic software change anal

ysis

- Studies of Java exception usages
- PROLANGS Analysis Framework (PAF), version

1.1 released June 1999
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Ongoing Research

+ Object-oriented systems (C++/Java)
- Analysis

* Points-to, side-effect analyses POPL'99, OOPSLA'01, ISSTA'02,
ICSM'02

 Change impact analysis (with Frank Tip, IBM) PASTE'O1

- Optimization
* Profiling framework for feedback-directed optimization PLDI'O1
- Experience with feedback-directed optimization OOPSLA'02

Static/dynamic analyses of application resource usage
(with Rich Martin and Thu Nguyen, Rutgers)

Analysis of program fragments FsE'99, cc'01, ICSE'03
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Points-to Analysis for Java

* Which objects may reference

variable x point to?

* Builds a points-to graph

X = new A();
Yy = new B();
X.f =y;
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Uses of Points-to Information
in Compilers

Object read-write information

- Side-effect analysis, dependence
analysis

Call graph construction
- Devirtualization & inlining

Synchronization removal

Stack-based object allocation
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Uses of Points-to Information
in Software Engineering Tools

+ Object read-write information
- Semantic browers
- Program slicers

- Debuggers
+ Change impact analysis tools
- Testing
- Object relationships (Object relation diagrams)

- Program-based coverage metrics
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Contributions

Points-to Analyses for Java using
annotated constraints

» Initial analysis based on Andersen's
analysis for C, OOPSLA'O1

- Annotations embody OO notions needed

- Maintained efficient constraint-based
implementation

- Empirical evaluation of cost and precision
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Contributions

+ Object-sensitive analysis, ISSTA'02
- Adding context sensitivity

- Parameterization framework

- Empirical evaluation demonstrates more
precision for same cost
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Points-to Analysis, OOPSLA'O1

* Handles virtual calls
- Simulates the run-time method lookup

* Models the fields of objects

+ Analyzes executable code

- Ignores unreachable code from libraries
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Points-to Analysis in Action

A.m() not analyzed because

it’s unreachable. 3
class A { void m(X p) {..} } \
class B extends A
: { b > 04
| void m(Xa) € thisf=a; > Va
thisg f
\ 4
: / .
q
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Efficient Implementation

+ Constraint-based approach

- Extends previous work for C pointer analysis
using BANE (UC Berkeley)

- Extended constraint system and resolution rules
* Define and solve a system of annotated
set-inclusion constraints to obtain points-
o sets
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Annotated Constraints

+ Form: L C_ R
- L and R denote set expressions
- Annotation a: additional information
(e.g., object fields)
+ Kinds of set expressions L and R
- Set variables: represent points-to sets
- ref terms: represent objects
- Other kinds of expressions
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Set variables and ref terms

- Set variables represent points-to sets

- For each reference variable p: V;

- For each object o: V

+ Object o is denoted by term ref(o,V,)

P

O

0,
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ref(o,V,) C Vp

ref(o,,V,,) & V,,
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Example: Accessing Fields

q = new B();

p-f = q;
P > 04
lf
q > 0,

Java Points-to, 12/02, BGR

ref(o,Vp,) & V

Vv
Vv

= Vq
» & proj(ref,W)

q St W

Constraint generation
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Example: Solving Constraints

Constraint resolution

WC Vg o,.f points to o,

Vq St Vo, @
ref(o,,Vp,) &¢ Vo,
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Example: Virtual Calls

p.m(x); = Vp Sm lam(V,)

receiver objecto = ref(o,Vg) © Vp

Actual method vV, C V,

called, A.m
ref(o,Vg) € Vinisca.m)
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Experiments

+ 23 Java programs: 14 - 677 user classes

- Added the necessary library classes
- Machine: 360 MHz, 512Mb SUN Ultra-60

» Cost measured in time and memory

* Precision (wrt usage in client analyses and
tranformations)
- Object read-write information
- Call graph construction
- Synchronization removal and stack allocation
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Analysis Time
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Resolution of Virtual Call Sites
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Thread-local new sites
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Practical Points-to Analyses
for Java, ISSTA'02

- Existing analyses were flow- and context-
insensitive extensions of C analyses

+ Context insensitivity inherently
compromises precision for object-oriented
languages

* Goal: Introduce context sensitivity and
remain practical
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Example: Imprecision

class Y extends X { ... }

class A {
X f;

Java Points-to, 12/02, BGR
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Imprecision of
Context-insensitive Analysis

* Does not distinguish contexts for
instance methods and constructors

- States of distinct objects are merged
»+ Common OO features and idioms

- Encapsulation
- Inheritance
- Containers, maps and iterators
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Object-sensitive

Points-to Analysis
Object sensitivity

- Form of context sensitivity for flow-insensitive
points-to analysis of OO languages

Object-sensitive Andersen’s analysis
- Object sensitivity applicable to other analyses

Parameterization framework
- Cost vs. precision tradeoff

Empirical evaluation
- Vs. context-insensitive OOPSLA'O1 analysis
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Details

- Instance methods and constructors
analyzed for different contexts

* Receiver objects used as contexts

* Multiple copies of reference variables

0,
this.f=q ™ | this)i.f=q°1
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Example: Object-sensitive

Analysis
class A { f
void m(Xa){ —— _
this22.f=q%3; } |this,,, q’
¥ 5

. 03 O3
A a = new A() ; this, 9
a.m(new X()) ;
A aa = new A() ;
aa.m(new Y()) ; aa—0; [ m
Java Points-to, 12/02, BGR RUTGERS 27
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Implementation

+ Implemented one instance of
parameterization framework

- this, formals and return variables
(effectively) replicated

- Optimized constraint-based analysis
using previous technique

- Comparison with OOPSLA'O1 analysis
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Empirical Results

+ 23 Java programs: 14 - 677 user classes
- Added the necessary library classes
- Machine: 360 MHz, 512Mb, SUN Ultra-60

- Object Sensitive vs. OOPSLA'O1 points-to

* Found comparable cost with better precision

* Modification side-effect analysis
* Virtual call resolution
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Analysis Time
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Side-effect Analysis:
Modified Objects Per Statement
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Percent

Improvement in Resolved Calls
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Related Work

+ Context-sensitive points-to analysis for OO
languages
- Grove et al. OOPSLA'97, Chatterjee et al. POPL'99,
Ruf PLDI'00, Grove-Chambers TOPLAS'O1

+ Context-insensitive points-to analysis for OO
languages
- Liang et al. PASTE'O1

+ OContext-sensitive class analysis

- Oxhoj et al. ECOOP'92, Agesen SAS'94,
Plevyak-Chien OOPSLA'94, Agesen ECOOP'95, Grove et al.
OOPSLA'97, Grove-Chambers TOPLAS'0O1
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Summary

* Defined two new points-to analyses
for references in OOPLs using
annotated constraints

+ Context-insensitive analysis
(OOPSLA'01)
- Based on Andersen'’s points-to for C

- Practical cost and good precision wrt
client analyses and transformations
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Summary

+ Object-sensitive (context-sensitive)
points-to analysis -
- New kind of context sensitivity for flow-
insensitive analysis

- Parameterization framework allows tunable
algorithm choice

- Practical cost, comparable to OOPSLA'O1
analysis

- Better precision than OOPSLA'O1 analysis
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Number of new X() whose objects

are accessed by p.f

100%

B More than three

] Two or three

Bl One
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Parameterization

* Goal: tunable analysis

* Multiple copies for a subset of variables
- For the other variables a single copy

* Result: reduces points-to graph size and
analysis cost

- At the expense of precision loss
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