Points-to Analysis for Java
Using Annotated Constraints™

Dr. Barbara 6. Ryder
Rutgers University

http://www.cs.rutgers.edu/~ryder

http://prolangs.rutgers.edu/

*Joint research with Atanas Rountev and Ana
Milanova, supported by NSF-CCR 9900988.

Java Points-to, 12/02, BGR RUTGERS !
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Outline

* PROLANGS research projects
* Points-to analysis for Java

* Initial constraint-based implementation,
OOPSLA0O1

- Empirical results

+ Object-sensitive analysis, ISSTA'02

- Empirical results
* Related work

* Summary

Java Points-to, 12/02, BGR RUTGERS 2
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

PROLANGS

http://prolangs.rutgers.edu

- Research projects at boundary of Programming
Languages/Compilers and Software Engineering

- Algorithm design and prototyping

* Mature research projects
- Pointer analysis of C programs

- Side-effect analysis of C systems

- Semantic software change anal

ysis

- Studies of Java exception usages
- PROLANGS Analysis Framework (PAF), version

1.1 released June 1999

Java Points-to, 12/02, BGR

-ﬁmﬂ; uNl\/EderEjEW JERSEY 3
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Ongoing Research

+ Object-oriented systems (C++/Java)
- Analysis

* Points-to, side-effect analyses POPL'99, OOPSLA'01, ISSTA'02,
ICSM'02

 Change impact analysis (with Frank Tip, IBM) PASTE'O1

- Optimization
* Profiling framework for feedback-directed optimization PLDI'O1
- Experience with feedback-directed optimization OOPSLA'02

Static/dynamic analyses of application resource usage
(with Rich Martin and Thu Nguyen, Rutgers)

Analysis of program fragments FsE'99, cc'01, ICSE'03

Java Points-to, 12/02, BGR RUTGERS +
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Points-to Analysis for Java

* Which objects may reference

variable x point to?

* Builds a points-to graph

X = new A();
Yy = new B();
X.f =y;

Java Points-to, 12/02, BGR

X

'ﬁrATE uNl\/Ede(ﬁEw JERSEY 5
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Uses of Points-to Information
in Compilers

Object read-write information

- Side-effect analysis, dependence
analysis

Call graph construction
- Devirtualization & inlining

Synchronization removal

Stack-based object allocation

Java Points-to, 12/02, BGR RUTGERS ¢
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Uses of Points-to Information
in Software Engineering Tools

+ Object read-write information
- Semantic browers
- Program slicers

- Debuggers
+ Change impact analysis tools
- Testing
- Object relationships (Object relation diagrams)

- Program-based coverage metrics

TJava Points-to, 12/02, BGR RUTGERS 7
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Contributions

Points-to Analyses for Java using
annotated constraints

» Initial analysis based on Andersen's
analysis for C, OOPSLA'O1

- Annotations embody OO notions needed

- Maintained efficient constraint-based
implementation

- Empirical evaluation of cost and precision

Java Points-to, 12/02, BGR RUTGERS 3
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Contributions

+ Object-sensitive analysis, ISSTA'02
- Adding context sensitivity

- Parameterization framework

- Empirical evaluation demonstrates more
precision for same cost

Java Points-to, 12/02, BGR RUTGERS ¢
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Points-to Analysis, OOPSLA'O1

* Handles virtual calls
- Simulates the run-time method lookup

* Models the fields of objects

+ Analyzes executable code

- Ignores unreachable code from libraries

Java Points-to, 12/02, BGR RUTGERS 0
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Points-to Analysis in Action

A.m() not analyzed because

it’s unreachable. 3
class A { void m(X p) {..} } \
class B extends A
: { b > 04
| void m(Xa) € thisf=a; > Va
thisg f
\ 4
: / .
q
Java Points-to, 12/02, BGR RUTGERS U

PROGRAMMING LANGUAGES RESEARCH GROUP
———meeeeeeee e

Efficient Implementation

+ Constraint-based approach

- Extends previous work for C pointer analysis
using BANE (UC Berkeley)

- Extended constraint system and resolution rules
* Define and solve a system of annotated
set-inclusion constraints to obtain points-
o sets

Java Points-to, 12/02, BGR RUTGERS »
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Annotated Constraints

+ Form: L C_ R
- L and R denote set expressions
- Annotation a: additional information
(e.g., object fields)
+ Kinds of set expressions L and R
- Set variables: represent points-to sets
- ref terms: represent objects
- Other kinds of expressions

Java Points-to, 12/02, BGR RUTGERS B3
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Set variables and ref terms

- Set variables represent points-to sets

- For each reference variable p: V;

- For each object o: V

+ Object o is denoted by term ref(o,V,)

P

O

0,

Java Points-to, 12/02, BGR

0,

=

=

ref(o,V,) C Vp

ref(o,,V,,) & V,,

'ﬁrATE uNl\/Ede(EjEW JERSEY 14
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Example: Accessing Fields

q = new B();

p-f = q;
P > 04
lf
q > 0,

Java Points-to, 12/02, BGR

ref(o,Vp,) & V

Vv
Vv

= Vq
» & proj(ref,W)

q St W

Constraint generation

— =—
THE STATE UNIVERSITY OF NEW JERSEY 15
PROGRAMMING LANGUAGES RESEARCH GROUP

———meeeeeeee e

Example: Solving Constraints

Constraint resolution

WC Vg o,.f points to o,

Vq St Vo, @
ref(o,,Vp,) &¢ Vo,

Java Points-to, 12/02, BGR RUTGERS 16
PROLANGS

Example: Virtual Calls

p.m(x); = Vp Sm lam(V,)

receiver objecto = ref(o,Vg) © Vp

Actual method vV, C V,

called, A.m
ref(o,Vg) € Vinisca.m)

TJava Points-to, 12/02, BGR RUTGERS 7
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Experiments

+ 23 Java programs: 14 - 677 user classes

- Added the necessary library classes
- Machine: 360 MHz, 512Mb SUN Ultra-60

» Cost measured in time and memory

* Precision (wrt usage in client analyses and
tranformations)
- Object read-write information
- Call graph construction
- Synchronization removal and stack allocation

Java Points-to, 12/02, BGR RUTGERS 8
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Analysis Time

ooenel
uiynui
joos
wLIdjpuiw
ainjeaud
oeael

oo9|qes

aanll

oipneBbadw

ssaol

400

350

300

o O
N N

sSpuo29g

100

50

xapf
yoel
JiqqeJ
dnoeael
xa|f

Jeyf

33w
aoeujhel
oyo9

qf

ap
ssaidwod

Axoad

19

THE STATE UNIVERSITY OF NEW JERSEY

RUTGERS

EARCH GROUP.

PROLANGS

PROGRAMMING LANGUAGES RES|

Java Points-to, 12/02, BGR

Resolution of Virtual Call Sites

920

S9)IS [[BD POAOSAY %,

H RTA

M Points-to

NEW JERSEY

THE STATE UNIVERSITY OF
PROGRAMMING LANGUAGES RESEARCH GROUP

20

Java Points-to, 12/02, BGR

Thread-local new sites

Sso)iS |e20]

peatyl %

21

NEW JERSEY

—
THE STATE UNIVERSITY OF
PROGRAMMING LANGUAGES RESEARCH GROUP

Java Points-to, 12/02, BGR

Practical Points-to Analyses
for Java, ISSTA'02

- Existing analyses were flow- and context-
insensitive extensions of C analyses

+ Context insensitivity inherently
compromises precision for object-oriented
languages

* Goal: Introduce context sensitivity and
remain practical

TJava Points-to, 12/02, BGR RUTGERS 22
PROLANGS

Example: Imprecision

class Y extends X { ... }

class A {
X f;

Java Points-to, 12/02, BGR

this,

— =—
THE STATE UNIVERSITY OF NEW JERSEY 23

PROGRAMMING LANGUAGES RESEARCH GROUP
———meeeeeeee e

Imprecision of
Context-insensitive Analysis

* Does not distinguish contexts for
instance methods and constructors

- States of distinct objects are merged
»+ Common OO features and idioms

- Encapsulation
- Inheritance
- Containers, maps and iterators

Java Points-to, 12/02, BGR RUTGERS
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Object-sensitive

Points-to Analysis
Object sensitivity

- Form of context sensitivity for flow-insensitive
points-to analysis of OO languages

Object-sensitive Andersen’s analysis
- Object sensitivity applicable to other analyses

Parameterization framework
- Cost vs. precision tradeoff

Empirical evaluation
- Vs. context-insensitive OOPSLA'O1 analysis

Java Points-to, 12/02, BGR RUTGERS 25
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Details

- Instance methods and constructors
analyzed for different contexts

* Receiver objects used as contexts

* Multiple copies of reference variables

0,
this.f=q ™ | this)i.f=q°1

TJava Points-to, 12/02, BGR RUTGERS 26
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Example: Object-sensitive

Analysis
class A { f
void m(Xa){ —— _
this22.f=q%3; } |this,,, q’
¥ 5

. 03 O3
A a = new A() ; this, 9
a.m(new X()) ;
A aa = new A() ;
aa.m(new Y()) ; aa—0; [m
Java Points-to, 12/02, BGR RUTGERS 27

PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Implementation

+ Implemented one instance of
parameterization framework

- this, formals and return variables
(effectively) replicated

- Optimized constraint-based analysis
using previous technique

- Comparison with OOPSLA'O1 analysis

Java Points-to, 12/02, BGR RUTGERS 28
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Empirical Results

+ 23 Java programs: 14 - 677 user classes
- Added the necessary library classes
- Machine: 360 MHz, 512Mb, SUN Ultra-60

- Object Sensitive vs. OOPSLA'O1 points-to

* Found comparable cost with better precision

* Modification side-effect analysis
* Virtual call resolution

Java Points-to, 12/02, BGR RUTGERS 2
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Analysis Time

250

200

o o
n —
A A

spuodsag

50

javacc
muffin
soot
mindterm
creature
sablecc
jitree
mpegaudio
jess

jflex

jack
rabbit
javacup
jlex

jtar

mtrt
raytrace
echo

jb

db

compress

30

RIEEERE
PROLANGS

PROGRAMMING LANGUAGES RES|

EOOPSLA'01

B Object Sensitive

Java Points-to, 12/02, BGR

Side-effect Analysis:
Modified Objects Per Statement

100%
90%
80% -
0% -

60% -
0% -

40% -
30%
2%
10%

0%

N3S 103rdo0

ib jess sablecc raytrace Average
B One [Twoorthree [Fourtonine N More than nine
Tava Points-to, 12/02, BGR RUTGERS 3!

PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
———meeeeeeee e

Percent

Improvement in Resolved Calls

60
50
40
30
20
10 -
0,
T 8 2 % 8 3 3 F T ¢ s ¥ 2B P 3 FE LT Q 3 Y 3 T P
s 3 ¢ > S 5 S X 5§ T & @ 3T 8 8% 59 5§ 8 &
2 3 o F -~ o I & ® @ o 2 o =~ J g
3 Q c ~ 0 Q S ° =]
8 (1] © c O =
) o 3
o
Java Points-to, 12/02, BGR RUTGERS 32

PROL

PROGRAMMING LANGUAGES RESEARCH GROUP
———meeeeeeee e

Related Work

+ Context-sensitive points-to analysis for OO
languages
- Grove et al. OOPSLA'97, Chatterjee et al. POPL'99,
Ruf PLDI'00, Grove-Chambers TOPLAS'O1

+ Context-insensitive points-to analysis for OO
languages
- Liang et al. PASTE'O1

+ OContext-sensitive class analysis

- Oxhoj et al. ECOOP'92, Agesen SAS'94,
Plevyak-Chien OOPSLA'94, Agesen ECOOP'95, Grove et al.
OOPSLA'97, Grove-Chambers TOPLAS'0O1

Java Points-to, 12/02, BGR RUOTGERS 3
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
———meeeeeeee e

Summary

* Defined two new points-to analyses
for references in OOPLs using
annotated constraints

+ Context-insensitive analysis
(OOPSLA'01)
- Based on Andersen'’s points-to for C

- Practical cost and good precision wrt
client analyses and transformations

Java Points-to, 12/02, BGR RUTGERS 3¢
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Summary

+ Object-sensitive (context-sensitive)
points-to analysis -
- New kind of context sensitivity for flow-
insensitive analysis

- Parameterization framework allows tunable
algorithm choice

- Practical cost, comparable to OOPSLA'O1
analysis

- Better precision than OOPSLA'O1 analysis

Java Points-to, 12/02, BGR RUTGERS 35
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Java Points-to, 12/02, BGR

=—
THE STATE UNIVERSITY OF NEW JERSEY

RUTGE
PROL

PROGRAMMING LANGUAGES RESEARCH GROUP
———meeeeeeee e

36

Number of new X() whose objects

are accessed by p.f

100%

B More than three

] Two or three

Bl One

THE STATE UNIVERSITY OF NEW JERSEY 37
PROGRAMMING LANGUAGES RESEARCH GROUP

Java Points-to, 12/02, BGR

Parameterization

* Goal: tunable analysis

* Multiple copies for a subset of variables
- For the other variables a single copy

* Result: reduces points-to graph size and
analysis cost

- At the expense of precision loss

Java Points-to, 12/02, BGR RUTGERS 38
PROLANGS

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
———meeeeeeee e

