

ICSE W

International Co
WODA 2003
orkshop on Dynamic

Analysis
ICSE’03
nference on Software Engineering
Portland, Oregon
May 3-11, 2003

Workshop on Dynamic Analysis
(WODA 2003)

May 9, 2003

Portland, Oregon

An ICSE 2003 Workshop

Organized by:
Jonathan Cook, New Mexico State University

Michael Ernst, Massachusetts Institute of Technology

jcook
4

Table of Contents

Program Analysis: A Hierarchy 6
Andreas Zeller

Efficient Instrumentation for Performance Profiling 10
Edu Metz and Raimondas Lencevicius

Dynamic Analysis from the Bottom Up 13
Markus Mock

Exploiting Synergy Between Testing and Inferred Partial Specifications 17
Tao Xie and David Notkin

Generating Test Data for Dynamically Discovering Likely 21
Program Invariants

Neelam Gupta
Static and Dynamic Analysis: Synergy and Duality 25

Michael Ernst
Improving Design Pattern Instance Recognition by Dynamic Analysis 29

Lothar Wendehals
An Efficient Algorithm for Detecting Patterns in Traces of 33
Procedure Calls

Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge
Towards Differential Program Analysis 37

Joel Winstead and David Evans
Languages for Dynamic Instrumentation 41

Steve Reiss and Manos Renieris
Some Axioms and Issues in the UFO Dynamic Analysis Framework 45

Clinton Jeffery and Mikhail Auguston
Scripting Runtime Dynamic Analyses 49

Jonathan Cook, Abdulmalik Al-Gahmi, Shalini Devi, and
Navin Vedagiri

jcook
5

Program Analysis: A Hierarchy

Andreas Zeller
Lehrstuhl f̈ur Softwaretechnik

Universiẗat des Saarlandes, Saarbrücken, Germany
zeller@acm.org

Abstract

Program analysis tools are based on four reasoning
techniques: (1) deduction from code to concrete runs,
(2) observation of concrete runs, (3) induction from obser-
vations into abstractions, and (4) experimentation to find
causes for specific effects. These techniques form a hier-
archy, where each technique can make use of lower levels,
and where each technique induces capabilities and limits of
the associated tools.

1. Introduction

Reasoning about programs is a core activity of any pro-
grammer. To answer questions like “what can happen?”,
“what should happen?”, “what did happen?”, and “why did
it happen?”, programmers use four well-known reasoning
techniques:

Deduction from an abstraction into the concrete—for in-
stance, analyzing program code to deduce what can or
cannot happen in concrete runs.

Observation of concrete events—e.g. tracing, monitoring
or profiling a program run or using a debugger.

Induction for summarizing multiple observations into an
abstraction—an invariant, for example, or some visu-
alization.

Experimentation for isolating causes of given effects—
e.g. narrowing down failure-inducing circumstances
by systematic tests.

These reasoning techniques form a hierarchy (Figure1),
in which each “outer” technique can make use of “inner”
techniques. For instance, experimentation uses induction,
which again requires observation; on the other hand, deduc-
tion cannot make use of any later technique.

The interesting thing about this hierarchy is that the very
same reasoning techniques are also the foundations of auto-
matedprogram analysistools. In fact, each of the reasoning
techniques induces a specific class of tools, its capabilities
and its limits. This is the aim of this paper: to provide a
rough classification of the numerous approaches in program
analysis—especially in dynamic analysis—, to show their
common benefits and limits, and to show up new research
directions to overcome these limits.

2. Deduction

Deduction is reasoning from the general to the particular;
it lies at the core of all reasoning techniques. In program
analysis, deduction is used for reasoning from the program
code (or other abstractions) to concrete runs—especially for
deducing what can or cannot happen. These deductions take
the form of mathematical proofs: If the abstraction is true,
so are the deduced properties.

Since deduction does not require any knowledge about
the concrete, it is not required that the program in question
is actually executed—the program analysis isstatic.Static

Deduction

Observation

Induction

Experimentation

Figure 1. A hierarchy of reasoning techniques

http://www.st.cs.uni-sb.de/~zeller/
http://www.st.cs.uni-sb.de/
mailto:zeller@acm.org
jcook
6

program analysis was originally introduced in compiler op-
timization, where it deduces properties like

• Can this variable influence that other variable? (if not,
one can parallelize their computation)

• Can this variable be used before it is assigned? (if not,
there is probably an error)

• Is this code ever executed? (if not, it can be ignored)

Deduction techniques are helpful in program understand-
ing, too—especially for computingdependenciesbetween
variables. A variablev′ at a statements′ is dependent on
a variablev at a statements if altering v at s can alter the
value ofv′ at s′; in other words, the value ofv at s is apo-
tential causefor v′ at s′. By tracing back the dependencies
of some variablev, one obtains asliceof the program—the
set of all statements that could have influencedv [13, 14].

As an ongoing example, consider the following piece of
C code. Ifp holds, a is assigned a value, which is then
printed into the stringbuf .

3 char *format = "a = %d";
4 if (p)
5 a = compute value();
6 sprintf(buf, format, a);

Let us assume that after executing this piece of code, we
find thatbuf contains"a = 0" . However,a is not sup-
posed to be zero. What’s the cause of"a = 0" in buf ?

By deduction, we find that the stringbuf is set by the
sprintf function which takesa as an argument; hence,
buf depends ona at line 5. Likewise,a depends onp at
line 4 (since alteringp may altera) and on the result of
compute value() . To find out whya is zero, we must
trace back these dependencies in the slice. More impor-
tant than the slice itself are the statementsnot included in
the slice—e.g. a statement likec = d + e; The analy-
sis proves that these cannot influencea or buf in any way;
hence, they can be ignored for all further analysis.

Unfortunately, proving that executing some statement
cannot influence a variable is difficult. Parallel or dis-
tributed execution, dynamic loading or reconfiguration of
program code, unconstrained pointer arithmetic, or use of
multiple programming languages are obstacles that are hard
to handle in practice.

The biggest obstacle for deduction, though, isobscure
code: If we cannot analyze some executed code, anything
can happen. Thesprintf function above, is typically part
of the C runtime library and not necessarily available as
source code. Only if we assume thatsprintf works as
expected can we ensure thatbuf depends ona.

3. Observation

Observation allows the programmer to inspect arbitrary
aspects of an individual program run. Since an actual run
is required, the associated techniques are calleddynamic.
Observation brings in actualfactsof a program execution;
unless the observation process is flawed, these facts cannot
be denied.

For observing program runs, programmers and re-
searchers have created a big number of tools, typically
called “debuggers” because they are mainly used for de-
bugging programs. A debugger allows to inspect states at
arbitrary events of the execution; advanced tools allow a
database-like querying of states and events [3, 12].

The programmer uses these tools tocompareactual facts
with expected facts—as deduced from an abstract descrip-
tion such as the program code. This comparison with ex-
pected facts can also be conducted automatically within the
program run, using specialassertioncode that checks run-
time invariants. Specific invariant checkers have been de-
signed to detect illegal memory usage or array bound viola-
tions.

By combining slicing with observation, one obtainsdy-
namic slicing: a slice that is valid for a specific execution
only, and hence more precise than a slice that applies for all
executions [1, 6, 11]. In principle, a dynamic slicing tool
does not require source code as long as it can intercept all
read/write accesses to program state and thus trace actual
dependencies.

As an example of dynamic slicing, assume that after the
execution of the code above, we find thatbuf contains
"a = 0" and thatp is true. Consequently, a dynamic slice
tool can deduce from the code that the value ofa can only
stem fromcompute value() ; an earlier value ofa can-
not have any effect onbuf (that is, unlessa is being read
in compute value()).

Let’s now introduce a little complexity: By observation,
we also find thatcompute value() returns a non-zero
value. Yet,buf contains"a = 0" . How can this be?

4. Induction

Induction is reasoning from the particular to the general.
In program analysis, induction is used tosummarizemul-
tiple program runs—e.g. a test suite or random testing—to
some abstraction that holds for all considered program runs.
In this context, a “program” may also be a piece of code
that is invoked multiple times from within a program—that
is, some function or loop body.

The most widespread program analysis tools that rely on
induction arecoverage toolsthat summarize the statement
and branch coverage of multiple runs; such results can be
easily visualized [10]. Most programming environments

jcook
7

support coverage tracing and summarizing. In program
visualization, call traces and data accesses are frequently
summarized [2].

On a higher abstraction level,invariant detectionfilters
a set of possible abstractions against facts found in multiple
runs. The remaining abstractions hold as invariants for all
examined runs [4, 7]. This approach relies only on observa-
tion of the program state at specific events; hence, it is not
limited by obscure code or other properties that make static
analysis hard.

Both techniques can be used to detectanomalies:One
trains the tool on a set of correct test runs to infer common
properties. Failing runs can then be checked whether they
violate these properties; these violations are likely to cause
the failures.

As an example, let us assume that we execute
the above C code under several random inputs, flag-
ging an error each timebuf contains "a = 0" .
An invariant detector can then determine that, say,
a < 2054567 || a % 2 == 1 holds at line 6 for all
runs where the error occurs. This is the common abstraction
for all abnormal runs:buf contains"a = 0" whenever
a is odd or smaller than 2,054,567. Obviously, something
very strange is going on.

5. Experimentation

As in our C example, most problems in program under-
standing can be formulated as a search forcauses:What
is the cause forbuf containing"a = 0" ? It may be sur-
prising that none of the techniques discussed so far is able
to find an actual cause—or, more precisely, toprove that
some aspect of a program is actually the cause for a specific
behavior. To prove actual causality, one needs two exper-
iments: one where cause and effect occur, and one where
neither cause nor effect occur. The cause must precede the
effect, and the cause must be aminimaldifference between
these experiments.

Searching for the actual cause thus requires a series of
experiments,refining and rejecting hypotheses until a mini-
mal difference—the actual cause—is isolated. This implies
multiple program runs that arecontrolledby the reasoning
process.

In our C example, our earlier induction step has already
refined the cause in the program state:a is the cause for
buf containing"a = 0" , because we can altera such
that buf has a different content. However, alteringa
in an experiment to, say,2097153 , makesbuf contain
"a = -2147483648" . Would we consider this non-
failing?

So, we decide thata is sane, and turn to thesprintf
call. Assuming thatsprintf works as specified, the only
cause that can remain is theformat string"a = %d" as

sprintf argument. Indeed, it turns out that%dis a format
for integers, whilea is declared as a floating-point value:

1 double a;

To verify that the format string is really the cause for
"a = 0" in buf , we experimentally change theformat
variable from"a = %d" to "a = %f" . Our observation
confirms thatbuf now has a sane value; this proves that the
format string was indeed the cause for the failure.

Where do we obtain such alterations from? Obviously,
a string likeformat can have an infinite number of possi-
ble contents. Finding the one format string that causes the
badbuf content to turn into the correct one is left to the
programmer; actually, this is part of writing a program that
works as intended.

Nonetheless, even the search for causes can be
automated—at least, if one has an alternate run where the
effect doesnot occur. Ourdelta debuggingapproach can
narrow down the initial difference between the two runs to
the actual cause in program input [8] or program state [15].
Delta debugging creates artificialintermediateconfigura-
tions that encompass only a part of the initial difference.
Testing such configurations and assessing the outcome then
allows to narrow down the actual cause.

Delta debugging has successfully isolated cause-effect
chains from programs that so far had defied all kinds of de-
ductive analysis, such as the GNU C compiler.

6. A Hierarchy of Program Analysis

By now, we have seen four techniques which are the
foundation of program analysis tools. Each of these tech-
niques induces aclassof program analysis tools, defined by
thenumber of program runsconsidered:

Deductive program analysis (“static analysis”) generates
findingswithout executingthe program.

Observational program analysis generates findings from
asingle executionof the program.

Inductive program analysis generates findings from
givenmultiple executionsof the program.

Experimental program analysis generates findings from
multiple executionsof the program, where the execu-
tions arecontrolledby the tool.

As in Figure1, these classes form a hierarchy where tools of
each “outer” class may make use of the techniques in “in-
ner” classes. Hence, dynamic slicing (observation) makes
use of static slices (deduction); invariant detection (induc-
tion) relies on observation; delta debugging (experimenta-
tion) relies on observation and induction.

The classes also induce capabilities and limits:

jcook
8

• To determine causes, one needs experiments.

• To summarize findings, one needs induction over mul-
tiple runs.

• To find facts, one needs observation.

• And deduction, perhaps to some surprise, cannot tell
any of these—simply because it abstracts from con-
crete program runs and thus runs the risk of abstracting
away some relevant aspect.

However, deduction effectively proves what can and what
cannot happen in the examined abstraction level; hence, it
is an excellent guidance on what to observe, where to induce
from and what to experiment.

7. Conclusion and Future Work

Program analysis tools can be classified into a hierar-
chy along the used reasoning techniques—deduction, ob-
servation, induction, and experimentation. Each class is
defined by the used knowledge sources which impose ca-
pabilities and limits. This allows for a finer distinction of
dynamic analysis techniques; names like observation, in-
duction, or experimentation link directly to the techniques
that programmers use in program comprehension.

While deduction and observation are quite well-
understood, we have only yet begun to automate induc-
tion and experimentation techniques. Research in machine
learning and data mining has produced a wealth of induc-
tion techniques. All of these can be applied to program runs
in order to find patterns, rules, and anomalies—in runs and
in code.

While induction works on a given set of program runs,
we can use experimentation to gather more data from new,
generated runs. The challenges here are when to use addi-
tional experimentation, how to generate runs that satisfy de-
sired properties, and how to guide the experimentation pro-
cess. The capability to design, run, and assess experiments
automatically is unique to dynamic program analysis; we
should make use of it.

Finally, program analysis can greatly benefit from fur-
ther integration of “inner” tools and “outer” tools. Inte-
grating experimentation with further inductive or deduc-
tive techniques is the main challenge in dynamic program
analysis—and its greatest chance.

Acknowledgments.Silvia Breu, Holger Cleve, Jens Krinke
and Tom Zimmermann provided substantial comments on
earlier revisions of this paper.

References

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In
Proceedings of the ACM SIGPLAN 1990 Conference on Pro-
gramming Language Design and Implementation (PLDI),
volume 25(6) ofACM SIGPLAN Notices, pages 246–256,
White Plains, New York, June 1990.

[2] W. de Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M.
Vlissides, and J. Yang. Visualizing the execution of java
programs. In S. Diehl, editor,Proc. of the International
Dagstuhl Seminar on Software Visualization, volume 2269
of Lecture Notes in Computer Science, pages 163–175,
Dagstuhl, Germany, May 2002. Springer-Verlag.

[3] M. Ducasśe. Coca: An automated debugger for C. InProc.
International Conference on Software Engineering (ICSE),
pages 504–513, Los Angeles, California, May 1999.

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution.IEEE Transactions on Software En-
gineering, 27(2):1–25, Feb. 2001.

[5] W. G. Griswold, editor.Proc. Tenth ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering (FSE-10),
Charleston, South Carolina, Nov. 2002. ACM Press.

[6] T. Gyimóthy,Á. Besźedes, and I. Forǵacs. An efficient rele-
vant slicing method for debugging. InProc. ESEC/FSE’99 –
7th European Software Engineering Conference / 7th ACM
SIGSOFT Symposium on the Foundations of Software En-
gineering, volume 1687 ofLecture Notes in Computer
Science, pages 303–321, Toulouse, France, Sept. 1999.
Springer-Verlag.

[7] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. In ICSE 2002 [9], pages
291–302.

[8] R. Hildebrandt and A. Zeller. Simplifying failure-inducing
input. In Proc. ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA), pages 135–145,
Portland, Oregon, Aug. 2000.

[9] Proc. International Conference on Software Engineering
(ICSE), Orlando, Florida, May 2002.

[10] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of
test information to assist fault localization. In ICSE 2002
[9], pages 467–477.

[11] B. Korel and J. Laski. Dynamic slicing of computer pro-
grams. The Journal of Systems and Software, 13(3):187–
195, Nov. 1990.

[12] R. Lencevicius. Advanced Debugging Methods. Kluwer
Academic Publishers, Boston, 2000.

[13] F. Tip. A survey of program slicing techniques.Journal of
Programming Languages, 3(3):121–189, Sept. 1995.

[14] M. Weiser. Programmers use slices when debugging.Com-
munications of the ACM, 25(7):446–452, 1982.

[15] A. Zeller. Isolating cause-effect chains from computer pro-
grams. In Griswold [5], pages 1–10.

jcook
9

Efficient Instrumentation for Performance Profiling

Edu Metz, Raimondas Lencevicius
Nokia Research Center

5 Wayside Road, Burlington, MA 01803, USA
Edu.Metz@nokia.com Raimondas.Lencevicius@nokia.com

1. Introduction

Performance profiling consists of tracing a software
system during execution and then analyzing the obtained
traces. However, traces themselves affect the performance
of the system distorting its execution [5]. Therefore, there
is a need to minimize the effect of the tracing on the
underlying system’s performance. To achieve this, the
trace set needs to be optimized according to the
performance profiling problem being solved. Our position
is that such minimization can be achieved only by adding
the software trace design and implementation to the
overall software development process. In such a process,
the performance analyst supplies the knowledge of
performance measurement requirements, while the
software developer supplies the knowledge of the
software. Both of these are needed for an optimal trace
placement. The following sections expand on this
position.

2. Performance profiling

Performance profiling is the means of determining
where a software system spends its execution time. It uses
trace instrumentation to gather event data. Various types
of event information can be obtained with traces, such as
component entry and exit, function calls, software
execution states, message communication, resource usage,
etc. However trace instrumentation comes at a cost — it
impacts the performance of a software system [3][6]. For
example, resource tracing is most of the time more
intrusive then tracing function calls.

Not only does event tracing take some time, adding
traces changes the behavior of the software system
because of additional memory and I/O accesses [1]. In
addition, in a real-time software system, instrumentation
could possibly result in violation of real-time constraints
and timing requirements. Trace instrumentation reduces
the validity of performance profiling, so instrumentation
has to be kept to a minimum.

2.1. Minimizing Performance Impact

There is a need to minimize the performance impact
of trace instrumentation. To achieve this, we need to
create efficient instrumentation. To instrument
effectively, it is essential to know what events to monitor
during execution of the software system and what
information to collect when the event occurs. When
instrumenting the software, it is essential to understand
the purpose and goals of each trace and how it will affect
the instrumented software component. From the
performance profiling point of view, a "good" trace not
only records the required event information; it also
minimizes the impact on the system's performance, and
does not violate any constraints and requirements.

In choosing the instrumentation granularity, it is
important to address the trade-off between the amount of
event information required and the performance impact
of the trace instrumentation. For example: permanent
OS traces in the scheduler report when a task switch
occurs. These traces do not indicate if the task switch is
due to preemption by a higher priority task or
completion of the current running task. The duration of
a task activity cannot be calculated based on OS
scheduling traces only. It requires additional
instrumentation. However, these additional traces will
further impact the performance of the software system.

It should be noted that creating an efficient
instrumentation does not eliminate the performance
impact of trace instrumentation but rather tries to
minimize the performance impact.

Let us summarize what we just talked about: efficient
instrumentation for performance profiling imposes the
following requirements:

• minimize the number of instrumentation points
• minimize the runtime overhead, and
• guarantee constraints and requirements.

2.2. Efficient Instrumentation

We need to establish instrumentation that meets the
requirements outlined in the previous section. This can

jcook
10

be a complicated task, particularly in industry, where
software development and performance profiling are often
performed by different individuals each with their own set
of skills and knowledge. Software developers have
detailed knowledge of the software implementation. They
understand the purpose of each instrumentation point and
are able to assess the impact the instrumentation will have
on the functional behavior of a software component.
However, developers lack the understanding of what
event data is needed. In addition, they may not be eager to
insert event traces simply because they will not use them.
On the other hand, performance analysts know what
events need to be traced and understand what information
needs to be recorded when an event occurs. However,
performance analysts lack a detailed understanding of the
software. We propose to draw upon the knowledge and
skills software developers and performance analysts bring
with them and use this knowledge to create efficient trace
instrumentation.

To achieve this, we need to add trace instrumentation
for performance profiling to the software development
process. During the requirements phase the performance
analyst should identify system-level performance
requirements such as response time, throughput, and
resource utilization, and start determining the events that
need to be traced to check these requirements. For
example, if the system level performance requirements
state a maximum response time then the software’s main
entry and exit events (events e1 and e2 in Figure 1) need
to be traced. However, it is not always possible to identify
instrumentation points for all system level performance
requirements during the requirements phase. For example,
validation of resource utilization requirements requires
knowledge of the software’s execution states, which are
not known until the design phase. Furthermore, only
system level performance requirements are known during
the specification phase. During the design phase, the
performance analyst should identify lower level
performance requirements such as messaging latency,
interrupt response times, real-time deadlines, and time
spent in the kernel. Next, the performance analyst should
determine the events that need to be traced to check these
requirements (for example, events e3 and e4 in Figure 1
as well as other events marked with black dots) and
specify the event data that needs to be recorded when the
event occurs. Typical events that need to be traced
include: component entry and exit points, function calls,
state transitions, message send and receive, and resource
accesses. The developer then incorporates all the
instrumentation requirements into the software design by
identifying the corresponding instrumentation points.
During implementation, the developer inserts traces at
each event point, both manually and by activating (a
subset of) permanent traces. The developer should plan to
incrementally introduce the traces through iterations to

minimize the impact of the instrumentation code on
software system operations. During this process, the
performance analyst should provide guidance to the
software developer on choosing the instrumentation
granularity (e.g., trace events e5 and e8, but not events
e6 and e7 in Figure 1).

Specification phase

Design phase

Implementation phase

Software
system

e1 e2

e4

e6

e5

e3

e7

e8

Figure 1: Trace design and implementation process

To illustrate this approach, let us look at an example.
In mobile devices, power consumption is an important
performance requirement [2]. The power consumption
varies depending on the hardware resources used.
During execution the software accesses hardware
resources. These accesses need to be monitored to
determine when a hardware resource is used, but should
all access events be traced or is it enough to just trace
enable and disable events? This question is best
answered by the performance analyst. During the
requirements phase the performance analyst identifies
the power consumption requirements of the hardware
resource. At design time, the performance analyst
identifies the hardware access events that need to be
traced to check the power consumption requirements.
When tracing hardware access events in a mobile device
it is very easy to violate real-time constraints and timing
requirements. In addition, driver software of each
hardware resource is unique. Instrumenting hardware
drivers requires a detailed understanding of the software,
and the developer is best suited for this task. During the
design and implementation phase the developer

jcook
11

incorporates the instrumentation requirements set by the
performance analyst into the driver software.

A good follow through by both the performance
analyst and software developer is essential for the success
of the proposed approach. For example: during the actual
performance profiling phase, the performance analyst
should relay any kind of trace instrumentation
inefficiencies to the developer. The developer in turn
should make the necessary instrumentation improvements
and provide the performance analyst with an updated
instrumented software build in a timely manner.

The approach to adding trace instrumentation for
performance profiling to the software development
process addresses the requirements outlined in section 2.1.
In addition, this approach would yield some other
incentives:

• allows for creating built in ‘standardized’
performance trace instrumentation, and

• provides formatting rules for performance event
data.

Smith and Williams [4] proposes a systematic
approach to software performance engineering. They
focus on estimating the performance of a software system
during each stage of the software development process.
Our approach attempts to optimize the performance
impact of trace instrumentation for performance profiling
by adding the software trace design and implementation
to the overall software development process.

3. Summary

In this position paper, we described an approach to

optimize trace instrumentation for performance profiling.
The approach involves adding trace instrumentation for
performance profiling to the software development
process. It draws upon the knowledge and skills software
developers and performance analysts bring with them —
using this knowledge to create efficient trace
instrumentation.

The proposed approach has the potential to decrease
the number of instrumentation points. It would yield
sufficient traces to profile the performance, yet it would
not trace more event data than needed. In addition, the
proposed approach would reduce the impact of trace
instrumentation on software system performance.

4. References

[1] D. Konkin, G. Oster, R. Bunt, Exploiting Software

Interfaces for Performance Measurement, Proceedings of
the 1st International Workshop on Software and
Performance, 1998, pp. 208–218.

[2] R. Lencevicius, E. Metz, A. Ran, Software Validation using
Power Profiles, Proceedings of the 20th IASTED

International Conference on Applied Informatics (AI),
2002, pp. 143–148.

[3] J. Moe, D. Carr, Understanding Distributed Systems via
Execution Trace Data, 9th International Workshop on
Program Comprehension, 2001, pp. 60–67.

[4] C. U. Smith and L. Williams, Performance solutions: A
practical guide to creating responsive, scalable solutions,
Addison-Wesley, 2002.

[5] D. Stewart, Measuring Execution Time and Real-Time
Performance, Embedded Systems Conference (ESC),
2001.

[6] J. Vetter, D. Reed, Managing Performance Analysis with
Dynamic Statistical Projection Pursuit, Proceedings of the
1999 ACM/IEEE Conference on Supercomputing, 1999.

jcook
12

Dynamic Analysis from the Bottom Up

Markus Mock
University of Pittsburgh

Department of Computer Science
6405 Sennott Square, Pittsburgh, PA 15260, USA

mock@cs.pitt.edu

Abstract

Changes in the way software is written and deployed to-
day render static analysis increasingly ineffective. Unfor-
tunately, this makes both traditional program optimization
and software tools less useful. On the other hand, this also
means that the role and importance of dynamic analysis is
continuing to increase. In the future, we believe dynamic
analysis will be successful both in program optimization
and in software tools. One important ingredient to its suc-
cess lies in efficient profiling methods. This paper looks at
how this goal can be realized by exploiting already existing
hardware mechanisms and possibly new ones. We believe
that this will lead to software tools that are both effective
and minimally invasive, easing their adoption by program-
mers.

1. Introduction

From its early beginnings, static analysis has been a huge
success story. It is routinely used in optimizing compil-
ers to ensure the correctness of code improving transfor-
mations. It is also commonly used in programming tools
(e.g., smart editors) and software tools designed to facilitate
the debugging and evolution of software, for instance, in
program slicers. On the one hand, static analysis has been
so successful because its use is unintrusive and does not
require running the program or any other user intervention,
and typically the user is completely unaware of its presence.
On the other hand, to achieve practically useful results, typ-
ically the whole program, or large parts thereof have to be
available to the analysis.

Unfortunately, this traditional model has been eroding
over the last years thereby rendering traditional static anal-
ysis methods ever less effective. Since software is now
routinely deployed as a collection of dynamically linked li-
braries, and more recently, also as Java bytecode that is de-
livered dynamically and on demand, static analysis in com-

pilers and other programming tools knows less and less of
the finally executing program. This forces it to make con-
servative assumptions that result in analysis results that are
too imprecise to be useful either for program optimization
or program “understanding” tasks.

While traditional static analysis is of limited effective-
ness in these new dynamic software environments,dynamic
program analysis[3] will play an increasingly important
role to realize tasks that have become inefficient with static
analysis alone. Moreover, dynamic analysis will enable new
powerful techniques – both in optimization and program un-
derstanding – that are impossible to achieve with static anal-
ysis alone.

For some time now, dynamic (i.e., run-time) informa-
tion has been used in optimizing compilers in the form of
feedback-directed optimization where run-time information
is used to aid the static program optimizer to make better
optimization decisions – decisions, that would otherwise
have to rely on static heuristics, which generally result in
less effective optimization. More recently, run-time infor-
mation has been exploited in dynamic compilation systems
and just-in-time (JIT) compilers to which the complete pro-
gram is available, which makes their analyses often quite
successful [1].

While leveraging dynamic information in such systems
has become quite popular, the use of dynamic analysis in
software tools designed to assist the software engineer is
still in its infancy. While the use of dynamic information
in program optimization systems is always confined by the
constraint of soundness – a potentially faster but possibly
incorrect program has to be avoided –, tools designed to
assist a human in a software engineering task are free of this
restriction. Moreover, in many cases the results of a static
analysis, although sound, may be considerably less useful
than the potentially unsound result of a dynamic analysis,
for instance, if it overwhelms the user with too much data.

For all the foregoing reasons, we believe that dynamic
analysis algorithms, modeled after classical static analyses
will be both important and useful in future software de-

jcook
13

velopment environments. Unconstrained by the yoke of
soundness, dynamic analysis is likely going to be even
more successful in software engineering applications than
the promise it has already shown in run-time optimization.
Crucial to the wider success of dynamic analysis, however,
is the creation of efficient profiling methods to collect dy-
namic information unintrusively and with little performance
overhead.

Therefore, we propose to design dynamic analysis sys-
tems “from the bottom up”. Currently existing hardware
mechanisms can be exploited to make the collection of run-
time information more efficient. Software engineers inter-
ested in dynamic analysis should also work with hardware
designers and compiler writers to participate in the design
of new architectures that enable the efficient collection of
data that can assist them in building more powerful and ver-
satile dynamic analysis systems.

The rest of this paper is organized as follows: Section 2
discusses two future directions in the application of dy-
namic analysis. Section 3 looks at how to achieve efficient
profiling methods as one essential ingredient in making dy-
namic analysis successful. Section 4 discusses related work
and Section 5 concludes.

2. Future Directions in Dynamic Analysis

As the usefulness of static analyses decreases, dynamic
analysis approaches are becoming more attractive. We see
several interesting research directions for dynamic analysis
in the coming years:

• research on how to effectively exploit run-time infor-
mation to optimize programs;

• research on the application of dynamic analysis to im-
prove software tools that assist programmers in the un-
derstanding, maintenance, and evolution of software;
since such tools do not necessarily have to produce
sound results this may be the “killer application” for
dynamic analysis;

• research on the efficient collection of run-time in-
formation; this includes research into combined
hardware-software approaches that will lower the cost
of collecting run-time information.

In the following two sections, we will briefly discuss the
first two items, which represent two broad application areas
for dynamic analysis. In Section 3 we will then elaborate on
the last point, which is fundamental for the wider success of
dynamic analysis.

2.1 Program Optimization with Dynamic Analy-
sis

To achieve good program performance, increasingly run-
time information will be necessary to perform effective
code-improving transformations. The fundamental con-
straint for program optimization, though, is soundness,
which is at odds with the unsound nature of dynamic analy-
sis. However, we believe that a symbiosis of static and dy-
namic analysis will not only be effective but in fact crucial
for the success of program optimization of future software
systems.

Results of static analysis are always conservative ap-
proximations of actual run-time behavior; when programs
are only partially known, this problem is exacerbated be-
cause worst case assumptions have to be made for all un-
known code parts. On the other hand, program properties
may in fact be true in most, if not all, runs despite the in-
ability of static analyses to demonstrate this. For instance,
[9] has shown that the statically computed sets of potential
pointer targets in pointer dereferences in C programs are
several orders of magnitude larger than the number of actu-
ally observed targets. Consequently, optimizing compilers
are often not able to allocate variables to registers because
of aliases through pointer accesses,1 even though those ac-
cesses at run-time never or almost never overwrite the vari-
able’s value.

Fortunately, static and dynamic analysis may be com-
bined in this case to improve what can be done with static
analysis alone. One approach consists of generating mul-
tiple code versions, one, in which code is optimized ag-
gressively assuming that no aliasing occurs even though the
static analysis is not able to ascertain this. The decision
when this specialized code should be generated would be
based on a dynamic analysis that checks at program execu-
tion whether aliasing does occur. A run-time check would
then be inserted in the code to select the correct code ver-
sion and ensure soundness.

Similarly, other program properties that are usually in-
ferred by static program analysis, might be observed at run
time. Static analysis would then be used to generate appro-
priate run-time checks to ensure the soundness of program
transformations that depend on the correctness of those
properties. Investigating what properties are both useful
and efficiently derivable by dynamic analysis, is an interest-
ing research area for the combination of static and dynamic
analysis as well as the exploration of synergies arising from
that combination.

1Alternatively, if they are allocated to registers, after every possibly
aliased write through a pointer, the register value has to be reloaded, which
may neutralize the benefit of register allocating the variable.

jcook
14

2.2 Improving Software Tools with Dynamic
Analysis

Whereas dynamic analysis will generally have to be
complemented by static analysis to be applicable in pro-
gram optimization, software engineering tools may enjoy
the benefits of dynamic analysis in many cases even with-
out supporting static analysis. As has been observed by sev-
eral researchers, in many cases unsound information may be
just as useful or even more useful than sound information in
software engineering applications.

The key to the usefulness of dynamic analysis again is
the (increasing) imprecision of static analyses. While static
analyses may provide a sound picture of program proper-
ties. this picture may be too complex to be useful in prac-
tice. As an example, consider again pointer analysis. A
static points-to analysis2 may compute several hundreds or
even thousands of potential pointer targets for a dereference.
When a user wants to understand what are in fact the fea-
sible targets, a points-to set of that size will be too large to
be examined completely. Moreover, the static analysis does
not provide any insights into which of those targets are more
likely than others to show up in practice.

On the other hand, a dynamic points-to analysis [9]
shows only those points-to targets that have actually oc-
curred at run time. While this set may not be sound, i.e.,
miss some targets that may in fact be feasible, since dy-
namic points-to sets are typically very small, they can be
much more useful because the enable the programmer to
focus on definitely feasible targets, which in addition, may
be prioritized by the frequency of occurrence, so that any
subsequent task can be focused to examine the more im-
portant (more frequent, or more likely) analysis results first.
Dynamic pointer information has been used, for instance, to
improve program slicing [8].

3 Dynamic Analysis from the Bottom Up:
Achieving Efficient Profiling

One of the fundamental challenges for the success of dy-
namic program analysis lies in the creation of instrumen-
tation and profiling infrastructures that enable the efficient
collection of run-time information. Current approaches typ-
ically result in significant program slowdowns [9, 5] so that
they are confined to offline use. They are also not invisi-
ble to the user and typically additional effort is required to
integrate them with current software tools. While this may
be acceptable when the result is directly consumed by the
user of a dynamic analysis tool, when the dynamically de-
rived information is subsequently used to transform a pro-

2A points-to analysis computes for each pointer dereference in a pro-
gram the set of potential targets accessed by the dereference, called the
points-to setof the dereference.

gram for instance, faster turnaround times will significantly
enhance the usability of tools based on dynamic analysis.
Moreover, if dynamic analysis can be performed with min-
imal overheads during normal program executions, it may
become routine and not require any additional effort from
software engineers to tap into the generated information.

In our opinion, one particularly promising approach to
reduce profiling overhead lies in the collaboration with
computer architects. Processor designers dispose of more
hardware resources than ever so that it is not unreasonable
to expect that additional structures to support efficient dy-
namic analysis may be placed on chips if they provide a
significant enhancement of functionality. Moreover, very
simply hardware structures may suffice and can potentially
make a big difference in performance. For example, the ad-
dition of hardware data watchpoints in modern processors
(for example the Intel Pentium), enables a debugger such as
gdb to monitor all memory accesses to a particular variable
(or set of variables) without noticeable performance degra-
dation on the program. When such hardware support is not
present, monitoring the contents of a variable becomes of-
ten prohibitively expensive – typical software implemen-
tations based on trapping after every instruction, result in
slowdowns of a factor of 100.

The additional hardware required to support data watch-
points, on the other hand, is minimal. Similarly, for many of
the properties we are interested in dynamic program analy-
sis it may be possible to achieve big performance improve-
ments with simple hardware support. Current processors al-
ready have many hardware performance counters, which are
used in profiling for program performance. Maybe future
architectures will have “analysis counters” to assist soft-
ware engineers in building fast dynamic analysis tools. If
we can show that such support is useful for the software
community as a whole, we should have a good case for their
realization in silicon.

The following sections will look at potential mechanisms
to aid in two particular dynamic analysis tasks: points-to
profiling and invariant detection.

3.1 Example One: Points-To Profiling

Maintaining a mapping from the current addresses of
local and heap-allocated variables to their compile-time
names accounts for the major part of the cost of points-to
profiling.3 If the compiler could simply load the monitored
addresses into a hardware table and all load and store in-
structions would automatically be checked against this table
(simultaneously updating the associated access statistics),
points-to profiling would only add a small amount of extra

3The addresses of local variables usually change with each invocation
and multiple addresses are usually associated with the same memory allo-
cation site.

jcook
15

work (the initialization of the address table at procedure en-
try and at each malloc site). In current software implemen-
tations, for every load and store instruction tens or hundreds
of instructions have to be executed resulting in slowdowns
of one to two orders of magnitude [9].

Some current processors, e.g., the Intel Itanium, already
support a similar, though more limited hardware structure
(the ALAT table [7]), which, however, cannot be directly
loaded by the compiler (it is manipulated indirectly through
special load instructions used for optimization). Therefore,
it appears not unreasonable to assume that a more general
mechanism similar to the one described above, may eventu-
ally be implemented in hardware.

3.2 Example Two: Invariant Detection

Another field where compiler and architecture support
can be used to improve the applicability of dynamic analysis
is invariant detection. In the Daikon [5] system, invariants
are detected offline after a profiling urn of an instrumented
program. Obviously, for dynamically updated software this
two-phased approach does not directly work since the pro-
gram needs to be re-instrumented as it is running. More-
over, it may actually be desirable to detect some invariants
as the program is running, for instance when invariants rep-
resent security-relevant properties.

Arnold and Ryder [2] present an approach to reduce the
cost of instrumented code by providing a mechanism to dy-
namically enable and disable the profiling of selected pro-
gram parts. Their approach could be combined with Daikon
in a run-time system that would automatically instrument
dynamically changing code. The dynamically updated code
could then be gradually profiled to detect its (local) invari-
ants and as soon as invariants stabilize, profiling would be
disabled until the next software update. This would enable
invariant detection while a system is running, at potentially
very little overhead, so that invariant detection could remain
in place even in deployed software.

This would make exciting new applications possible. For
instance, software could be shipped with previously de-
tected or specified invariants. As the system runs, these
invariants could be compared against those detected in the
field. Discrepancies, which might indicate, for example, in-
sufficient testing, could then be reported back to the devel-
oper to either correct the software or the invariants.

4. Related Work

PREfix [4] was one of the first tools that tried to over-
come the imprecision of static program analysis by a sys-
tematic exploration of program execution paths along which
certain program properties were checked. It was shown to
be very effective in detecting program errors that were not

detectable by static analysis. Ernst [5] has focused on de-
tecting likely program invariants, which can then be used to
reason about programs or in error detection. The DIDUCE
system [6] uses dynamic program analysis to detect unusual
program states which are likely to indicate program bugs.

5. Conclusions

Due to changes in the way software is written and de-
ployed today, the effectiveness of static analysis is decreas-
ing. Therefore the importance of dynamic analysis will con-
tinue to increase. Consequently, improving the usability of
dynamic analysis tools by making them less intrusive and
more efficient is one of the main challenges for dynamic
analysis researchers today. By designing dynamic analy-
ses from the bottom up, and in collaboration with compiler
writers and computer architects, we believe that efficiency
and ease of use will be achieved and make dynamic analysis
a standard feature of future software systems.

References

[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive optimization in the Jalapeño JVM. In Proceedings
of the Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 47–65, Minneapo-
lis, MN, USA, Oct. 2000.

[2] M. Arnold and B. G. Ryder. A framework for reducing the
cost of instrumented code. InProceedings of the ACM SIG-
PLAN’01 conference on Programming language design and
implementation, pages 168–179. ACM Press, 2001.

[3] T. Ball. The concept of dynamic analysis. InESEC / SIG-
SOFT FSE, pages 216–234, 1999.

[4] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer
for finding dynamic programming errors.Software Practice
and Experience, 30(7):775–802, June 2000.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution. InInternational Conference on Software
Engineering, pages 213–224, 1999.

[6] S. Hangal and M. S. Lam. Tracking down software bugs using
automatic anomaly detection. InProceedings of the 24th in-
ternational conference on Software engineering, pages 291–
301. ACM Press, 2002.

[7] Intel Corporation.Intel Itanium 2 Processor Reference Man-
ual for Software Development and Optimization, 2002.

[8] M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers.
Improving program slicing with dynamic points-to data. In
Proceedings of the 10th ACM International Symposium on the
Foundations of Software Engineering, Charleston, SC, Nov.
2002.

[9] M. Mock, M. Das, C. Chambers, and S. J. Eggers. Dynamic
points-to sets: A comparison with static analyses and poten-
tial applications in program understanding and optimization.
In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineer-
ing, pages 66–72, Snowbird, UT, USA, June 2001.

jcook
16

Exploiting Synergy Between Testing and Inferred Partial Specifications

Tao Xie David Notkin
Department of Computer Science & Engineering, University of Washington

{taoxie, notkin}@cs.washington.edu

Abstract

The specifications of a program can be dynamically
inferred from its executions, or equivalently, from the
program plus a test suite. A deficient test suite or a subset
of a sufficient test suite may not help to infer
generalizable program properties. But the partial
specifications inferred from the test suite constitute a
summary proxy for the test execution history. When a new
test is executed on the program, a violation of a
previously inferred specification indicates the need for a
potential test augmentation. Developers can inspect the
test and the violated specification to make a decision
whether to add the new test to the existing test suite after
equipping the test with an oracle. By selectively
augmenting the existing test suite, the quality of the
inferred specifications in the next cycle can be improved
while avoiding noisy data such as illegal inputs. To
experiment with this approach, we integrated the use of
Daikon (a dynamic invariant detection tool) and Jtest (a
commercial Java unit testing tool). This paper presents
several techniques to exploit the synergy between testing
and inferred partial specifications in unit test data
selection.

1. Introduction

Given that specifications play an important role in a
variety of software engineering tasks and that the
specifications are often absent from a program,
dynamically inferring program specifications from its
executions is a useful technique [3]. The output of the
dynamic specification inference has been used to aid
program evolution in general [3] and program refactoring
in particular [7]. Most of the applications can achieve
better results if the inferred specifications are closer to the
oracle specifications. Like other dynamic analysis
techniques, the dynamic specification inference is also
constrained by the quality of the test suite for the program.
Usually it is unlikely that the inferred properties are true
over all possible executions. When properly applied, static

verification tools can filter out false positives in the
inferred specifications [8].

Different from previous applications that use the final
inferred specifications from all the available tests, two
recent approaches have begun to use the intermediate
partial specifications inferred from a subset. Both are
based on the fact that the inferred specifications may
change when new tests are added to the existing test suite.
The first, called the operational difference (OD)
technique, makes use of the differences in inferred
specifications between test executions to generate,
augment, and minimize the test suites [5]. The second, as
implemented in the tool DIDUCE, can continuously check
a program’s behavior against the incrementally inferred
partial specifications during the run(s), and produce a
report of all violations detected along the way [4]. This
can help detect bugs and track down the root causes. It is
noteworthy that “partial specification” also carries the
denotation that the specification is not complete or
accurate in terms of an oracle specification. Thus there is
a convergence of the two meanings when the
specifications inferred from the whole test suite are used
to approximate the oracle specification.

In this research, we further exploit the synergy between
testing and inferred partial specifications. All available
tests in this context are a small size of the existing unit test
suite plus a large size of the automatically generated unit
tests. The purpose is to tackle the problem of selecting
automatically generated tests to augment the existing unit
test suite. Violations of the inferred partial specifications
from the existing unit test suite can help this unit test data
selection. Moreover, selectively augmenting the existing
test suite can prevent introducing noisy data, e.g. illegal
inputs, from negatively affecting the specification
inference.

2. Background

The “test first” principle, as advocated by Extreme
Programming (XP) development process [1], requires unit
tests to be constructed and maintained before, during, and
after the source code is written. Developers need to
manually generate the test inputs and oracles based on the

jcook
17

requirements in mind or in documentation. They need to
decide whether enough test cases have been written to
cover the features in their code thoroughly. Some
commercial tools for Java unit testing, e.g. ParaSoft Jtest
[10], attempt to fill the “holes” left by the execution of the
manually generated unit tests. These tools can
automatically generate a large number of unit tests to
exercise the program. However, there are two main issues
in automatic unit test generation. First, there are no test
oracles for these automatically generated tests unless
developers write down some formal specifications or
runtime assertions [2]. Second, only a relatively small size
of automatically generated tests can be added to the
existing unit test suite. This is because the unit test suite
needs to be maintainable, as is advocated by the XP
approach [1].

 Two main unit test selection methods are available. In
white box testing (e.g., the residual structural coverage
[11]), users select tests that provide new structural
coverage unachieved by the existing test suite. In black
box testing, the operational difference (OD) technique is
applicable in augmenting a test suite [5]. However, the
OD technique for this unit test augmentation problem
might select a relatively large set of tests because the
specification generator’s statistical tests usually require
multiple executions before outputting a specification
clause. Additionally, OD requires frequent generation of
specifications, and the existing dynamic specification
generation is computationally expensive. Therefore,
instead of using OD in the unit test selection, we adopt a
specification violation approach similar to DIDUCE [4].

Our approach is implemented by integrating Daikon
and Jtest. Daikon [3], a dynamic invariant detection tool,
is used to infer specifications from program executions of
test suites. The probability limit for justifying invariants is
set by Daikon users. The probability is Daikon’s estimate
of how likely the invariant is to occur by chance. It ranges
from 0 to 100% with a default value of 1%. Smaller
values yield stronger filtering. Daikon includes a
MergeESC tool, which inserts inferred specifications to
the code as ESC/Java annotations [12]. ParaSoft Jtest
[10], on the other hand, is a commercial Java unit testing
tool, which automatically generates unit test data for a
Java class. It instruments and compiles the code that
contains Java Design-by-Contract (DbC) comments, then
automatically checks at runtime whether the specified
contracts are violated. We modified MergeESC to enable
Daikon to insert the inferred specifications into the code
as DbC comments. Since ESC/Java has better
expressiveness than Jtest’s DbC, a perl script is written to
filter out the specifications whose annotations cannot be
supported by Jtest’s DbC. After being fed with a Java
class annotated with DbC comments, Jtest uses them to
automatically create and execute test cases and then verify
whether a class behaves as expected. It suppresses any

problems found for the test inputs that violate the
preconditions of the class under test. But it still reports
precondition violations for those methods called indirectly
from outside the class. Note that DIDUCE tool reports all
precondition violations [4]. By default, Jtest tests each
method by generating arguments for them and calling
them independently. In other words, Jtest basically tries
the calling sequences of length 1 by default. Tool users
can set the length of calling sequences in the range of 1 to
3. If a calling sequence of length 3 is specified, Jtest first
tries all calling sequences of length 1 followed by all those
of length 2 and 3 sequentially.

3. Specification Violation Approach

This section describes the specification violation
approach. Section 3.1 introduces the basic technique of
the approach. Section 3.2 presents the precondition guard
removal technique to improve the effectiveness of the
basic technique. Section 3.3 describes the iterative process
of applying these techniques. A preliminary experiment is
conducted on a Java class of the bounded stack that is
used to store unique elements of integer [13]. Detailed
experimental results for this example are described in
[14].

3.1. Basic Technique

 Figure 1. An overview of the basic technique

In our approach, partial specifications are inferred from

program executions of the existing unit test suite by using
Daikon (Figure 1). The partial specifications are inserted
into the code as DbC comments. The resulting code is fed
to Jtest. Initially, Jtest’s calling sequence length is set to 1
and Jtest is run to automatically generate and execute test
data. When a certain number of specification violations
have occurred before Jtest exhausts its testing repository,
it stops generating test data and reports specification
violations. For each reported specification violation, i.e.,
the violated specification and the violating test,
developers inspect them to decide whether to equip the
test with an oracle and add it to the existing test suite.
Then developers disable each violated specification by

Invariants

Call length 3

Call length 2

Call length 1

Jtest

Manually
maintained
test su ite

Run
Data trace Detect

invariants
Insert as

DbC comm ents

Run &
Check

Violating
tests

Annotated
program

Autom atically
generated
test suite

Daikon

Violated
specs

Com ment
out

Selected
tests

Select

jcook
18

commenting them out and rerun Jtest repeating the above
procedure until no specification violations are reported.
The whole process is iteratively applied by setting the
length of calling sequences as 2 and subsequently 3.

The rationale behind the basic technique is that if a
new test violates an inferred partial specification, it is
likely that this test exercises a new feature of the program
uncovered by the existing test suite. This technique
guarantees that the new test does not overlap with any
others from the existing test suite in terms of the violated
specification. In addition, the violating tests have a
relatively high probability of exposing faults in the code if
there are any. It is because that running the existing test
suite on the code exhibits the normal behavior reflected by
the inferred specifications and the violating tests might
make the code exhibit the abnormal behavior.

The symptoms of specification violations can be that
the boolean value of a specification predicate is false or
exceptions are thrown. In order for the inferred
specifications to be violated, we set the probability limit
to be 100%. The specification violations indicate
deficiencies of the existing test suite. However, some
violations might not be very helpful for the unit test
selection. For example, the existing test suite for the stack
implementation only push the integer element of 2 or 3
into the stack and thus one of the inferred specifications is
that the stack element is 2 or 3. The automatically
generated tests that push the element of 1 into the stack
violate this specification. Since the element of 1 is not so
different than 2 or 3 for the purpose of testing this stack
implementation, developers might not select the violating
test to the existing test suite.

3.2. Precondition Guard Removal

In our basic technique, when the existing test suite is
deficient, the inferred preconditions might be so
restrictive as to filter out those legal test data inputs in
Jtest test data generation and execution. This over-
restrictiveness of preconditions also makes static
verification of inferred specifications less effective [8].
Even if a static verifier could confirm an inferred post-
condition specification given some over-restrictive
preconditions, it is hard to tell whether it is generalizable
to the actual preconditions.

To assure better quality of the unit under test, we need
to exercise the unit under more circumstances than what is
constrained by the inferred preconditions. Before the code
that is annotated with DbC comments is fed to Jtest, all
precondition comments are removed. In the preliminary
experiment, we observed that precondition guard removal
techniques reported more violations and exposed more
faults than the basic technique (Section 3.1). Indeed,
removing precondition guards produces more false
positives by allowing some illegal inputs. Yet the tool

only reports those illegal inputs that cause postcondition
or invariant violations.

3.3. Iterations

After the new test augmentations using the 3.1 and 3.2
techniques, all the violating tests with legal inputs,
whether selected or unselected, can be further run together
with the existing ones to infer new specifications.
Although those unselected violating tests with legal inputs
might not exercise any interesting new features, running
them in the specification inference can relax the violated
specifications to reduce the false positives in the next
iteration. The same process described in Section 3.1 and
3.2 is repeated until there are no specification violations
or no test data selected from the violating tests. In the
preliminary experiment, most of the specification
violations were observed in the first iteration, and all
specification violations were observed before the third
iteration.

4. Effect of Inferred Specifications on Test
Generation

In previous sections, we showed that the inferred
specifications can be used to select unit test data and
improve the specification quality. Furthermore, we
observed that the inferred specifications also had an effect
on Jtest’s automatic test generation. As is described in
Jtest’s manual [6], if the code has preconditions, Jtest tries
to find inputs that satisfy all of them. If the code has
postconditions, Jtest creates test cases that verify whether
the code satisfies these conditions. If the code has
invariants, Jtest creates test cases that try to make them
fail. The preliminary experiment showed that
preconditions have greater impacts on Jtest’s test
generation than either postconditions or invariants.
Sometimes Jtest, equipped with specifications, could
automatically generate tests that achieve better code
coverage than the one without specifications. For the test
length of two, the former Jtest automatically generated
more tests for the stack implementation than the latter one.
It suggests that inferred specifications are able to guide
Jtest to generate better tests.

5. Concluding Remarks

In sum, selecting automatically generated tests to
augment the existing unit test suite is an important step in
the unit testing practice. Inferred partial specifications act
as a proxy for the existing test execution history. A new
test that violates an inferred specification is a good
candidate for developers to inspect for test data selection.
The violating test also has a high probability to expose

jcook
19

faults in the code. Instead of considering the test
augmentation as a one-time phase, it should be considered
as a frequent activity in software evolution, if not as
frequent as regression unit testing. When a program is
changed, the specifications inferred from the same unit
test suite might change as well, giving rights to possible
test violations. Tool-assisted unit test augmentation can be
a means to evolving unit tests and assuring better unit
quality. Moreover, augmenting unit test suite in a
controlled way can lead to better quality of inferred
specifications. In future work, we plan to apply the
specification violation techniques in connecting system
testing and unit testing. Specifications are to be inferred
from system testing and specification violations by the
generated unit tests are used to guide unit test data
selection. Also, the partial specifications inferred from
testing done by component providers are to be delivered
as component metadata [9], which will aid component
users to perform test augmentations. Finally, we plan to
apply the specification violation techniques in other kinds
of inferred specifications, e.g. sequencing constraints or
protocols.

6. Acknowledgement

We thank Michael Ernst and the Daikon project
members at MIT for their assistance in our installation and
use of the Daikon tool. This work was supported in part
by the National Science Foundation under grant ITR
0086003. The authors wish to acknowledge support
through the High Dependability Computing Program from
NASA Ames cooperative agreement NCC-2-1298.

7. References

[1] K. Beck. Extreme programming explained. Addison-
Wesley, 2000.

[2] Y. Cheon and G. T. Leavens. A simple and practical
approach to unit testing: The JML and JUnit way. In
Proceedings of 16th European Conference Object-
Oriented Programming (ECOOP), 2002, pp. 231-255.

[3] M. D. Ernst, J. Cockrell, W. G. Griswold, and D.
Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE
Transactions on Software Engineering, vol. 27, no. 2, Feb.
2001, pp. 1-25.

[4] S. Hangal and M. S. Lam. Tracking down software
bugs using automatic anomaly detection. In Proceedings
of the International Conference on Software Engineering,
May 2002, pp. 291-301.

[5] M. Harder, J. Mellen, and M. D. Ernst. Improving test
suites via operational abstraction. In Proceedings of the
International Conference on Software Engineering,
(Portland, Oregon), May 6-8, 2003.

[6] Jtest manuals version 4.5. Parasoft Corporation,
October 23, 2002.

[7] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D.
Notkin. Automated support for program refactoring using
invariants. In Proceedings of ICSM 2001, November,
2001, pp. 736-743.

[8] J. W. Nimmer and M. D. Ernst. Static verification of
dynamically detected program invariants: Integrating
Daikon and ESC/Java. In Proceedings of RV'01, First
Workshop on Runtime Verification, (Paris, France),
July 23, 2001.

[9] A. Orso, M. J. Harrold, and D. Rosenblum.
Component metadata for software engineering tasks, In
Proceedings of the 2nd International Workshop on
Engineering Distributed Objects, November 2000, pp.
129-144.

[10] ParaSoft Corportation. http://www.parasoft.com/

[11] C. Pavlopoulou and M. Young. Residual test
coverage monitoring. In Proceedings of ICSE 1999, pp.
277-284.

[12] K. Rustan, M. Leino, G. Nelson, and J. B. Saxe.
ESC/Java user’s manual. Technical Report 2000-002,
Compaq Systems Research Center, Palo Alto, California,
Oct 12, 2000.

[13] P. D. Stotts, M. Lindsey, A. Antley. An informal
formal method for systematic JUnit test case generation.
XP/Agile Universe 2002, pp 131-143.

[14] T. Xie and D. Notkin. Exploiting synergy between
testing and inferred partial specifications, University of
Washington Department of Computer Science and
Engineering technical report UW-CSE-03-04-02, (Seattle,
WA), April 2003.

jcook
20

Generating Test Data for Dynamically Discovering Likely
Program Invariants

Neelam Gupta

Department of Computer Science
The University of Arizona

Tucson, AZ 85721
ngupta@cs.arizona.edu

Abstract

Dynamic detection of program invariants is emerg-
ing as an important research area with many challeng-
ing problems. As with any dynamic approach, the accu-
racy of dynamic discovery of likely program invariants
depends on the quality of test cases used to detect in-
variants. Therefore, generating suitable test cases that
support accurate detection of program invariants is cru-
cial to the dynamic approach for invariant detection.

In this paper, we explore new directions in using the
existing test data generation techniques to improve the
accuracy of dynamically detected program invariants.
First we discuss the augmentation of existing test suites
to improve the accuracy of dynamically discovered in-
variants. The augmentation of the test suite may be
done prior to running the dynamic analysis if the vari-
ables and expressions whose values will be monitored at
runtime are known in advance. On the other hand, the
dynamic analysis may be run first using an available
test suite to obtain an initial guess of program invari-
ants. These guessed invariants may then be used to gen-
erate test cases to augment the test suite. We also pro-
pose the use of existing test data generation techniques
in improving the accuracy of invariants guessed using
an already available test suite.
Keywords - Test data generation, path testing, pro-
gram invariants, dynamic analysis, execution traces.

1 Introduction

Dynamic detection of program invariants is an
emerging area of research with many challenging
problems [3, 4]. The accuracy of dynamically dis-
covered invariants critically depends upon the test

suite used for detection of invariants. One param-
eter of the test suite that can be loosely related to
the accuracy of dynamic detection of invariants is
the size of the test suite. However, not all large
test suites can be expected to be equally effective
in accurate detection of invariants due to varying
degree of structural coverage obtained. Thus, it
is crucial to conduct research on what properties
make a test suite suitable for dynamic invariant de-
tection.

In prior work [3, 4], randomly generated and
grammar generated test suites have been used
for invariant detection. Randomly generated test
suites have poor coverage and are most effec-
tive at highly peculiar bugs [10]. In the experi-
ments reported in [4], the randomly generated test
suites failed to execute many portions of a pro-
gram. These randomly generated test suites did
not detect many of the invariants that were de-
tected using hand-crafted input cases. The experi-
ments using randomly generated test suites from a
grammar describing valid inputs detected more in-
variants than completely randomly generated test
suites. However, generating test cases using gram-
mar rules is a black box approach to test case gen-
eration and in general can fail to cover a significant
part of the implementation.

In this paper we explore new research directions
in generation of test cases to support dynamic in-
variant detection. We discuss the augmentation
of existing test suites to improve the accuracy of
dynamically discovered invariants. The augmen-
tation of the test suite may be done prior to run-
ning the dynamic analysis if the variables and ex-
pressions, whose values will be monitored at run-
time, are known in advance. On the other hand, the

jcook
21

dynamic analysis may be run first using an avail-
able test suite to guess program invariants. These
guessed invariants may then be used to generate
test cases to augment the test suite. We also pro-
pose the use of existing test data generation tech-
niques to improve the accuracy of dynamically dis-
covered likely invariants.

The organization of the paper is as follows. We
discuss the background work in test data genera-
tion and dynamic detection of program invariants
in section 2. In section 3, we propose new research
directions to improve the accuracy of dynamically
discovered invariants. Finally, we summarize the
contributions of this paper and our future work.

2 Background

Test Data Generation Problem We consider the
problem of generating input data that forces execu-
tion through a given path in a program. Symbolic
evaluation [1, 2] and program execution based ap-
proaches [7, 8, 5, 11] have been proposed for gener-
ating test data for a given path in a program. The
problem of test data generation for a given path is
defined as follows.

Problem Statement: Given a program path
�

which
is traversed for certain evaluations (true or false)
of branch predicates � ����� � �����	�
� � ���

along
�

,
generate a program input ������ � � � ������� � ����� in the
input domain of the program that causes the branch
predicates to evaluate such that

�
is traversed.

The selection of paths for which the test input
needs to be generated depends upon the testing
strategy. For example, if the testing strategy is to
ensure coverage of all branches in the program, the
test paths are selected so that each branch is exer-
cised by at least one test path among those selected.

Dynamic Invariant Detection. We consider the
approach to dynamic discovery of invariants pre-
sented in [3, 4]. In this approach the invariants
are dynamically detected from program traces that
capture the variable values at program points of
interest. The user runs the target program over a
test suite to create execution traces of the program.
An invariant detector determines which properties
hold over both explicit variables and other expres-
sions. Variable and expressions for which these
properties hold over the traces, and also satisfy
other tests such as being statistically justified, not
being over unrelated variables and not being im-
plied by other invariants, are reported as likely in-

variants. The set of likely invariants reported de-
pends on the test suite used to discover invariants.

3 Test Data Generation for Dynamic
Invariant Detection

In this paper we explore the relationship be-
tween the test data generation problem and dy-
namic discovery of program invariants. First we
illustrate that the test suites satisfying the state-
ment and branch coverage criteria may not be good
enough for accurate detection of program invari-
ants. We propose new approaches to to augment
these test suites with additional test cases that can
help in improving the accuracy of detected invari-
ants. Second we illustrate the use of test data gen-
eration techniques in improving the accuracy of
detected invariants.

3.1 Augmenting a Test Suite for Invariant De-
tection

We first illustrate the limitations of using ex-
isting structural coverage test suites for dynamic
discovery of program invariants and propose how
these test suites may be augmented with additional
test cases to overcome these limitations.

0: int ��� �"!$#&% (int x, y)
1: '
P1: if (x (0)
2: a=3;
3: c=6;
4: else
5: a=3;
6: c=9;
7: endif
P2: if (y (0)
8: b=4;
9: d=2;
10: else
11: b=3;
12: d=1;
13: endif
14: /* Monitored Property: (a*b == c*d) */
15: printf(“ a*b == c*d”)

16:
...

17:)
Figure 1. An example code segment

Let us consider the code segment shown in Fig-
ure 1. Let the expression (a*b == c*d) in line 15 rep-
resent a property to be monitored during every ex-

jcook
22

ecution of this code segment. The code segment
has been instrumented so that the value of this ex-
pression is written into every execution trace for
this code segment. Let us say the test suite � � con-
sists of the following two input cases.
� � ��� ��� ��� ��� �
	 � � ��� ���� ��� ���� ���
Note that executing the code segment in Figure

1 with test cases in � � executes every statement in
this code segment. In addition, every branch out-
come of the two branch predicates

� � and
� 	 are

executed by this test suite. Also note that every
definition-use pair in this code segment is also ex-
ercised by this test suite. The property tested in
line 15 will also hold for this test suite � � . But it
is easy to see that this property does not hold for
the test case ��� ��� ��� ����� � . This simple example
illustrates that code coverage (each statement ex-
ecuted at least once by some test case) and even
branch coverage (each branch outcome is evalu-
ated at least once by some test case) are very weak
criteria for the test suite to be adequate for dynamic
invariant detection.

However, the above example provides insight
into the limitations of using coverage based test
suites for detecting invariant properties at differ-
ent points in the programs. These test suites are
designed to test structural coverage of the program
and may not contain test cases that are specifically
helpful in verification of properties being moni-
tored for invariant discovery. What is needed is
the augmentation of these test suites with test cases
specific to the properties being monitored.

In the above example, we need test cases for
all possible combinations of branch outcomes by
which the program execution can reach the criti-
cal point where the property of interest is being
monitored. But in general, the number of paths
reaching the critical point may be unbounded due
to the presence of loops. So the crucial problem is
how to identify the important paths reaching the criti-
cal point so that augmenting the structural coverage
test suites with the test cases for these paths gives
higher confidence in the value of the property be-
ing monitored during execution.

One approach we propose is to select the paths
that exercise different definition-use pairs that are� ����� at the critical point where the invariant prop-
erty is being monitored. However, in order to com-
pute the live definition-use pairs at the critical point,
we need to know the expression or the variable that
is being monitored at this point. If the explicit vari-
ables and other expressions whose properties are
collected in the executions traces are available in

advance, then the live definition-use pairs for these
variables and expressions can be computed.

On the other hand, if the explicit variables and
expressions whose properties are to be monitored
are not available in advance, then runtime analy-
sis [3, 4] can be used to discover likely invariants
with an existing structural coverage test suite. The
live definition-use pairs for the discovered likely in-
variants (at the relevant program points) can then
be used to guide the selection of paths important
for verification of these discovered invariants. The
test inputs for these paths can be generated and
the structural coverage test suite can then be aug-
mented with these test inputs. Now if the run-
time analysis [3, 4] is done with the augmented test
suite, it is expected that some of the spurious in-
variants that were reported earlier with the struc-
tural coverage test suite may not be reported any
more. This is because the augmented test suite
contains test cases specific to verification of those
likely invariant properties that were reported ear-
lier by the structural coverage test suite. The sub-
set of the properties reported (from among those
reported with the coverage test suite) by the aug-
mented test suite is expected to be more accurate
than the original set of likely invariants reported
with the structural coverage test suite. We are cur-
rently exploring the effectiveness of this approach
in our ongoing research. In the next section, we
illustrate a different dimension of the relationship
between the test data generation problem and the
accuracy of reported program invariants.

3.2 Formulating Invariant Detection Problem
as a Test Data Generation Problem

We propose to formulate the invariant detection
problem as a data generation problem to improve
the accuracy of dynamically discovered invariants.
We illustrate this with the example in Figure 1. Let
us replace line 15 in the code segment shown in
Figure 1 by lines

���
, ��� , ��� and ��� shown in Fig-

ure 2.
We call the new branch predicate

���
introduced

in the code segment in Figure 3 as the invariant
checking predicate. Let us consider the problem
of generating test data to execute the branch de-
noted by the line

���
followed by line ��� , i.e., the

false branch outcome of predicate
���

. Now, if test
data can be generated for the false branch of an invari-
ant checking predicate, then the corresponding property
does not hold irrespective of the information collected
from the execution traces using the already available test

jcook
23

0: int ��� �"!$#&% (int x, y)
1: '
P1: if (x (0)

...
7: endif
P2: if (y (0)

...
13: endif
14: /* Monitored Property: (a*b == c*d) */
P3: if (a*b == c*d)
15: printf(“Property holds”)
16: else
17: printf(“Not an invariant”)

18:
...

19:)
Figure 2. Modified example code segment

suites. As can be seen for the example in Figure 2,
test data for the false outcome of

���
will be easily

generated by program execution based techniques
in [9, 12].

The above example illustrates an important ap-
plication of the test data generation techniques in
support of dynamic invariant detection. If test data
can be generated to exercise the false branch of an
invariant checking predicate, then the correspond-
ing guessed invariant must be discarded. This is
because this test input serves as a counterexample
to this guessed invariant. Although, in general it
is undecidable whether there exists an input to ex-
ecute a given path in an arbitrary program, tech-
niques [1, 2, 7, 8, 5, 11] have been developed for
automatic generation of test data for a given path
in a program. Different test data generation tech-
niques have different strengths and the difficulty of
test data generation for a path depends on the com-
plexity and interdependence of branch predicates
along the path. However, whenever test data gen-
eration techniques can generate an input exercising
the false branch of an invariant checking predicate,
the accuracy of the reported invariants can be sig-
nificantly improved.

4 Conclusions and Future Work

In this paper we have provided insight into the
relationship between test cases used for detecting
invariants and the accuracy of invariant proper-
ties thus detected. We have proposed approaches
for augmenting test suites for accurate detection of
invariants. We are currently exploring these ap-

proaches for their effectiveness in accurate discov-
ery of program invariants. We have also proposed
the use of test data generation techniques to im-
prove the accuracy of dynamically discovered pro-
gram invariants.

References

[1] L.A. Clarke, “A System to Generate Test Data and
Symbolically Execute Programs,” IEEE Transactions
on Software Engineering, Vol. SE-2, No. 3, pages 215-
222, September 1976.

[2] R.A. DeMillo and A.J. Offutt, “Constraint-based Au-
tomatic Test Data Generation,” IEEE Transactions on
Software Engineering, Vol. 17, No. 9, pages 900-910,
September 1991.

[3] M. D. Ernst, J. Cockrell, W. G. Griswold, and D.
Notkin, “Dynamically discovering likely program
invariants to support program evolution,” IEEE
Transactions on Software Engineering, vol. 27, no. 2,
Feb. 2001, pp. 1-25.

[4] M. D. Ernst. “Dynamically Discovering Likely Pro-
gram Invariants,” Ph.D. dissertation, University of
Washington Department of Computer Science and
Engineering, (Seattle, Washington), Aug. 2000.

[5] M.J. Gallagher and V.L. Narsimhan, “ADTEST: A
Test Data Generation Suite for Ada Software Sys-
tems,” IEEE Transactions on Software Engineering, Vol.
23, No. 8, pages 473-484, August 1997.

[6] A. Gotlieb, B. Botella, and M. Rueher, “Automatic
Test Data Generation using Constraint Solving Tech-
niques,” International Symposium on Software Testing
and Analysis, 1998.

[7] N. Gupta, A. P. Mathur, and M. L. Soffa, “Automated
Test Data Generation using An Iterative Relaxation
Method” ACM SIGSOFT Sixth International Sympo-
sium on Foundations of Software Engineering (FSE-6),
pages 231-244, Orlando, Florida, November 1998.

[8] N. Gupta, A. P. Mathur, and M. L. Soffa, “UNA
Based Iterative Test Data Generation and its Evalua-
tion,” 14th IEEE International Conference on Automated
Software Engineering(ASE’99), pages 224-232, Cocoa
Beach, Florida, October 1999.

[9] N. Gupta, A. P. Mathur, M. L. Soffa, “Generating
Test Data for Branch Coverage”, 15th IEEE Interna-
tional Conference on Automated Software Engineering
(ASE’00), Grenoble, France, September 2000.

[10] D. Hamlet, “Random Testing,” Encyclopedia of Soft-
ware Engg., 1994.

[11] B. Korel, “Automated Software Test Data Genera-
tion,” IEEE Transactions on Software Engineering, Vol.
16, No. 8, pages 870-879, August 1990.

[12] B. Korel, A Dynamic Approach of Test Data Gen-
eration. In Conference on Software Maintenance, pages
311-317, San Diego, CA, November 1990.

jcook
24

Static and dynamic analysis: synergy and duality

Michael D. Ernst
MIT Lab for Computer Science
Cambridge, MA 02139 USA

mernst@lcs.mit.edu

Abstract

This paper presents two sets of observations relating
static and dynamic analysis. The first concerns synergies
between static and dynamic analysis. Wherever one is uti-
lized, the other may also be applied, often in a complemen-
tary way, and existing analyses should inspire different ap-
proaches to the same problem. Furthermore, existing static
and dynamic analyses often have very similar structure and
technical approaches. The second observation is that some
static and dynamic approaches are similar in that each con-
siders, and generalizes from, a subset of all possible execu-
tions.

Researchers need to develop new analyses that comple-
ment existing ones. More importantly, researchers need to
erase the boundaries between static and dynamic analysis
and create unified analyses that can operate in either mode,
or in a mode that blends the strengths of both approaches.

1. Background

This section briefly reviews some facts about traditional
static and dynamic analyses, to set the stage for the rest of
the paper.

Static and dynamic analyses arose from different com-
munities and evolved along parallel but separate tracks. Tra-
ditionally, they have been viewed as separate domains, with
practitioners or researchers specializing in one or the other.
Furthermore, each has been considered ill-suited for the
tasks at which the other excels. This paper argues that the
difference is smaller than it appears and that certain of these
distinctions are unnecessary and counterproductive.

Static analysis examines program code and reasons over
all possible behaviors that might arise at run time. Com-
piler optimizations are standard static analyses. Typically,
static analysis is conservative and sound. Soundness guar-
antees that analysis results are an accurate description of the
program’s behavior, no matter on what inputs or in what en-
vironment the program is run. Conservatism means report-
ing weaker properties than may actually be true; the weak
properties are guaranteed to be true, preserving soundness,

but may not be strong enough to be useful. For instance,
given a functionf , the statement “f returns a non-negative
value” is weaker (but easier to establish) than the statement
“f returns the absolute value of its argument.” A conser-
vative analysis might report the former, or the even weaker
property thatf returns a number.

Static analysis operates by building a model of the state
of the program, then determining how the program reacts
to this state. Because there are many possible executions,
the analysis must keep track of multiple different possible
states. It is usually not reasonable to consider every possi-
ble run-time state of the program; for example, there may
be arbitrarily many different user inputs or states of the run-
time heap. Therefore, static analyses usually use an ab-
stracted model of program state that loses some informa-
tion, but which is more compact and easier to manipulate
than a higher-fidelity model would be. In order to maintain
soundness, the analysis must produce a result that would be
true no matter the value of the abstracted-away state com-
ponents. As a result, the analysis output may be less precise
(more approximate, more conservative) than the best results
that are in the grammar of the analysis.

Dynamic analysis operates by executing a program and
observing the executions. Testing and profiling are a stan-
dard dynamic analyses. Dynamic analysis is precise be-
cause no approximation or abstraction need be done: the
analysis can examine the actual, exact run-time behavior of
the program. There is little or no uncertainty in what con-
trol flow paths were taken, what values were computed, how
much memory was consumed, how long the program took
to execute, or other quantities of interest. Dynamic analysis
can be as fast as program execution. Some static analyses
run quite fast, but in general, obtaining accurate results en-
tails a great deal of computation and long waits, especially
when analyzing large programs. Furthermore, certain prob-
lems, such as pointer or alias analysis, remain beyond the
state of the art; even exponential-time algorithms do not al-
ways produce sufficiently precise results. By contrast, de-
termining at run time whether two pointers are aliased re-
quires a single machine cycle to compare the two pointers
(somewhat more, if relations among multiple pointers are
desired).

jcook
25

The disadvantage of dynamic analysis is that its results
may not generalize to future executions. There is no guar-
antee that the test suite over which the program was run
(that is, the set of inputs for which execution of the program
was observed) is characteristic of all possible program exe-
cutions. Applications that require correct inputs (such as
semantics-preserving code transformations) are unable to
use the results of a typical dynamic analysis, just as applica-
tions that require precise inputs are unable to use the results
of a typical static analysis. Whereas the chief challenge
of building a static analysis is choosing a good abstraction
function, the chief challenge of performing a good dynamic
analysis is selecting a representative set of test cases (inputs
to the program being analyzed). (Efficiency concerns affect
both types of analysis.) A well-selected test suite can re-
veal properties of the program or of its execution context;
failing that, a dynamic analysis indicates properties of the
test suite itself, but it can be difficult to know whether a
particular property is a test suite artifact or a true program
property.

Unsound dynamic analysis has been traditionally
denigrated by the programming languages community.
Semantics-preserving program transformations such as
compiler optimizations require correct information about
program semantics. However, unsoundness is useful in
many other circumstances. Dynamic analysis can be used
even in situations where program semantics (but not per-
fect program semantics) are required. More importantly,
humans are remarkably resilient to partially incorrect infor-
mation [10], and are not hindered by its presence among (a
sufficient quantity of) valuable information. Since in most
domains human time is far more important than CPU time,
it is a better focus for researchers. As a result, and be-
cause of its significant successes, dynamic analysis is gain-
ing credibility.

2. Static and dynamic analysis: synergies

As noted in Section 1, static and dynamic analysis have
complementary strengths and weaknesses. Static analysis
is conservative and sound: the results may be weaker than
desirable, but they are guaranteed to generalize to future ex-
ecutions. Dynamic analysis is efficient and precise: it does
not require costly analyses, though it does require selection
of test suites, and it gives highly detailed results regarding
those test suites.

The two approaches can be applied to a single problem,
producing results that are useful in different contexts. For
instance, both are used for program verification. Static anal-
ysis is typically used for proofs of correctness, type safety,
or other properties. Dynamic analysis demonstrates the
presence (not the absence) of errors and increases confi-
dence in a system.

This section considers the use of static and dynamic anal-
ysis in tandem, to complement and support one another.
First, static and dynamic analyses enhance each other via
pre- or post-processing. Second, existing static and dy-
namic analyses can suggest new analyses. Third, static and
dynamic analyses should be combined into a hybrid analy-
sis.

2.1. Performing both static and dynamic analysis

Static or dynamic analyses can enhance one another by
providing information that would otherwise be unavailable.
Performing first one analysis, then the other (and perhaps
iterating) is more powerful than performing either one in
isolation. Alternately, different analyses can collect differ-
ent varieties of information for which they are best suited.

This well-known synergy has been and continues to be
exploited by researchers and practitioners alike. As one
simple example, profile-directed compilation [1] uses hints
about frequently executed procedures or code paths, or
commonly observed values or types, to transform code. The
transformation is meaning-preserving, and it improves per-
formance under the observed conditions but may degrade
it in dissimilar conditions (the correct results will still be
computed, only consuming more time, memory, or power).
As another example, static analysis can obviate the collec-
tion of certain information by guaranteeing that collecting a
smaller amount of information is adequate; this makes dy-
namic analysis more efficient or accurate.

2.2. Inspiring analogous analyses

Both static and dynamic analysis can always be applied
to a particular program, though possibly at different cost,
and their results have different properties. Whenever only
one of the analyses exists, it makes sense to investigate the
other, which may be able to use the same technical ap-
proach. In many cases, both approaches have already been
implemented by different parties.

One simple example is static and dynamic slicing [14].
Slicing indicates which parts of a program (may) have con-
tributed to the value computed at, or the execution of, a par-
ticular program expression or statement. Slicing can oper-
ate statically, dynamically, or both.

As a more substantive example, Purify [8] and
LCLint [6] are tools for detecting memory leaks and uses of
dead storage. (Each has capabilities missing from the other,
but this discussion considers only the intersection of their
capabilities.) Purify performs a run-time check, essentially
by use of tagged memory. Each byte of memory used by the
program is allocated a 2-bit state code indicating whether
that memory is unallocated, uninitialized, or initialized; at
each memory access, the memory’s state is checked and/or
updated by instructions that Purify inserts in the executable.

jcook
26

LCLint operates statically, checking user-supplied annota-
tions that indicate assumptions. It performs a dataflow anal-
ysis whose abstract state contains includes definedness and
allocation state; each program operation has particular re-
quirements on its inputs and produces certain results. The
rules and abstract states used by Purify and LCLint are es-
sentially identical: they perform the same analysis, Purify
dynamically and LCLint statically.

As another example, consider program specifications,
which are formal mathematical abstractions of program be-
havior. When used to verify behavior, the standard static
technique is theorem proving, which typically requires hu-
man interaction. The dynamic analog of theorem-proving
is theassert statement, which verifies the truth of a par-
ticular formula at run time. Specifications are best written
by the designer before implementation commences. When
specifications are synthesized after the fact, the typical ap-
proach is a static one that proceeds by examining the pro-
gram text. This task is sometimes done automatically with
the assistance of heuristics, but very frequently it is done
by hand. The dynamic analog to writing down a specifica-
tion is generating one automatically by dynamic detection
of likely invariants [4, 5]. The invariant detection technique
postulates potential invariants, tests them over program ex-
ecutions, and then prunes them via static analysis, statistical
tests, heuristics, and other techniques. As a result, its output
is often close to the ideal (over its grammar) that a perfect
static analysis or human would produce [11].

Dynamic invariant detection was invented as a direct re-
sult of considering the duality between dynamic and static
analysis. There existed static analyses that could generate
specifications (or formulas syntactically identical to speci-
fications, if the term “specification” is reserved for human-
produced formulas), but no dynamic analyses existed. (Dy-
namic techniques for other varieties of specifications al-
ready existed [2].) This led to a new technique that has
since been applied to refactoring, bug detection, fault isola-
tion, test suite improvement, verification, theorem-proving,
detection of component incompatibilities, and other tasks.
Other researchers would be well advised to look for other
missing analyses, in order to inspire development of new
analyses by comparison with their existing analogs. Where
just one (static or dynamic) analysis exists, the other is
likely to be advantageous.

2.3. Hybrid static-dynamic analysis

Presently, tool users must select between static and dy-
namic analysis. (Section 2.1’s noted cooperative strategies
use one analysis as a prepass for the other, but the overall
output is that of the final analysis.) In some cases, one or the
other analysis is perfectly appropriate. However, in other
cases, users may prefer not to be forced to choose between
the two approaches.

A better alternative is to create new, hybrid analyses
that combine static and dynamic analyses. Such an anal-
ysis would sacrifice a small amount of the soundness of
static analysis and a small amount of the accuracy of dy-
namic analysis to obtain new techniques whose properties
are better-suited for particular uses than either purely static
or purely dynamic analyses.

The hybrid analyses would replace the (large) gap be-
tween static and dynamic analysis with a continuum. Users
would select a particular analysis fitted to their needs: they
would, in a principled way, turn the knob between sound-
ness and precision. It seems unlikely that one extreme or
the other is always the appropriate choice: users or system
builders should be able to find the “sweet spot” for their
application. Indeed, different analyses (both static and dy-
namic) already use different amounts of processing power
to produce results of differing precision. This could be a
starting point for the work. Another starting point could be
use of only a subset of all available static information, much
as already practiced by some tools [12, 7]. A third starting
point is an observation about the duality of static and dy-
namic analysis, noted immediately below in Section 3. One
potential barrier is different treatments (optimistic vs. con-
servative) of unseen executions.

3. Static and dynamic analysis: duals

Static and dynamic analysis are typically seen as distinct
and competing approaches with fundamentally different the
techniques and technical machinery. (Section 2.2 noted that
in some cases, the underlying analyses are quite similar.)
This section argues that the two types of analysis are not
as different as they may appear; rather, they are duals that
make many of the same tradeoffs.

The key observation is that both static and dynamic anal-
ysis are able to directly consider only a subset of program
executions. Generalization from those executions is the
source of unsoundness in dynamic analysis and imprecision
in static analysis.

A dynamic analysis need not be unsound. A sound dy-
namic analysis observes every possible execution of a pro-
gram. If a test suite contains every possible input (and ev-
ery possible environmental interaction), then the results are
guaranteed to hold regardless of how the program is used.
This simple goal is unattainable: nontrivial programs usu-
ally have infinitely many possible executions, and only a
relatively small (even if absolutely large) set of them can
be considered before exhausting the testing budget (in time,
money, or patience). Researchers have devised a number of
techniques for using partial test suites or for selection of par-
tial test suites [13]. These techniques are of interest solely
as efficiency tweaks to an algorithm that works perfectly in
theory but exhausts resources in practice.

jcook
27

A static analysis need not be approximate. A perfectly
precise static analysis considers every possible execution of
a program, maintaining, for each execution, the program’s
full state (or, rather, all possible states). This is not typ-
ically feasible, because there are infinitely many possible
executions and the state of the program is extremely large.
Researchers have devised many abstractions, primarily of
state but also of executions, that permit them to consider a
smaller state space or a smaller number of executions, re-
ducing the problem to one that can often be solved on to-
day’s computers. The abstractions are of interest solely as
efficiency tweaks to an algorithm that works perfectly in
theory [3] but exhausts resources in practice.

Both dynamic and static analyses consider only a sub-
set of all possible executions, but that subset is chosen dif-
ferently. (Executions not in the set may be dealt with dif-
ferently, as well. In particular, the unobserved executions
may be treated conservatively and pessimistically or may be
treated optimistically, which often means simply ignoring
them. This distinction between sound and unsound analysis
is important but is omitted for reasons of space and because
it is orthogonal to the main point.)

The set of executions considered by a dynamic analysis
is exactly those that appear in the test suite or that were ob-
served during execution. This set is very easy to enumerate
and may characterize a particular environment well; how-
ever, the set may be difficult to formalize in mathematical
notation. The set of executions considered by a static anal-
ysis is those that induce executions of a certain variety. For
instance, thek-limiting [9] abstraction considers in detail
only the executions that create data structures with pointer-
directed paths of length no more thank; another popular ab-
straction considers only executions that traverse each loop
either zero or one times [6, 7].

Each of the descriptions is simpler in some respects and
more complicated in others. Given a data-structure-centric
description like those used for static analysis, it is difficult to
know what executions induce the data structures or whether
particular programs or execution environments will suffer
degradation of analysis results. Given a set of inputs or ex-
ecutions, analysis is required to understand what parts of a
program are exercised, and in what ways.

Recognition of this duality — both analyses consider a
subset of executions — should make it easier to translate ap-
proaches from one domain to the other and to combine static
and dynamic analyses, or at least to a better understanding
of the gap between them.

4. Conclusion

This paper has listed some widely-recognized distinc-
tions between static and dynamic analysis, notably sound-
ness versus precision. It noted ways that static and dynamic

analysis can interact: by augmenting one another, by inspir-
ing new analyses, and by creating hybrid analyses that com-
bine them. Some of these seem to have been overlooked by
previous authors. Finally, it noted a duality between static
and dynamic analysis, both of which consider (differently-
specified) subsets of program executions. We encourage
other researchers to join us in bringing these research ideas
to fruition.

References

[1] B. Calder, P. Feller, and A. Eustace. Value profiling. In
MICRO-97, pages 259–269, Dec. 1–3, 1997.

[2] J. E. Cook and A. L. Wolf. Event-based detection of concur-
rency. InFSE, pages 35–45, Nov. 1998.

[3] P. M. Cousot and R. Cousot. Automatic synthesis of opti-
mal invariant assertions: Mathematical foundations. InACM
Symposium on Artificial Intelligence and Programming Lan-
guages, pages 1–12, Aug. 1977.

[4] M. D. Ernst. Dynamically Discovering Likely Program In-
variants. PhD thesis, U. Wash. Dept. of Comp. Sci. & Eng.,
Seattle, Washington, Aug. 2000.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution.IEEE TSE, 27(2):1–25, Feb. 2001.

[6] D. Evans. Static detection of dynamic memory errors. In
PLDI, pages 44–53, May 21–24, 1996.

[7] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
PLDI, pages 234–245, 2002.

[8] R. Hastings and B. Joyce. Purify: A tool for detecting mem-
ory leaks and access errors in C and C++ programs. InWin-
ter 1992 USENIX Conference, pages 125–138, Jan. 1992.

[9] N. D. Jones and S. S. Muchnick. Flow analysis and op-
timization of Lisp-like structures. InProgram Flow Anal-
ysis: Theory and Applications, chapter 4, pages 102–131.
Prentice-Hall, Englewood Cliffs, N.J., 1981.

[10] G. C. Murphy, D. Notkin, and E. S.-C. Lan. An empirical
study of static call graph extractors. InICSE, pages 90–99,
Mar. 1996.

[11] J. W. Nimmer and M. D. Ernst. Automatic generation of
program specifications. InISSTA, pages 232–242, July 2002.

[12] PREfix/Enterprise.www.intrinsa.com , 1999.
[13] G. Rothermel and M. J. Harrold. Empirical studies of a safe

regression test selection technique.IEEE TSE, 24(6):401–
419, June 1998.

[14] F. Tip. A survey of program slicing techniques.Journal of
Programming Languages, 3(3):121–189, 1995.

jcook
28

Improving Design Pattern Instance Recognition by Dynamic Analysis
∗

Lothar Wendehals
Software Engineering Group

Department of Computer Science
University of Paderborn
Warburger Straße 100

33098 Paderborn, Germany
lowende@upb.de

Abstract
Design pattern instance recognition is often done by static
analysis, thus approaches are limited to the recognition of
static parts of design patterns. The dynamic behavior of pat-
terns is disregarded and leads to lots of false positives during
recognition. This paper presents an approach to combine the
advantages of static and dynamic analyses to overcome this
problem and improve the design pattern instance recognition.

1. Motivation
Reverse engineering large industrial legacy systems is hard

work. They consist of several thousand or up to million lines
of code and often lack of documentation. The systems have
grown over several years and were developed by different
programmers with different programming styles.

Design recovery, which means extracting design documents
from source code, is a way to assist the reengineer understan-
ding and maintaining those systems. As a basis for design
documentation design patterns first presented by Gamma et
al. [4] are suitable. By recognizing instances of design pat-
terns in the system’s source code, the implicit design may be
recovered and documented. Further enhancements can then
be applied to the system.

Most approaches to design recovery use static analysis
techniques on the system’s source code [1, 6, 7, 12]. Some
of them are text-search tools based on regular expressions.
Other approaches use graph representations of the source co-
de, such as control flow or data flow graphs or even abstract
syntax trees.

In object-oriented languages those static analyses are not
sufficient. Polymorphism and dynamic method binding pre-
vent the correct analysis of method invocations that are es-
sential to recover patterns with behavioral aspects such as
the Chain of Responsibility pattern [4] depicted in Figure 1.

Some parts of a Chain of Responsibility pattern such as
the inheritance between the abstract class Handler and their
concrete children classes or the self-association successor of
the class Handler can be found by static analyzing techni-
ques. Method calls such as the delegation between a Handler
object and its successor can be found statically, but the con-
crete invoked method and the concrete object the method
is invoked on can only be analyzed during runtime.

Thus a precise recognition of design pattern instances with

∗This work is part of theFinite project funded by the German
Research Foundation (DFG), project-no. SCHA 745/2-1.

Handler
handleRequest()

ConcreteHandler1
handleRequest()

Client

ConcreteHandler2
handleRequest()

successor
0..1

successor.handleRequest()

if can handle {...}
else {
successor.handleRequest()
}

Figure 1: Chain of Responsibility pattern

dynamic behavior requires dynamic analysis. A complete
reengineering process based on dynamic analysis only is not
appropriate, because static parts of design patterns can be
identified easier in static analysis. So a smart combination
of static and dynamic analysis is desirable.

The combined reengineering process starts with the static
analysis of the source code. As a result of this first part of
the process a set of pattern instance candidates is produced.
This set is the input for the dynamic analysis part of the
process. It reduces the search space for the dynamic analysis.
During runtime of the program pattern instance candidates
only have to be investigated.

In the following an overview of our pattern-based design
recovery process is presented. An example for a pattern in-
stance is then given to clarify the limitations of static ana-
lysis. To lift this restrictions dynamic analysis is added to
design pattern instance recognition based on static analysis.
The paper closes with related work and some conclusions.

2. Pattern-based Design Recovery
In our approach described in [8, 9] we use an abstract

syntax graph (ASG) representation of the source code. This
ASG is produced by parsing the source code. It contains sta-
tic information about classes, attributes, methods including
method bodies and inheritance. Our approach is not bound
to any particular programming language. As a case study
we analyzed software systems written in Java.

We use additional nodes to enrich the ASG with infor-
mation gathered during analyses. Those nodes added to the
ASG are called annotations. They are linked to the nodes in
the ASG that have to be annotated with information.

jcook
29

A tool-based design recovery needs formalized rules for
the analysis. We developed a graphical rule definition lan-
guage based on graph-rewrite-rules with a left and a right
side. Each pattern that should be searched for is defined by
the left side of such a graph-rewrite-rule. The right side of
the rule consists of the pattern together with the annotati-
on node that has to be added to the ASG. By successfully
applying these rules to the ASG, pattern instances are reco-
vered. The information of a found pattern instance is stored
by the annotation node linked to the ASG elements that are
participating in the pattern’s instance.

By defining new rules, existing rules can be reused. Sim-
ple rules may be combined to new more complex and more
abstract rules. As a result a pattern rule catalog is formed
where rules depend on each other.

To support reverse engineering tasks where up to milli-
on lines of code are analyzed we developed a highly scala-
ble design recovery process. We showed that our approach
is applicable to real life software systems such as the Java
Abstract Windowing Toolkit (AWT) [11] with more than
140.000 lines of code [8, 9].

3. Static Analysis
Pattern-based design recovery is a deductive analysis pro-

blem where patterns, or rules, are repeatedly applied to a
representation of the source code to arrive at the most com-
plete characterization of the code permitted by the rules.
Pure deductive analysis algorithms typically apply the rules
involved level by level - bottom-up - according to their na-
tural hierarchy. Results from other researchers, such as [13]
and [10], suggest that a reverse engineering tool providing
fully automatic analysis based on this approach cannot scale
for larger software systems.

We developed a combined bottom-up and top-down stra-
tegy. The rules in the pattern rule catalog are sorted by
their natural dependency hierarchy. The analysis starts in
bottom-up mode with rules at the lowest level which are
rules that do not depend on others. After successfully app-
lying such a rule, consequent rules at the next level will be
triggered. If any rule depends on precondition rules that ha-
ve not yet applied, the strategy switches into the top-down
mode. After evaluating all preconditions the strategy chan-
ges back to bottom-up mode. The whole analysis algorithm
which ensures a highly scalable process can be found in [8].

In our ASG representation of the source code method bo-
dies are also contained as mentioned before. This enables
our static analysis to analyze parts of the dynamic behavior
of methods. The existence of method calls can be identified
but dynamic method binding and polymorphism prevents
to identify the actual called method and the actual object
the method is invoked on. It can only be a first indication
of dynamic behavior.

Figure 2 depicts an instance of a Chain of Responsibility
pattern shown in Figure 1. This example shows a part of
a model for a graphical user interface. There is an abstract
class GUIElement that implements a multiple self-reference
children. Concrete subclasses of this abstract class are a Win-
dow, a Panel and a Button. They override a method from
their superclass. The dotted line of the inheritance relation
denotes an indirect inheritance. So there are other classes in
between the inheritance hierarchy.

Suppose a pattern rule is defined to identify a Chain of
Responsibility pattern instance as shown in Figure 1. The

GUIElement
mousePressed()

Window
mousePressed()

Button
mousePressed()

children
0..n

Panel
mousePressed()

Figure 2: Concrete instance of a Chain of Responsi-
bility pattern

source code to be reengineered contains a Chain of Responsi-
bility pattern instance as depicted in Figure 2. During static
analysis there are some elements of uncertainty that prevent
an exact matching of this pattern instance.

The multiple self-reference of the abstract superclass GUI-
Element is different from the single reference successor of
the Chain of Responsibility pattern. This could be a coun-
ter indicator for a Chain of Responsibility pattern instan-
ce, because a chain element has always only one successor.
Another uncertainty derives from the indirect inheritance
hierarchy. The original pattern describes a direct inheritan-
ce between the abstract handler and its concrete handlers.
Furthermore the method call delegation from a handler to
its successor can not be identified exactly. A method call
from a handler to another handler can be statically identi-
fied, but it is not for sure that this call is forwarded in a
chain of objects.

This leads only to an inexact match. There are two ways
to handle this match. Firstly, this match can be discarded,
because it is different from the original defined pattern. Se-
condly, it could be accepted as a pattern instance candidate
with a low certainty of being a correct pattern instance. This
certainty is expressed as a fuzzy value. In [9] we describe how
to handle inexact pattern matches by fuzzy values.

The result of the overall static analysis is a set of pattern
instance candidates each rated by a fuzzy value. For some
of the candidates the certainty (fuzzy value) that they are
actual pattern instances is not very high because of dynamic
behavior that can not be analyzed statically as stated before.
Some of them may even be false positives. Dynamic analysis
can help to make these results more precise.

The analysis restricted to the candidates reduces the input
for dynamic analysis. To further reduce the search space,
our static analysis process provides the analysis of method
bodies as part of the ASG. Structural information about
method bodies such as a method call within a loop can be
used for refining the rules. This reduces not only the number
of candidates but also the number of methods that have
to be investigated by dynamic analysis. Methods that are
probably not participating in the pattern can be separated
from those that are relevant to the pattern.

4. Dynamic Analysis
The design patterns descriptions used by Gamma et al. [4]

are informal in most parts, for example the motivation, ap-
plicability, consequences and implementation. More formal
parts of a pattern description are the structure and some-
times the collaboration parts. The collaboration parts often

jcook
30

contain UML sequence diagrams with typical behavior of
the pattern constituents. Figure 3 shows such a sequence
diagram for the Chain of Responsibility pattern. Those des-
criptions of the dynamic behavior of patterns can be used by
the reverse engineer to formally define rules for tool-based
design recovery.

a:Handler c:Handlerb:Handler

handleRequest()

handleRequest()

Figure 3: Sequence diagram pattern for a Chain of
Responsibility

For each pattern with dynamic behavior a pattern for a
UML sequence diagram is added to the pattern’s rule. It
describes typical sequences of method calls between objects
that participate in the pattern. The diagrams can only be
samples for object interaction. Figure 3 for example only
shows three objects acting as a Chain of Responsibility. Ac-
tual chain of responsibilities may consist of more than three
objects.

Reengineering a program often aims at changing or adding
features. The program’s part to be reengineered is therefore
precisely defined. So the execution of the program for dyna-
mic analysis can be restricted to those parts. The execution
has to be done manually by the reengineer.

Information will be gathered during program execution
by debugging the program. Basic functionality of debuggers
allow to set breakpoints and record method traces. For each
pattern-relevant method from candidate classes breakpoints
are set. The pattern-relevant methods can be found by sta-
tic analysis as mentioned before. So object information and
their method traces are recorded during runtime. These in-
formation are stored as an attributed call graph and form
the data for the pattern instance recognition.

The procedure of the dynamic analysis is analog to static
analysis. After generating a call graph by executing the pro-
gram - which corresponds to parsing the source code into
an ASG in static analysis - the gathered information has to
be analyzed. The sequence diagrams are defined as graph-
rewrite-rules just like the static part of a pattern rule. The
matching of the sequence diagrams can now be done by ap-
plying their graph-rewrite-rules to the attributed call graph,
which again corresponds to applying the static pattern rules
to the ASG. Finally the results of both analyses - static and
dynamic - are rated by fuzzy values.

During runtime of the program there could be multiple
different object sets that are instances of one pattern instan-
ce candidate. For example a Chain of Responsibility-pattern
used in a program can be instantiated multiple times during
runtime. For each of these sets object type information and
method traces will be recorded. Polymorphism and dynamic
method binding enables method traces of the sets to differ
significantly from each other, even if they are instances of

the same pattern instance candidate. In our example there
could be object sets instantiated from the same Chain of Re-
sponsibility instance where the objects are different concrete
handlers. Method traces from those sets would be different.

:Window :Panel

mousePressed()

:Panel :Button

x()

y()

mousePressed()

mousePressed()

y()

Figure 4: Method trace from a candidate object set

Figure 4 depicts an example for a object set and its me-
thod trace. These objects are instances from the class dia-
gram of Figure 2. This object set is therefore an instance of a
pattern instance candidate. There is a mouse pressed event
that is delegated from a Window object to the responsible
Button object. Some method calls as x() or y() may have
been recorded, too. Others may have been suppressed, as
method calls to different objects that were not investigated.

The matching between the pattern sequence diagram and
the method trace can only be inexact. There are three ob-
jects in the pattern sequence diagram depicted in Figure
3 delegating the handleRequest() method call to their suc-
cessor. This situation can be found in the method trace of
Figure 4 if naming is not considered. There is one additio-
nal object and there are additional method calls that do not
match any method call in the pattern. So a matching can be
found but it is ambiguous and inexact. The grade of ambi-
guity and inexactness has to be rated for each object set and
its method trace. The rating is expressed by a fuzzy value
within a range between 0 and 1 like in static analysis.

Both results from static and dynamic analysis are then
presented to the reengineer and has to be interpreted. There
are three cases that have to be considered for each pattern
instance candidate.

Firstly, there were no object set that was instantiated from
the candidate during program execution. So there is only a
result from static analysis. That means the features executed
do not use the program’s part the pattern instance candida-
te belongs to. Therefore the reengineer is not interested in
that program’s part and design and the results from static
analysis can be ignored.

Secondly, there are one or more object sets with their
method traces for one pattern instance candidate. In this
case the fuzzy values from all object sets are combined to
three values: the minimum, the average and the maximum
fuzzy value.

Suppose in our example there are five object sets instan-
tiated from the pattern instance candidate of Figure 2. Four
of these sets have a fuzzy value of 0.9 and one set has a
fuzzy value of 0.4. The average fuzzy value is 0.8. The static
analysis result for the given example is a certainty of 0.6
of being an actual Chain of Responsibility pattern instance.
The maximum fuzzy value from dynamic analysis confirms

jcook
31

this assumption. The minimum fuzzy value is a contraindi-
cation, but the average value shows that most of the fuzzy
values confirm the assumption. In the case of a low average
fuzzy value the result would indicate a false positive.

Thirdly, there are object sets for a pattern instance candi-
date, but the given sequence diagram could not be matched
to the call graph. All three fuzzy values - minimum, average
and maximum - will be null. This indicates that the pat-
tern instance candidate from static analysis can be clearly
identified as a false positive.

5. Related Work
Heuzeroth et al. [5] combine as well static as dynamic

analysis to detect interaction patterns. They approach is si-
milar to that presented in this paper. The source code is
represented by an abstract syntax tree (AST). Static pat-
terns are described as relations over AST node objects. The
computed relations are input to the dynamic analysis. Dyna-
mic patterns are described by protocols over a set of events.
The relations as well as the protocols have to be implemen-
ted manually, which means implementing the algorithms to
calculate the relations and to calculate the match of pro-
tocols. This restricts the usability of the approach because
of the complicated maintenance, adaption and creation of
patterns. Furthermore the approach for static analysis is li-
mited in recognizing implementation variants of patterns.
This leads either to lots of false positives or to missing pat-
tern instances. Lots of false positives in static analysis cause
then a higher complexity in dynamic analysis.

Eisenbarth et al. [2] combine static and dynamic analy-
sis as well. Their approach helps the reengineer identifying
components used for certain features. In contrast to the pre-
sented approach Eisenbarth et al. use dynamic analysis to
reduce the search space for static analysis. Scenarios for all
features that have to be located in the code are chosen for
the program’s execution. Concept analysis is then performed
to identify relationships between scenarios and subprograms.
These results are used in static analysis which is done by sli-
cing techniques and manual inspection. So the search space
should be small for static analysis.

6. Conclusions
An approach is presented to use dynamic program analysis

to confirm results from static analysis. The static analysis as
described in this paper is already implemented in our CASE
tool Fujaba [3]. The implementation of the dynamic analy-
sis is current work. Pattern rule specification and matching
for dynamic analysis will be realized by graph-rewrite-rules
as in static analysis. The inference algorithm [8] can there-
fore be reused.

We introduced the notion of fuzziness into our static ana-
lysis to rate pattern instance candidates [9]. This approach
is used for the rating in dynamic analysis, too. The combi-
nation of both results from static and dynamic analysis is
presented to the reengineer for each pattern instance can-
didate. The dynamic analysis results confirm or discard the
static analysis result. Thus, the combination is a good cri-
terion for the reliability of the results.

7. References
[1] G. Antoniol, R. Fiutem, and L. Christoforetti. Design

pattern recovery in object-oriented software. In Proc.

of the 6th International Workshop on Program
Comprehension (IWPC), Ischia, Italy, pages 153–160.
IEEE Computer Society Press, June 1998.

[2] T. Eisenbarth, R. Koschke, and D. Simon. Aiding
program comprehension by static and dynamic feature
analysis. In Proceedings of the International
Conference on Software Maintenance (ICSM 2001).
IEEE Computer Society Press, November 2001.

[3] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story diagrams: A new graph rewrite language based
on the unified modeling language. In G. Engels and
G. Rozenberg, editors, Proc. of the 6th International
Workshop on Theory and Application of Graph
Transformation (TAGT), Paderborn, Germany, LNCS
1764. Springer Verlag, 1998.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object
Oriented Software. Addison-Wesley, Reading, MA,
1995.

[5] D. Heuzeroth, T. Holl, and W. Löwe. Combining static
and dynamic analyses to detect interaction patterns.
In Proc. of the 6th International Conference on
Integrated Design and Process Technology, June 2002.

[6] R. Keller, R. Schauer, S. Robitaille, and P. Page.
Pattern-based reverse-engineering of design
components. In Proc. of the 21st International
Conference on Software Engineering, Los Angeles,
USA, pages 226–235. IEEE Computer Society Press,
May 1999.

[7] C. Krämer and L. Prechelt. Design recovery by
automated search for structural design patterns in
object-oriented software. In Proc. of the 3rd Working
Conference on Reverse Engineering (WCRE),
Monterey, CA, pages 208–215. IEEE Computer
Society Press, November 1996.

[8] J. Niere, W. Schäfer, J. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In
Proc. of the 24th International Conference on
Software Engineering (ICSE), Orlando, Florida, USA,
pages 338–348, May 2002.

[9] J. Niere, J. Wadsack, and L. Wendehals. Handling
large search space in pattern-based reverse
engineering. In Proc. of the 11th International
Workshop on Program Comprehension (IWPC),
Portland, USA, May 2003.

[10] A. Quilici. A memory-based approach to recognizing
programming plans. Communications of the ACM,
37(5):84–93, May 1994.

[11] SUN Microsystems. AWT, the SUN Java Abstract
Window Toolkit. Online at
http://java.sun.com/products/jdk/awt.

[12] P. Tonella and G. Antoniol. Object oriented design
pattern inference. In Proc. of the 9th International
Conference on Software Maintenance (ICSM), Oxford,
UK., pages 230–238. IEEE Computer Society Press,
September 1999.

[13] L. Wills. Using attributed flow graph parsing to
recognize programs. In Proc. of International
Workshop on Graph Grammars and Their Application
to Computer Science, LNCS 1073, Williamsburg,
Virginia, 1994, November 1996. Springer Verlag.

jcook
32

An Efficient Algorithm for Detecting Patterns in Traces of Procedure Calls*

* This research is supported by NSERC

Abdelwahab Hamou-Lhadj
University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, K1N 6N5 Canada

ahamou@site.uottawa.ca

Timothy C. Lethbridge
University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, K1N 6N5 Canada

tcl@site.uottawa.ca

Abstract

Examining the behavior of a large legacy software
system helps understand its functionality. Dynamic
analysis techniques are well suited for this purpose. Run-
time information is typically represented in the form of
execution traces; however, the amount of information
contained in a trace, of even a small program, can be
very large and usually overwhelming. It becomes
important to filter these traces and present only the
information that adds value to the comprehension
process. Many researchers agree that analyzing
recurrent patterns in a trace can be useful to bridge the
gap between low-level system components and high-level
domain concepts. This paper introduces an efficient
algorithm that extracts patterns of procedure calls of
large execution traces. We also present a set of matching
criteria that can be used in procedural as well as object
oriented software systems to decide when two patterns
can be considered equivalent.

Keywords:
Reverse engineering, program comprehension, dynamic
analysis, execution traces, trace patterns

1. Introduction
Understanding a poorly documented software system

is not an easy task. Program comprehension techniques
aim at overcoming this difficulty. Tools based on these
techniques can indeed help software maintainers to
complete their daily tasks in a more efficient way [9]. In
general, reverse engineering tools can be categorized
according to whether they perform a static analysis of the
code or a dynamic analysis of the executing system. In
[10], Stroulia and Systä presented a large set of reverse
engineering activities where dynamic analysis can be
used, such as, extracting system modularization,
understanding the role of software artifacts and so on.
Many other researchers use run-time information to solve

the popular problem of feature localization – locating
low-level system components that implement a particular
software feature [4, 5, 13]. Moreover, Zayour and
Lethbridge [14] experimented with a large real world
telecommunication system and found that traces of
procedure calls, once made usable, can be very useful to
help maintainers perform cognitively taxing activities.
Their tool, called DynaSee, uses techniques such as
redundancy removal, pattern detection and routine
ranking to overcome the size explosion problem of run-
time information. Among the features of DynaSee is the
possibility for software engineers to replace a pattern of
procedure calls (called trace pattern) with a textual
description mapping low-level system components to
high-level application domain concepts. However, they
did not present an algorithm that detects these patterns.

In this paper, we present an efficient algorithm that
extracts trace patterns. We also present a list of pattern
matching criteria that can be used in procedural software
systems to group similar but not necessarily identical
patterns together. Our algorithm is based on a technique
used to solve a problem known as the common
subexpression problem [3, 6], which consists of
transforming a rooted tree into its most compact form in
such a way that all isomorphic subtrees are represented
only once. Figure 1. illustrates this concept.

Figure 1. The graph b) represents the compact form

of the tree a)

Jerding et al. [8] presented an algorithm that is
similar, in principle, to the one provided in this paper.
However, their algorithm has some limitations, as we
will see in the related work section. The rest of this paper
is organized as follows; the next section presents related

jcook
33

work. We define what we mean by trace patterns in
Section 3. The algorithm that detects them is explained
in Section 4. Section 5 describes a set of matching
criteria that can be used to decide when two patterns are
equivalent. Finally, we conclude in Section 6.

2. Related work
Jerding et al.[8] emphasized the importance of trace

patterns for understanding the behavior of object oriented
systems. They also presented an algorithm that identifies
them. However, their algorithm considers all kinds of
repetitions as patterns. This is probably due to the
requirements of their visualization tool. For example,
they considered contiguous repetitions as trace patterns
(that is, candidate high-level concepts) at the same level
as non-contiguous repetitions. We think that contiguous
redundancies encumber the trace and do not add value to
its content. They should be removed and replaced by the
number of their occurrences, if necessary. The same
choice was made by Zayour and Lethbridge [14] and De
Pauw et al. [2]. In addition to that, their algorithm
considers identical matches only.

De Pauw et al. [2] considered patterns that are similar
but not necessarily identical and presented an interesting
list of matching criteria. However, they briefly discussed
the algorithm that detects them. In addition to that, most
of their matching criteria apply to object oriented systems
only.

3. Definition of a trace pattern
Ideally, a trace pattern captures a high-level domain

concept. In procedural software systems, these concepts
are usually implemented in the form of interactions
between the system procedures. Zayour and Lethbridge
define a trace pattern as “a sequence of calls that occurs
repetitively but non-contiguously in several places in the
trace” [14]. This definition excludes patterns that are not
identical but that exhibit some similarities. We add to
this definition the fact that instances of this sequence of
calls do not need to be identical but satisfy some pattern
matching criteria. Enabling fuzzy similarity can be very
beneficial to trace compression and visualization. The
pattern matching criteria can vary depending on the
system at hand. They can be either specified by the users
or extracted automatically using heuristics.

4. The algorithm

A trace of procedure calls can be represented by a
rooted, ordered, labeled tree. Each node corresponds to a
procedure call. The node label can be the name of the
procedure. The tree levels correspond to the nesting
levels of the calls. A trace pattern is then represented as a
repeated subtree. Our algorithm starts with a
preprocessing stage that aims at removing contiguous

repetitions due to loops and recursion. In [7], we
presented a simple but efficient algorithm that does this.
The hierarchical nature of the trace is maintained by
adding a virtual call whose label starts with Seq followed
by the number of occurrences of the repeated sequence.
Please, note that this virtual call can be omitted in case of
repetitions of single procedure calls as illustrated in
Figure 2.

Figure 2. Removing contiguous repetitions

Now that the trace is preprocessed, we apply the
pattern detection algorithm to extract trace patterns. As
mentioned earlier, the idea behind this algorithm is based
on transforming a rooted, ordered, labeled tree to its most
compressed form by representing repeated subtrees only
once. The result of this compression is a directed acyclic
graph as shown in Figure 1. Flajolet et al. described a
top-down recursive procedure that solves this problem in
an expected linear time assuming that the degree of the
tree is bounded by a constant [6]. Valiente presented an
iterative version of Flajolet et al.’s algorithm with a
slight improvement of its readability [12]. In our
previous work, we used an adaptation of Valiente’s
algorithm to compress a trace of procedure calls [7]. In
what follows, we extend it to consider similar but not
necessarily identical patterns as well as enabling the
frequency analysis of the patterns.

Before getting into the details of the algorithm, first,
consider a function called Match(n1, n2) that takes two
nodes n1 and n2 and returns true if the trees rooted at
these nodes are considered similar according to
predefined matching criteria. The function returns false
otherwise. We discuss the specifics of this function in
Section 5.

The algorithm proceeds by traversing the tree in a
bottom-up fashion (from the leaves to the root). Each
node is assigned a certificate (a positive integer between
1 and n, where n represents the size of the tree). The
certificates are assigned in such a way that two nodes n1
and n2 have the same certificate if and only if Match(n1,
n2) returns true, that is, the trees rooted at them exhibit
some similarities but are not necessarily isomorphic as is
the case in Valiente’s algorithm.

To compute the certificate, the algorithm uses a
signature scheme that identifies each node. The signature
of a node n consists of its label and the certificates of its
direct children, if there are any. A global hash table is
used to store the certificates and signatures and ensure
that similar subtrees will always hash to the same

jcook
34

element. We added a new field to the table in order to
select only patterns that satisfy a certain frequency
threshold. Table 1. shows the resulting table that
corresponds to applying the algorithm to the tree of
Figure 1. The frequency field enables the frequency
analysis of the trace. T. Ball showed that frequency
analysis of dynamic information can help programmers
cluster components according to their behavior and
identify related computations [1].

Table 1. Result of the algorithm when applied to the
tree of Figure 1.

Certificate Signature Frequency
1 B 1
2 C 1
3 A 1 2 2
4 E 2 3 1
5 M 3 4 1

The complexity of the algorithm consists of the time it
takes to traverse the tree, the time it takes to compare two
subtrees, i.e. compute the function Match, and the time it
takes to compute the signatures. If exact match is
selected and the degree of the tree is bounded by a
constant, the algorithm performs in expected linear time.

One can easily see that the resulting table contains a
compressed form of the tree. The last step of the
algorithm is to walk through the table and extract the
patterns that satisfy a given frequency threshold. The
table is, first, sorted in order of descending certificates,
i.e. the first element of the table is the one that has the
highest certificate (this corresponds to the certificate of
the root). We use a recursive procedure to display the
components of each pattern. The frequency threshold can
be specified by the user. Future work should focus on
determining it automatically.

5. Pattern matching criteria
De Pauw et al. [2] studied situations where two

sequences of calls can be considered as instances of the
same pattern in object oriented systems. As a result they
presented a list of matching criteria. We found that some
of these criteria, namely, identity, repetition, depth-
limiting and commutativity can be applied to procedural
software systems as well. In this section, we explain these
criteria and introduce three new ones: utility, distance
and flattening. The design of the function Match depends
on the selected matching criteria. Some of these criteria
can be combined together. Future work should determine
how.

5.1 Identity
The identity criterion is probably the simplest one to

compute. Two sequences of calls are similar if they have
the same topology, which mean, they have the same call

structure, order of calls and so on. This criterion might
be useful for novices who wish to construct an initial
understanding of the trace.

5.2 Repetition
The number of repetitions of contiguous sequences of

calls does not really add too much value to the trace.
These repetitions can be ignored. For example, the two
subtrees of Figure 3 can be considered as instances of the
same pattern.

Figure 3. Repeated sequences can be ignored when

looking for patterns

5.3 Ordering
This matching criterion is based on the commutative

criterion presented in [2] without the restriction of
considering objects of the same classes only, since, we do
not deal with objects here. If the order of calls does not
matter to software engineers, then it can be ignored. To
generalize the algorithm to unordered trees, we need to
sort the certificates that appear in the signatures before
comparing them. If this criterion is used, it will certainly
be beneficial to users who already have a certain
understanding of the system. Future work should focus
on determining the importance of the order of calls
according to the tree levels where they occur. For
example, the order may not be important at the leaf level
where utility procedures are used. This is not necessary
the case at higher levels.

5.4 Depth-Limiting
Depth-limiting allows comparing two subtrees up to a

certain depth. The calls that are beyond this depth are
ignored. In a layered system, components of one layer
communicate with the components of the layer below.
Patterns of the same layer can be grouped together. This
is useful to users familiar with the system architecture.
We intend to experiment with different execution traces
to determine at which level of the trace tree this criterion
could be applied.

5.5 Utility
Utility procedures are domain independent routines

that implement specific tasks (e.g. sorting an array).
Users may decide to ignore them when comparing
patterns. There are different heuristics that are used to
detect such procedures (e.g. compute fan-in and fan-out).
Consider the two sequences of calls in Figure 4., where
u1, u2, u3 and u4 are utility procedures. These two
sequences can be considered similar if we decide to
ignore the utility procedures.

jcook
35

One way of implementing this concept is to group the
utility procedures in one subsystem and then go through
the trace and replace their occurrences by the name of
this subsystem. This results in a trace with a higher level
of abstraction.

Figure 4. These two sequences can be considered

similar if the utility procedures are ignored

5.6 Distance
Two patterns may have almost the same procedure

calls but slightly different structures. For example, a
control statement can lead to different execution paths
depending on the program inputs. That is, the same
program behavior might result in slightly different
sequences of procedure calls. We would like to be able to
group these sequences together as being one common
pattern. For this purpose, we need to evaluate the
difference between their structures. The tree edit distance
can be used [11]. This criterion might be useful to expert
users who are already familiar with the source code.

5.7 Flattening

This criterion does not consider the hierarchical
structure of the patterns at all. Instead, it flattens them
into a linear structure and compares them. If the same
calls exist more than once then they are reduced to one
occurrence. This subsumes most of the criteria presented
in this paper and will certainly result in a very good
compression rate. However, we need to analyze situations
where it could be applied usefully.

6. Conclusion and future work
Dynamic analysis is important to understand the

behavior of any software system whether it is based on
OO concepts or not. Dynamic analysis tools should be as
important as static analysis tools. In fact, the
combination of both provides, without any doubt, the best
solution to address program comprehension issues.

Patterns of procedure calls can be used to bridge the
gap between low-level system components and high-level
domain concepts. In this paper, we showed an algorithm
that extracts them in an efficient manner. We also
presented a set of matching criteria that can be used, in
conjunction with the ones presented in [2], to group
similar patterns. Future work should focus on validating
these criteria and classify their usage according the user’s
knowledge of the systems. The long term goal is to

determine heuristics that automatically select patterns
that most likely correspond to high-level concepts.

References
[1] T. Ball, “The concept of dynamic analysis”, ACM

SIGSOFT Software Engineering Notes, v.24 n.6, ,
Nov. 1999, pp.216-234

[2] W. De Pauw, D. Lorenz, J. Vlissides and M.
Wegman, “Execution Patterns in Object-Oriented
Visualization”, In Proceedings Conference on
Object-Oriented Technologies and Systems (COOTS
'98), USENIX, 1998, pp. 219-234

[3] J.P. Downey, R. Sethi and R.E. Tarjan, “Variations
on the common subexpression problem”, J. ACM.
27, 1980, pp. 758-771

[4] T. Eisenbarth, R. Koschke, and D. Simon, “Aiding
Program Comprehension by Static and Dynamic
Feature Analysis”, ICSM, 2001

[5] T. Eisenbarth, R. Koschke, D. Simon, “Feature-
Driven Program Understanding Using Concept
Analysis of Execution Traces”, IWPC, 2001

[6] P. Flajolet, P. Sipala, J.–M. Steyaert, “Analytic
variations on the common subexpression problem”,
In Automata, Languages, and Programming,
Springer-Verlag, 1990

[7] A. Hamou-Lhadj, T. C. Lethbridge, “Compression
Techniques to Simplify the Analysis of Large
Execution Traces”, IWPC, 2002

[8] D.F. Jerding, J.T. Stasko, T. Ball, “Visualizing
Interactions in Program Execution”, ICSE, 1997

[9] M. –A.D. Storey, K. Wong, H.A. Muller, “How Do
Program Understanding Tools Affect How
Programmers Understand Programs?”, WCRE, 1997

[10] E. Stroulia, and T, Systä, “Dynamic analysis for
reverse engineering and program understanding”,
ACM SIGAPP Applied Computing Review, 2002

[11] K. C. Tai, “The tree-to-tree correction problem”,
ACM, 26(3):422-433, 1979

[12] G. Valiente, “Simple and Efficient Tree Pattern
Matching”, Research report, Technical University of
Catalonia, E-08034, Barcelona, 2000

[13] N. Wilde and M. Scully, "Software Reconnaissance:
Mapping Program Features to Code", Journal of
Software Maintenance: Research and Practice,
1995, Vol. 7, pp. 49-62

[14] I. Zayour and T.C. Lethbridge, “A Cognitive and
User Centric Based Approach For Reverse
Engineering Tool Design”, CASCON, 2000

jcook
36

Towards Differential Program Analysis

Joel Winstead and David Evans
Department of Computer Science

University of Virginia�
jwinstead,evans � @cs.virginia.edu

Abstract

Differential Program Analysis is the task of analyzing
two related programs to determine the behavioral differ-
ence between them. One goal is to find an input for which
the two programs will produce different outputs, thus illus-
trating the behavioral difference between the two programs.
Because the general problem is undecidable, an unsound or
incomplete analysis is necessary. A combination of static
and dynamic techniques may be able to produce useful re-
sults for typical programs, by conducting a search for differ-
entiating inputs guided by heuristics. This paper defines the
problem, describing what would be necessary for this kind
of analysis, and presents preliminary results illustrating the
potential of this technique.

1. Introduction

Notkin has argued that the future of program analysis
lies in analyzing multiple versions of the same program to-
gether [4]. This allows us to amortize the cost of analysis
across the development cycle, as well as to direct analysis
efforts towards differences, and may allow kinds of analysis
that would otherwise be intractable. We agree that this is a
good strategy, and further argue that analyzing two versions
of a program to find a behavioral difference is an important
problem not just because it can reduce the cost of analysis,
but because finding behavioral differences is a useful goal
in itself: it can aid in understanding and maintaining a pro-
gram as well as in recognizing unintended side effects of
modifications.

When making a change to a program, either to correct
a known error or to add a new feature, the consequences
of the change are not always fully understood. The change
may have unintended side effects that were not anticipated
by the programmer, or may fail to accomplish the intended
goal. The change may even have no effect at all. In order to
prevent unintended side effects and verify that changes have
the intended effect, it would be helpful to have an automated

analysis showing the actual effect of the modification on the
program’s behavior.

Programs are frequently maintained by people who are
far removed from the original development process. The
intended purpose of modifications in the program’s history
is not always clear or documented. The actual effect on the
program’s behavior of the presence of a particular part of the
program may be unknown; a particular line may be crucial
or it may have no effect at all. An analysis that shows the
difference in behavior caused by the presence or absence of
a particular element would assist maintainers in understand-
ing the program.

Testing and dynamic analysis of programs could also
benefit from this sort of analysis. When a change to a pro-
gram is made, it is important that it is well tested. New
tests may need to be added to the regression test suite to test
the modification adequately. Many dynamic analysis tools
depend on the quality of the test suite for a program, and
may produce incorrect results if no tests exist that exercise
a particular modification.

What is needed is a set of automated techniques to an-
alyze the effect of modifications. We use differential pro-
gram analysis as a general term to describe analyses that
focus on the differences between two similar programs. In
the sections that follow, we outline what such an analysis
needs to do, propose some heuristics and techniques that
can be used to do this analysis, and present preliminary re-
sults showing the promise of this technique.

2. Problem Definition

One goal of differential program analysis is to generate
a test case that demonstrates the difference in behavior be-
tween the two programs. We assume that the behavioral dif-
ference is small relative to the input space (i.e., the two pro-
grams produce identical output for nearly all inputs). While
it would be interesting to analyze changes that affect the
result of every input to the program, this would require a
different kind of analysis. Our goal is to find behavioral dif-
ferences, not to analyze known ones. Once a difference is

jcook
37

found, existing techniques such as Zeller’s Delta Debugging
method [9] can be used to analyze the difference.

We concentrate on analyzing two versions of the same
program. The structural difference between the two pro-
grams must be small relative to the size of the program:
only a few lines of code or a few procedures in the program
should be different. We would like to develop techniques
that take advantage of the similarities between the two pro-
grams, rather than use existing techniques to analyze the
programs independently and compare the results.

Because our goals include finding unanticipated side-
effects of changes, we cannot assume that an existing re-
gression test suite is able to find all interesting behavioral
differences. Regression testing finds differences in behav-
ior that were anticipated by the designers (or testers) and
specifically checked. While regression test selection [1] is
a useful technique for reducing the cost of testing, it can-
not reveal new differences that are not already tested by the
suite. We also would like to be able to analyze undocu-
mented programs that may not have test suites.

We assume we have a generator capable of producing a
differentiating test case, but that it is not reasonable to do
an exhaustive search of the input space. It is not necessary
for all generated inputs to be valid; the search will elimi-
nate inputs that both programs consider to be errors. If the
difference in behavior is small relative to the input space,
and we have a generator that can produce the right inputs,
the analysis problem becomes one of performing a directed
search to find inputs which reveal behavioral differences.

3. Approach

This kind of analysis requires solving several subprob-
lems: we must find inputs that reach the syntactic differ-
ence, generate differences in state between the two pro-
grams, and propagate these differences to the output.

The two programs will always produce the same output
for a given input unless, at some point, they execute dif-
ferent instructions. Therefore, in order to find test cases
that result in different output, we must first figure out how
to reach the syntactic changes to the program. This sub-
problem is itself undecidable, but incomplete solutions have
been proposed for it using search techniques such as simu-
lated annealing [6] or genetic algorithms [3] [5]; these tech-
niques use fitness functions to generate test inputs that reach
particular parts of a program. Symbolic execution and con-
straint solving is also a possible approach.

Once the syntactic changes in the program have been
reached, it is also necessary for a difference in state to re-
sult, and for this difference to be propagated through the
programs far enough to result in different output. It is pos-
sible for a modification to produce changes in intermediate
values without producing any difference in the end result.

Narrowing the input space to inputs that reach the modifi-
cation will not always be sufficient: it will still be necessary
to search this space to find inputs that result in actual differ-
ences in output.

Tracey et al. [6] show how to use simulated annealing
to evolve test inputs that cause a program to reach a spec-
ified point in the code. This is accomplished by determin-
ing what branches the program must take to reach the point
of interest, and developing a fitness function that evaluates
how close the program is to taking the correct branches. For
branches that the program should take, the condition for the
branch is transformed into an expression that measures how
close the program is to taking the branch, and these expres-
sions are combined to form a fitness function which is used
to evolve test inputs that cause the program to reach the de-
sired point. In order to apply this technique to finding dif-
ferences between programs, new fitness functions must be
constructed that compare the behavior of the two programs
and guide the search towards input that is likely to reveal
differences.

In order to direct the search towards an input that pro-
duces an actual behavioral difference, we must have some
way to measure how close a particular input is to achieving
this goal even if the goal has not yet been reached. While
not all inputs will produce a difference in output, some in-
puts may produce different intermediate values, or other
measurable differences in execution that may be important
cues for finding inputs that produce a behavioral difference.
We propose several heuristics that may be useful for guid-
ing a search towards inputs that produce actual differences
in output.

First, we note that boundary conditions in the two pro-
grams indicate what decisions the programs are making,
and that differences in behavior often lie along boundary
conditions. Selecting test cases that exercise boundary con-
ditions in the two programs is a promising way to find dif-
ferences. Focusing attention on boundaries that exist in one
program but not the other is particularly interesting, because
these decisions lead to paths that are not in both programs,
and reaching these paths may reveal different behavior. This
last heuristic takes advantage of known similarities between
the programs to focus on the difference, and has the poten-
tial to be more useful than approaches that analyze the pro-
grams separately.

If we evolve test sets, instead of evolving single test
cases, there are additional heuristics we can use. We can
select for test sets that maximize the total number of paths
executed, or other coverage metrics. We could modify these
coverage metrics to include only those paths that reach the
syntactic difference between the programs, which also takes
advantage of the similarities between the programs.

Evolving test sets also allows us to compare the ways
the two programs map the input space into paths through

jcook
38

the program. If program P1 maps two inputs I1 and I2 to
the same path, but program P2 maps inputs I1 and I2 to two
different paths, this reveals something about how the pro-
grams divide the input space, even if the output is the same.
Selecting for test sets that do not produce isomorphic map-
pings from inputs to paths in this way may lead to revealing
behavioral differences because they indicate regions of the
input space where the two programs do not handle the input
in the same way.

In addition to these heuristics, ongoing work by Xie and
Notkin [8] examines comparing program spectra combined
with various heuristics to identify possible faults in mod-
ified programs even in cases where no actual differences
in output result. Program spectra are signatures of program
behavior (such as the distribution of paths taken, procedures
executed, and values modified by the program) that can be
used to characterize the program’s execution. Harrold et
al. [2] also investigate the effectiveness of various program
spectra in identifying differences between programs. These
studies focus on identifying differences in execution that oc-
cur in regression tests of a program, not on guiding a search
for inputs that produce actual behavioral differences. How-
ever, some of the heuristics identified there may be useful
in constructing fitness functions that are useful for this pur-
pose.

If no differentiating test case can be found, this does not
necessarily mean that no behavioral difference exists. It
would be useful to have some way of measuring how thor-
ough a search has been conducted, because this would pro-
vide a measure of confidence that the two programs actually
have the same behavior. This could be done by estimating
how much of the relevant search space has been tested, or
by coverage of the modified parts of the programs. Mutation
analysis [7] has been used to evaluate the effectiveness of a
test suite by how well it can identify differences between
the original and modified programs. It may be necessary
to develop new coverage metrics that take into account the
special problem of covering differences in code.

4. Preliminary Results

We have developed a small system to explore some of
the techniques described above. The system uses less than
1,000 lines of Java code, and is capable of evolving test
cases that show behavioral differences in small programs.
The programs must be instrumented by hand to compute the
fitness functions, but this could be automated in the future.
We will illustrate the system using a simple example.

The short procedure in Figure 1 classifies a triangle by
comparing the lengths of its three sides: it returns a value
indicating whether or not the three lengths given can form a
triangle, and if so, whether the triangle is equilateral, isosce-
les, or scalene, and whether the largest angle is right, obtuse,

int classify(int a, int b, int c) �
int kind = UNKNOWN;
if (a + b � = c ��� b + c � = a ��� c + a � = b)

return INVALID TRIANGLE;

if (a*a + b*b == c*c ��� b*b + c*c == a*a
��� c*c + a*a == b*b)

kind � = RIGHT TRIANGLE;
else if (a*a + b*b � c*c

&& a*b + c*c � a*a
&& c*c + a*a � b*b)

kind � = ACUTE TRIANGLE;
else

kind � = OBTUSE TRIANGLE;

if (a==b ��� b==c ��� c==a)

if (a==b && b==c)
kind � = EQUILATERAL TRIANGLE;

else
kind � = ISOSCELES TRIANGLE;

else
kind � = SCALENE TRIANGLE;

return kind;�

Figure 1. Triangle classification procedure

or acute. A different version of this procedure (not shown)
lacks the || c==a (shown in the box).

This procedure is simple enough that we can easily see
the effect of the modification by inspecting it: it will, in
some cases, incorrectly classify an isosceles triangle as sca-
lene (for example, the triangle with sides (3,4,3) would be
classified as scalene, even though sides a and c are the same
length). However, we will use it as an example to demon-
strate how an automated tool could generate test cases that
demonstrate the difference using the boundary condition
heuristic.

The idea behind the heuristic is that test executions that
are at or near boundary conditions in the program are more
likely to reveal differences. We can develop such test
cases by instrumenting the program to compute a measure
of nearness to boundaries, and use this measure to guide
the search for differentiating test cases. At each decision
point in the program, the conditional expression is con-
verted into an expression measuring how far the program
was from making the opposite decision, similar to the tech-
nique Tracey et al. used to select inputs that reach a par-
ticular point in the program [6]. We use the minimum of
all of these values to measure how close the program was
to taking a different path for a particular test case. We can
then use this fitness function to guide a genetic algorithm to

jcook
39

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.5 1 1.5 2 2.5 3

p

Number of trial executions (millions)

Guided search
Unguided search

Figure 2. Probability of finding diff erence vs.
number of trial executions

evolve test cases that cause the program to reach boundary
conditions.

Preliminary results show that this technique works for
the triangle classification example given above: the guided
search was able to find a differentiating test case using sig-
nificantly fewer test executions than a random, unguided
search. The graph in Figure 2 shows that fifty percent of the
time, the guided search was able to identify the difference in
120,000 trial executions or fewer, while the unguided search
required over a million trial executions before having a 50%
probability of finding one.

This technique works particularly well for this (admit-
tedly contrived) example because the behavioral difference
lies along one of the boundary conditions: c==a. For pro-
grams that have more complicated control flow, and a more
complicated relationship between the input and the control
flow, this is not sufficient. However, there are several ways
this technique can be improved. We are currently exploring
focusing on decisions that are made in only one program
but not in the other in order to guide the search, rather than
looking at all boundary conditions. We are also examining
the use of static analysis to determine which decisions are
most important and which decisions must be made to reach
the changed portion of the program.

5. Summary

The modern development process, using version control
systems like CVS and online repositories such as Source-
Forge, makes available many related versions of the same
programs. We should take advantage of this opportunity to
analyze related versions of programs to better understand
them. It is important to develop techniques to analyze two
versions of the same program together, not only because it
could reduce the overall cost of testing and analysis, but be-
cause it could reveal important facts about the differences

between the programs. This kind of information would be
useful in avoiding unintended side effects, understanding
the development history of undocumented programs, and in
identifying the actual effects of particular parts of the pro-
gram.

Many of the hard problems that must be solved before
we can achieve the goals of differential program analy-
sis have undergone rapid progress recently, such as using
global search techniques to evolve inputs that reach particu-
lar parts of programs [6], and using program spectra to com-
pare related versions of the the same program [2] [8]. We
are optimistic that we are near the point when techniques
can be combined in ways that enable useful and revealing
analyses of the differences between two similar programs.

References

[1] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. Sinha, S. A. Spoon, and A. Gujarathi. Regression
test selection for Java software. In Proceedings of the ACM
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA ’01), 2001.

[2] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi.
An empirical investigation of the relationship between spectra
differences and regression faults. Software Testing, Verifica-
tion and Reliability, 10(3):171–194, 2000.

[3] C. C. Michael, G. E. McGraw, M. A. Schatz, and C. C. Wal-
ton. Genetic algorithms for dynamic test data generation.
Technical Report RSTR-003-97-11, RST Corporation, Ster-
ling, VA, May 1997.

[4] D. Notkin. Keynote: Longitudinal program analysis. In Work-
shop on Program Analysis for Software Tools and Engineer-
ing (PASTE 2002), page 1, Charleston, SC, November 2002.

[5] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data gener-
ation using genetic algorithms. Journal of Software Testing,
Verification, and Reliability, 9(4):263–282, 1999.

[6] N. Tracey, J. Clark, and K. Mander. The way forward for uni-
fying dynamic test-case generation: The optimisation-based
approach. In Internation Workshop on Dependable Comput-
ing and Its Applications (DCIA), pages 169–180. IFIP, Jan-
uary 1998.

[7] J. M. Voas and K. W. Miller. Software testability: The new
verification. IEEE Software, 12(3):17–28, May 1995.

[8] T. Xie and D. Notkin. Checking inside the black box: Regres-
sion fault exposure and localization based on value spectra
differences. FSE Poster Session, November 2002.

[9] A. Zeller and R. Hildebranst. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software En-
gineering, 28(2):183–200, February 2002.

jcook
40

Languages for Dynamic Instrumentation

Steven P. Reiss, Manos Renieris
Department of Computer Science

Brown University
Providence, RI 02912-1910

401-863-7641, FAX: 401-863-7657
{spr,er}@cs.brown.edu

Abstract

Dynamic instrumentation has proven to be a valuable
technique for a variety of program analyses. However,
developing a new analysis based on dynamic instrumenta-
tion is difficult, error prone, and time-consuming. One
solution is to develop a common framework that would
enable quick and easy dynamic instrumentation for a vari-
ety of applications. Developing a practical solution along
these lines, however, requires that we understand and
effectively model how instrumentation can and should be
used. We suggest that an event-oriented framework based
on program analysis might be a viable approach to achiev-
ing such a practical solution.

1. Motivation

Dynamic analysis has been used for a wide variety of
different applications, from simple profiling to program
understanding. We have been using it in a variety of
projects for performance analysis, visualization, program
modeling, and fault location. In most of the applications of
dynamic analysis, the technique has demonstrated itself as
an invaluable tool that is able to provide insights far
beyond those of static analysis.

Even so, dynamic analysis still sees only limited use in
day-to-day applications, in today’s programming environ-
ments, and by most programmers. There are several
reasons for this disparity, but most rise from the fact that
dynamic analysis is expensive, both in terms of the over-
head involved in collecting the appropriate data, in terms of
developing practical instrumenters, and in terms of devel-
oping tools that can use the data.

What is needed is a framework to support dynamic anal-
ysis that could be used practically for a variety of different
applications. If such a framework existed, it would be rela-
tively easy to develop new applications of dynamic analy-
sis and to incorporate them into today’s programming
tools. Some requirements, like minimizing instrumentation
overhead, are often too difficult to achieve for any single

application. Developing a framework that addresses them
would empower developers to use dynamic-analysis based
tools as part of their everyday programming.

In this position paper, we outline some of the interesting
research issues that arise in attempting to define (and later
implement) such a framework.

2. Requirements

A practical dynamic analysis framework has to meet a
broad range of requirements. These are needed both to
make it applicable to a variety of different applications and
to ensure that it can be used on a variety of real systems.
These requirements include:

• Low usage overhead. The user should have to do as lit-
tle as possible to get the leverage of the tool. At best,
the user could run the tool externally, as with valgrind
[7]. At worst, the tool should require recompilation, but
in this case it should be integrated with the compiler,
and provided as an option within it or a script around it.

• Low execution overhead. The resource requirements of
the tool should be minimal. Minimizing the tools’ over-
head by intelligent, problem-specific instrumentation
should be the primary goal of the framework.

• Static selectivity. The user should be able to specify
what portions of the system should be instrumented and
what data should be collected. This should be available
at as fine a level as possible. The selection of what to
instrument and what data to collect should be based on
the structure and semantics of the program. This
implies that dynamic analysis should be predicated on
some underlying static analysis.

• Source anchoring. The debugging information pre-
served in binary formats is often inadequate to produce
meaningful messages for more complex program analy-
ses, especially in the presence of optimization. Depend-
ing on how close the tool is to the compiler, this is more
or less of a challenge. From the user perspective,
though, it should always seems as if the tool has all the
information the compiler has.

jcook
41

• Temporal selectivity. Instrumentation should be limited
not only by specific portions of the program, but also by
those parts of the execution that are relevant to the task.
This temporal information might be determined a priori
or dynamically.

• Handling of real programs. A problem with today’s
dynamic instrumentation tools is they often are not
capable of handling the wide range of programs that
developers are interested in. The next three require-
ments follow from this.

• Handling of libraries. Much of the work in today’s
applications is done inside system or user libraries. To
do appropriate analysis, one often needs dynamic infor-
mation from these libraries. Moreover, to understand
the semantics of the application, one must often under-
stand the semantics of the libraries. This requirement
becomes more complex when one realizes that source is
often not available for many libraries. In any case, an
instrumentation framework should at least provide for
data collection at the boundary of libraries.

• Handling of multithreaded programs. Java and C# pro-
grams are often multithreaded. An instrumenter needs
to be able to deal with the underlying complexities both
in terms of collecting appropriate data and in terms of
not imposing additional synchronization points on the
application and thus changing its behavior.

• Handling of whole systems. Many of today’s programs
are actually multiple-process distributed systems. The
analysis and hence instrumentation that needs to be
done on these systems will require correlating data
accumulated from the different processes into a single
analysis.

• Usable Results. Another key problem in today’s instru-
menters is that the data that is produced is often very
specific to a particular application and not easy to reuse
in other applications. What we need is a relatively stan-
dard data format that can serve as the basis both for
immediate and deferred analysis.

Meeting these requirements will be difficult. However,
by using the collective experience from current instrument-
ers, static analyzers, aspect-oriented programming, and
other areas, it should be possible to develop an appropriate
framework.

3. Framework Overview

We envision a framework that is built on two languages.
The first is used to let a tool define what portions of a
system should be instrumented and what information is
required from those portions. This will be used by a instru-

mentation tool to produce one or more event streams
describing appropriate portions of the execution.

The second language will let a tool define how these
event streams should be processed to produce the data
needed for analysis. This could involve generating higher-
level events streams, accumulating information, tracking
program or object states, or other analysis techniques. The
framework would use this description to process the events
as they were generated as efficiently as possible.

Central to this framework is the notion that both lan-
guages can make direct use of information about the
system being analyzed. This means that they should be
able to refer to basic blocks, to the definitions and uses of
particular variables or fields, to def-use chains, and to par-
ticular packages, libraries, and routines.

4. Instrumentation Definition Language

The first part of this framework is dependent on a lan-
guage that lets the developer describe the information that
needs to be collected from dynamic instrumentation at a
fine level of detail. The actual instrumentation is addressed
by systems like EEL [4], SOOT [9], or JikesBT [3]. We
after a language similar to the languages for specifying
pointcuts in aspect-oriented programming [6,8].

This language should be geared toward generating event
streams. Events are a general purpose mechanism that
closely matches the methodology of run time instrumenta-
tion. The underlying framework will have to deal with
many types of parameterized events, including:

• Call/Return of a method;

• Definition/Use of a value;

• Enter/Exit of a basic block;

• Throw/Catch of an exception;

• Create/Start/Stop/Wait/IO/Run of a thread;

• Read/Write of a location or field;

• Allocate/Free of an object;

• Send/Receive of a message;

• Program specific events.

The set of events that are relevant to a particular
program or run needs to be specified in a high level way.
This will sometimes be done globally (e.g. interest in all
call/return events for profiling), and sometimes very
program specific (e.g. when does field X change in method
Y; when is method A called with parameter B). Moreover,
the set of events generally should be independent of the
code.

In both cases static analysis of the program, typically
done at the byte or machine code level, will be appropriate.
This analysis should let one specify, for example:

jcook
42

• That one wants to detect the start of each basic block.
The resultant instrumentation could then make use of
control flow analysis to minimize the amount and size
of instrumentations.

• That one wants to track field accesses for a particular
set of field writes. This would require data flow analysis
to determine which reads in the program might be rele-
vant to the particular writes.

• That one wants to detect calls to a particular set of
methods for objects allocated at a certain point in the
program. For example, one might want to check that a
particular instance of a Java iterator is used correctly.

• That one wants to detect reads and writes of shared
storage. This would require static analysis to determine
what fields can be accessed by multiple threads and
which accesses to those fields should be considered
shared.

The research in this area is to attempt to put together a
language that allows an analysis application to specify
what set of events it wants from the program. This could
either be a language per se, an XML file describing the set
of events, or event an appropriate set of function calls and
callbacks.

This language will have to deal with all the issues out-
lined above — handling a wide range of events, being able
to specify those events to apply to the whole program or
large portions of it, being able to restrict those events to
particular locations based on semantic properties of the
program, and allowing a variety of different parameters to
be associated with each event.

To leverage such a language it is necessary to build an
appropriate implementation. This is again a research
problem involving what and how to do the static analysis
needed to minimize instrumentation, techniques for
dynamically inserting and removing instrumentation, and
automatic optimization of instrumentation based on
semantic information.

5. Analysis Language

While event streams are a logical conceptual output
from an instrumentation front end, what is often needed is
the result of analysis based on the event stream rather than
the event stream itself. There are several different types of
such analysis that are particular to the applications of
runtime instrumentation. The inspiration comes from lan-
guages for higher level debugging, like COCA [2] and
QBD [5].

For visualization and some program understanding
applications, it will be desirable to map the event stream
into a sequence of higher-level events. This can occur
within an event stream (for example, mapping basic block

event to program path events), or it might occur among
multiple event streams (for example, taking information
about monitor entry and exit events from multiple threads
and using this to generate events denoting what threads are
blocking on what other threads).

For performance analysis and related applications, it is
desirable to accumulate information from the event
sequence. One might want to look at the total number of
calls of each method, the number of allocations of each
class, the time spent in each method, or the number of calls
of each method pair. This information might be further
confined by accumulating information by class or package
or event according to higher-level events such as user inter-
face interactions or remote procedure calls.

Another application area for run time instrumentation is
involves the dynamic checking of semantic properties of a
system. These properties are typically specified using finite
state systems (either using pure or extended FSMs, using
regular or path expressions, or using a language such as
LTL or CTL [1]). What one wants to get out of instrumen-
tation here is whether the actual program run satisfied or
did not satisfy the specification. This implies that the
sequence of run time events generated by the front end
needs to be filtered and then use to check against the under-
lying automata.

In each of these cases, the appropriate analysis can be
done either after the fact or while doing tracing. After the
fact analysis is easier in that one can isolate the analysis
from the instrumentation and can easily do several different
analyses of the same instrumented run. This is advanta-
geous, for example, in software visualization where the
user will want to see different views of the run and the
exact nature of those views might not be known in
advance.

In most applications, however, the raw event streams are
going to be substantially larger and more complex than the
results of the analysis. Here, it is much more effective to do
the event analysis on the fly, storing only the accumulated
result. An ideal instrumentation environment should
provide a stream-based processing language that would
facilitate this. Again, this could be a real language, a high-
level XML description of what needs to be done, or simply
a reasonable programming interface that facilitates the
appropriate processing.

We note that this language and facility will probably
need to have access to the semantic analysis that was used
in doing the actual instrumentation in order to correctly
interpret the events. This information will either have to be
recomputed or will be stored in auxiliary files as part of the
instrumentation process.

The interesting research issues here are first attempting
to determine the appropriate range of analyses that should

jcook
43

be doable dynamically, in determining what is an appropri-
ate interface for doing these analyses, and in providing a
very efficient but generic implementation mechanism that
will support the analyses. Other research issues that come
up involve ways of combining multiple event streams in the
analysis milieu and doing all this without significantly
affecting the behavior of the program being instrumented.

6. Example Approaches

While we have not built anything that meets the needs
outlined above, we have and continue to work on a variety
of different approaches that make us believe that the
general mechanisms described here can be achieved.

We currently support several different instrumenters for
different applications. For software visualization, we have
two instrumenters, one for C/C++ and one for Java. Both
are capable of instrumenting the user’s application and all
the appropriate libraries. Both handle multiple threads and
offer a limited degree of selectivity as to what information
to obtain. While the initial data is obtained as a set of inde-
pendent event streams, one per thread, this data is pro-
cessed dynamically into a common sequence. Additional,
on-the fly or after-the-fact processing can be done within
the system for a wide variety of different resultant analy-
ses. Still, one of the best experiences we have had with
such systems was in minimally modifying the profiling
library of the compiler to produce a trace of function calls
and returns. The system was very easy to implement. It was
also very easy to use, since it required as much effort as
profiling.

For dynamic visualization of software, we have devel-
oped an instrumenter that accumulates a variety of data
over millisecond time intervals and passes the accumulated
data to a front end. Using a variety of techniques, we were
able to limit the performance loss due to instrumentation
(which includes every call, return, allocation, thread state
change, and synchronization event) to a factor 2-3.

Finally, we are developing a tool for checking finite
state properties of programs through a combination of
static and dynamic checking. Given a description of a
program property, this tool is able to find the relevant loca-
tions in the source that affect that property, determine
whether the property needs to be checked dynamically or if
it can be determined statically, and, in the case where
dynamic checking is necessary, it actually determines
exactly what instrumentation is needed to check the prop-
erty.

7. Acknowledgements

This work was done with support from the National
Science Foundation through grants ACI9982266,

CCR9988141, and CCR9702188 and with the generous
support of Sun Microsystems.

8. References

[1] Edmund M. Clarke, Orna Grumberg, and Doron A.
Peled. Model Checking. The MIT Press, Cambridge, Mas-
sachusetts, 1999.

[2] Mireille Ducasse. Coca: A debugger for C based on
fine grained control flow and data events. In Proceedings of
the 21st International Conference on Software Engineer-
ing, pages 504-515. ACM Press, May 1999.

[3] Chris Laffra, Doug Lorch, Dave Streeter, Frank Tip,
and John Field. Jikes bytecode toolkit. http://
www.alphaworks.ibm.com/tech/jikesbt.

[4] James R. Larus and Eric Schnarr. EEL: Machine-
independent executable editing. In Proceedings of the
ACM SIGPLAN’95 Conference on Program- ming Lan-
guage Design and Implementation (PLDI), pages 291-300,
La Jolla, California, 18-21 June 1995.

[5] Raimondas Lencevicius, Urs Holzle, and Ambuj K.
Singh. Query-based de- bugging of object-oriented pro-
grams. In Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and
Ap- plications (OOPSLA-97), pages 304-317, October
1997.

[6] Hidehiko Masuhara and Gregor Kiczales. Modular
crosscutting in aspect- oriented mechanisms. In Proceed-
ings of the 2003 European Conference on Object-Oriented
Programming, 2003.

[7] Julian Seward. Valgrind. http://developer.kde.org/
~sewardj.

[8] David B. Tucker and Shriram Krishnamurthi. Point-
cuts and advice in higher-order languages. In Proceedings
of the 2003 International Conference on Aspect-Oriented
Software Development, Boston, Massachusetts, March
2003.

[9] Raja Vall’ee-Rai, Laurie Hendren, Vijay Sundare-
san, Patrick Lam, Etienne Gagnon, and Phong Co. Soot - a
Java Optimization Framework. In Pro- ceedings of
CASCON 1999, pages 125-135, 1999.

jcook
44

Some Axioms and Issues in the UFO Dynamic Analysis Framework

Clinton Jeffery
Department of Computer Science

 New Mexico State University
jeffery@cs.nmsu.edu

Mikhail Auguston

Department of Computer Science
Naval Postgraduate School

maugusto@nps.navy.mil

Abstract
UFO is a framework for constructing dynamic analysis

tools that require varying degrees of access and control
over program executions. UFO combines run time and
post-mortem techniques to perform required analyses.
Declarative and imperative notations are provided for
constructing monitors at appropriate semantic levels.
Multiple analyses can be bundled into a given monitor,
and multiple monitors can be applied to a given target
program execution. This paper presents the central tenets
of UFO, along with our current set of research
challenges.

1. Motivation

Automatic debugging and program visualization are
two of the most promising application areas of dynamic
analysis, with potential to impact on crucial areas of
software development and maintenance. We believe the
slow rate of advancement in these areas is due to the high
cost of developing new tools. We have previously focused
on a language (FORMAN) and an architecture (Alamo)
that reduce these costs [1][2][4]. FORMAN is a special-
purpose language for expressing dynamic analyses; it has
been implemented previously for subsets of Pascal and C.
Alamo is a lightweight architecture for program execution
monitoring; it has been implemented for a subset of C and
for the virtual machine used by the Icon and Unicon
programming languages. The virtual machine
implementation of Alamo is attractive for research
because it provides high performance and superior ease of
use for a full-size “real” programming language, allowing
testing on large programs and the possibility of deploying
successful tools to a user community.

We recently merged the FORMAN and Alamo efforts
to produce UFO (Unicon-FORMAN), a framework for
rapidly constructing dynamic analyzers [3][4]. We have
used UFO to construct a variety of simple automatic
debuggers and visualization tools that run well on small
and medium sized applications. Our next efforts must
walk the tightrope of scaling up to production tools for
large applications, while retaining the power and ease of
use that are characteristic of the current research UFO
system. With that in mind, this paper presents the central
tenets of the UFO system, and concludes with an

exploration of the current research problems and our plans
to address them.

2. Axioms

UFO is primarily an implementation of FORMAN
built on top of the Alamo monitor architecture. Early
experiments showed the marriage to improve FORMAN
speed by two orders of magnitude and shorten the lines of
code necessary to write Alamo monitors by one order of
magnitude. This section sketches the primary
characteristics of UFO.

• A precise program behavior model, in which
semantics of the monitored language are mapped
to directed acyclic graphs of events. These graphs
are defined using an event grammar, a notation
that approximates the semantics of the language to
be monitored. The behavior model is essential to
provide general purpose capabilities for a wide
range of tools.

• A declarative special-purpose monitoring
language, tailored specifically for dynamic
analyses expressed in terms of patterns within the
graphs of events. This component is necessary to
reduce the cost of developing new tools. Section 4
provides some examples; shorthand refinements to
improve the syntax could be explored after the
main semantics and performance issues are
resolved.

• An hybrid execution model, in which most
analysis work is performed at run-time, and more
complex analyses transparently combine run-time
collection and partial analysis with more extensive
post-mortem analysis. This element is necessary
but not sufficient by itself to achieve acceptably
high performance for large scale production
systems. This important element is new in UFO,
compared with previous FORMAN and Alamo
efforts. It provides high performance.

• Automatic instrumentation provided by special-
purpose virtual machine support; static or dynamic
configuration of VM instrumentation; no
recompilation, relinking, or alteration of target
program executables to be monitored. This
provides substantial ease of use.

jcook
45

3. Some Research Issues and Challenges

UFO’s chief design goals revolve around notational
power and ease of use. The current prototype
implementation of UFO [5][5] processes millions of
events per minute. But, for large programs higher
performance is needed. This goal motivates several open
problems we are pursuing.

Minimizing the number of context switches. UFO’s
run-time execution model is based on lightweight
coroutine switches between monitors and the program
being observed. This separation is a compromise between
intrusive in-line single-thread execution used in low-cost
analysis tools such as profilers, and the complete
separation imposed by high-cost analysis tools such as
debuggers. One research goal is to retain the abstraction
and low-intrusion benefits of the coroutine model without
having to pay (so much) for it.

Virtual machine configuration and customization. The
VM instrumentation can be turned off at multiple levels,
including compile-time via #ifdef and run-time via a
dynamic filter that controls whether instrumented or
uninstrumented versions of functions are called, and
whether an event report (via lightweight context switch) is
performed for a given instrumentation site. This
configuration can be further exploited by having the UFO
compiler generate a custom VM with exactly the
instrumentation it needs for a particular monitoring
application. The central VM interpreter function (interp())
can benefit from a finer granularity of customization than
the current instrumented-versus-uninstrumented options;
it is critical to performance and contains 30 of the 119
types of events instrumented in the VM. Generating a
custom VM may greatly improve monitoring performance
within this VM interpreter loop. The VM generation
system needs to make it easy and convenient for the UFO
compiler to generate custom VM’s and associate them
with generated analyzers in a persistent manner. Custom
VM’s should be shareable by monitors that use the same
events.

Inter-monitor optimizations. When multiple analyses
are compiled together, substantial cost savings might be
obtained by factoring common tasks such as event data
collection. For example, a profiler that computes
summaries and a visualizer that shows run-time details
might operate on the same information, and might even
share some common analysis structures.

Meta-events and analysis hierarchies. UFO’s event
model composes higher level events from lower level
ones, but analysis tools create additional information

which may constitute the input for higher level analyses.
This facilitates the sharing of analysis information among
tools, reducing the cost of running multiple tools.

4. Examples of debugging rules

Alamo's goal was to reduce the difficulty of writing
execution monitors to be just as easy as writing other
types of application programs. UFO supports FORMAN's
more ambitious goal of reducing the difficulty of writing
automatic debuggers to the task of specifying generic
assertions about program behavior.

This section presents formalizations of typical
debugging rules. UFO supports traditional precondition
checking, or print statement insertion, without any
modification of the target program source code. This is
especially valuable when the precondition check or print
statement is needed in many locations scattered
throughout the code.

Example #1: Tracing. Probably the most common
debugging method is to insert output statements to
generate trace files, log files, and so forth. It is possible to
request evaluation of arbitrary Unicon expressions at the
beginning or at the end of events. The virtual machine
evaluates these expressions at the indicated time
moments.

 FOREACH A: func_call &
 A.func_name == “my_func”
 FROM prog_ex
 A.value_at_begin(
 write(“entering my_func, value of X is:”, X)) AND
 A.value_at_end(
 write(“leaving my_func, value of X is:”, X))

 This debugging rule causes calls to write() to be
evaluated at selected points at run time, just before and
after each occurrence of event A.

Example #2: Profiling. A myriad of tools are based on a
premise of accumulating the number of times a behavior
occurs, or the amount of time spent in a particular activity
or section of code. The following debugging rule
illustrates such computations over the event trace.

 SAY("Total number of read() statements: "
 CARD[r: input & r.filename == "xx.in"
 FROM prog_ex]
 "Elapsed time for read operations is: "
 SUM [r: input & r.filename == "xx.in"
 FROM prog_ex APPLY r.duration])

jcook
46

Example #3: Pre- and Post- Conditions. Typical use of
assertions includes checking pre- and post-conditions of
function calls.

 FOREACH A:func_call & A.func_name==”sqrt”
 FROM prog_ex
 A.paramlist[1] >=0 AND
 abs(A.value*A.value-A.paramlist[1]) < epsilon
 WHEN FAILS SAY(“bad sqrt(“ A.paramlist[1]
 “) yields ” A.value)

4.1 Generic Bug Descriptions

Another prospect is the development of a suite of
generic automated debugging tools that can be used on
any Unicon program. UFO provides a level of abstraction
sufficient for specifying typical bugs and debugging rules.

Example #4: Detecting Use of Un-initialized Variables.
Reading an un-initialized variable is permissible in
Unicon, but often leads to errors. In this debugging rule
all variables in the target program are checked to ensure
that they are initialized before they are used.

FOREACH V: variable FROM prog_ex

 FIND D: lhp FROM V.prev_path
 D.source_text == V.source_text
 WHEN FAILS SAY(" uninitialized variable "
 V.source_text)

Example #5: Empty Pops. Removing an element from
an empty list is typical of expressions that fail silently in
Unicon. While this can be convenient, it can also be a
source of difficult to detect logic errors. This assertion
assures that items are not removed from empty lists.

FOREACH a: func_call &
 a.func_name == "pop" AND
 a.value_at_begin(*a.paramlist[1] == 0)
 SAY("Popping from empty list at event " a)

5. Implementation Issues

The most important of these issues is the translation
model by which FORMAN assertions are compiled down
to Unicon Alamo monitors. Debugging activities are
written as if they have the complete post-mortem event
trace, the DAG with events, event attributes, and
precedence and containment relations, available for
processing. This generality is extremely powerful;
however, for most practical uses we have seen, assertions
can be compiled down into monitors that execute entirely
at runtime. Runtime monitoring saves enormously on
memory and I/O requirements and is the key to practical
implementation. For those assertions that require post-

mortem analysis, the UFO runtime system computes a
projection of the execution DAG necessary to perform the
analysis.
The UFO compiler generates Alamo Unicon monitors
from FORMAN rules. Each FORMAN statement is
translated into a combination of initialization, run-time,
and post-mortem code. Monitors are executed as
coroutines with the Unicon target program.

Monitors generated by the UFO compiler reduce
complex assertions to the single event loop. Keeping
event detection in a single loop allows uniform processing
of multiple event types used by multiple monitors. The
code generated by the UFO compiler integrates event
detection, attribute collection, and aggregate operation
accumulation in the main event loop.

 Assertions in UFO may use nested quantifiers
implying two nested loops, so code generation addresses
this issue by flattening the main loop structure, and
postponing assertion processing until required
information is available. An hybrid code generation
strategy performs runtime processing whenever possible,
delaying analyses until post-mortem time when necessary.
Different assertions require different degrees of trace
projection storage; code responsible for trace projection
collection is also arranged within the main loop. The
following generation template gives a flavor of the UFO
trace projection mechanism.

Rules with two nested quantifiers of the form

Quantifier A: Pattern_A

Quantifier B: Pattern_B FROM A
Body

 utilize a monitor whose main loop follows the pattern:

 Main Loop
 Maintain stack of nested A events

Accumulate events B in a B-list
 If end of event A
 Loop over B-list
 Do Body
 Endif
 If stack of A is empty
 Destroy B-list
 End of Main Loop

This requires accumulation of a trace projection for B-
events and may cause a mild overhead at the run time.

5.1 Optimization Issues

 The UFO approach combines an optimizing compiler
for monitoring code with efficient run-time event
detection and reporting. Since we know at compile time

jcook
47

all necessary event types and attributes required for a
given UFO rule, the generated Unicon monitor can be
very selective about the behavior that it observes.
 For certain kinds of UFO constructs, such as nested
quantifiers, the monitor must accumulate a sizable
projection of the complete event trace and postpone
corresponding computations until all required information
is available. The presence of the previous_path and
following_path attributes in UFO rules triggers this kind
of optimization; previous_path and following_path are
used in rules which specify preceding or following
contexts for events of interest.

For further optimization, especially in the case of
programs containing a significant number of modules, the
following FORMAN construct limits event processing to
events generated within the bodies of functions
F1, F2, … , Fn.

WITHIN F1, F2, … , Fn DO
 Rules
END_WITHIN

This provides for monitoring only selected segments of
the event trace.

Unicon expressions included in the value_at_begin
and value_at_end attributes are evaluated at run time.

Some other optimizations implemented in this version
are:

• only attributes explicitly used in the UFO rule are
collected in the generated monitor;

• an efficient mechanism for event trace projection
management, which disposes from the stored
trace projection those events that are no longer
used after a certain rule has been fully evaluated;

• both event types and context conditions are used
to filter events for the processing.

UFO’s goal of practical application to real-sized
programs has motivated several improvements to the
already carefully-tuned Alamo instrumentation of the
Unicon virtual machine. We are working on additional
optimizations.

We expect that the most promising optimizations are
within the generation of instances of Virtual Machine
tailored for a particular monitoring task.

6. Conclusions

 The architecture employed in UFO could be adapted
for a broad class of languages such as those supported by
the Java VM or the .net VM. Our approach to dynamic
analysis uniformly represents many types of debugging-
related activities as computations over traces, including
assertion checking, profiling and performance
measurements, and the detection of typical errors. We
have integrated event trace computations into a
monitoring architecture based on a virtual machine.

Preliminary experiments demonstrate that this
architecture is scalable to real-world programs.
 One of our next steps is to build a repository of
formalized knowledge about typical bugs in the form of
UFO rules, and gather experience by applying this
collection of assertions to additional real-world
applications. There remain many optimizations that can
improve the monitor code generated by the UFO
compiler; for example, merging common code used by
multiple assertions in a single monitor, and generating
specialized VMs adjusted to the generated monitor.

Acknowledgements

 This work has been supported in part by U.S. Office of
Naval Research Grant # N00014-01-1-0746, by U.S.
Army Research Office Grant # 40473--MA-SP, and by
the National Library of Medicine.

References

[1] M. Auguston, Program Behavior Model Based on Event

Grammar and its Application for Debugging Automation,
in the Proceedings of the 2nd International Workshop on
Automated and Algorithmic Debugging, AADEBUG'95,
Saint-Malo, France, May 22-24, 1995, pp. 277-291.

[2] Clinton L. Jeffery, Program Monitoring and Visualization:
an Exploratory Approach. Springer, New York, 1999.

[3] M. Auguston, A. Gates, M. Lujan, "Defining a Program
Behavior Model for Dynamic Analyzers", in the
Proceedings of the 9th International Conference on
Software Engineering and Knowledge Engineering,
SEKE'97, Madrid, Spain, June 1997, pp. 257-262.

[4] M. Auguston, “Lightweight semantics models for program
testing and debugging automation”, in Proceedings of the
7th Monterey Workshop on "Modeling Software System
Structures in a Fast Moving Scenario", Santa Margherita
Ligure, Italy, June 13-16, 2000, pp.23-31.

[5] M. Auguston, C. Jeffery, and S. Underwood. “A
Framework for Automatic Debugging”, IEEE 17th Intl.
Conf. on Automated Software Engineering, Edinburgh,
September 2002, IEEE Computer Society Press, pp.217-
222

[6] C. Jeffery and M. Auguston. “Towards Fully Automatic
Execution Monitoring”. Monterey Workshop 2002,
Venice, October 2002, sponsored by US Army Research
Office and NSF, pp.232-243

[7] Clinton Jeffery, Shamim Mohamed, Ray Pereda, and
Robert Parlett, "Programming with Unicon",
http://unicon.sourceforge.net.

[8] Ralph E. Griswold and Madge T. Griswold, The Icon
Programming Language, 3rd edition. Peer to Peer
Communications, San Jose, 1997.

jcook
48

Scripting Runtime Dynamic Analyses

Jonathan E. Cook Abdulmalik Al-Gahmi Shalini Devi Navin Vedagiri
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003 USA

jcook@cs.nmsu.edu

Abstract

Large scale system development and maintenance
projects often need to build scaffolding—tools that help
build the target system—that is customized to the
project. For some classes of tools, including dynamic
analysis, the cost barrier is too high to consider imple-
menting customized support that might be beneficial to
the project, and thus the project makes do with what-
ever off-the-shelf support is available.

This paper presents ideas and prototypes in offer-
ing generic support for high-level, flexible, and pro-
grammable introspection of software systems. Our hy-
pothesis is that “quick-and-dirty” scripting languages
such as Tcl/Tk and Python can be effectively used to
create ad-hoc dynamic analyses that help system engi-
neers better understand, develop, and maintain their
system.

1. Introduction

Many system development and maintenance activi-
ties need or can benefit from introspective and possibly
even manipulative capabilities in a running system. By
this we mean the ability to peer into a running system
and observe it, and even manipulate it to some extent.
But typical mechanisms for introspection are hard to
use, involve a great deal of low-level programming, and
require expert programming to be used correctly. Be-
cause of this, the effort in building introspection tools
is very high, and projects are often prevented from
building application-specific tools or rapidly prototyp-
ing new general-purpose tools.

It would seem natural to provide some generic and
easy-to-use mechanism to support these needs, and
that is precisely the point of the ideas described here.

Our vision is to provide a flexible, easy-to-use mech-
anism for introspection that allows not just complex

tools to be developed but allows the application pro-
grammers to easily build ad-hoc tools that meet a spe-
cific need at a specific time. Rather than try to pre-
define the capabilities we think might be needed, a
better approach to achieve this end is to re-use one of
the many scripting languages that are available.

Scripting languages allow extremely rapid develop-
ment of functionality, at the the cost of speed since
they are interpreted languages. But since they are full
programming languages, there is no limit to the type
of tools that might be built using them. While they do
have some downsides, they seem ideal for building the
scaffolding-type of software tools that must be built to
help manage, test, observe, and maintain a large pro-
duction software system.

In our initial prototypes we chose the Tcl/Tk script-
ing language because of its clean design, ease of
integration with traditional programming languages
(C/C++), and GUI capabilities. However, the prin-
ciples underlying our approach can be applied using
other languages.

2. Framework

Runtime issues in dynamic analysis have always had
to balance the low-level issues of how to instrument the
system under observation with the high-level issues of
how to make the customization of analysis accessible
to the user. A variety of solutions have been proposed
and implemented, from special purpose systems that
only allow a specific class of analyses to be performed,
to special languages (e.g., event processing languages
such as [1]) that can be used to specify the desired
analysis.

All of these have their place; however, eventually
one must consider that the scope of desired dynamic
analyses is, in the most inclusive sense, general com-
putation. Thus, why not enable general computational

jcook
49

System Under Observation

interface + control

probes

Scripted Analysis

Figure 1. Scripted dynamic analysis architec-
ture.

environments for dynamic analysis? Furthermore, can
we make this programming of dynamic analyses more
accessible by using high-level programming ideas?

Figure 1 shows how these ideas might fit together.
The system under observation should have some mech-
anism, or at least the potential to insert a mechanism,
for observing its behavior. The framework implemen-
tor can do the hard task of building the probes on top
of this mechanism so that dynamic analysis tools can
be built. To hide this complexity, the probe points
and information they provide are made available to a
scripting language engine, so that a specific analysis
can be written in a scripting language, without needing
to reach down into the details of the instrumentation.

Our initial prototypes, described in Sections 4-
r̃efsec:java, have focused on method/function invoca-
tion interceptions, but our idea for the basic architec-
ture is to enable script-level access to more types of
instrumentation probes.

3. Tcl/Tk and other scripting languages

Tcl (Tool Command Language [8], pronounced
“tickle”) is a programming language in the class known
as “scripting” languages. Newer scripting languages
such as Tcl, Perl, Python, and PHP are much more ad-
vanced than the old shell scripting languages, yet they
retain the ease of use and the capability for extremely
rapid development of advanced functionality. Tcl and
most other scripting languages can be both easily ex-
ecuted from C/C++ and extended with custom com-
mands written in C/C++. It is rather misleading to
call these languages “scripting” languages, in that they
are very powerful interpreted languages, with built-in
data structures and functional-style programming lan-
guage constructs. Modules provide canned support for

web services, GUI interfaces, email, ftp, encryption,
and many other high-level abstractions.

The upside of scripting languages is that one can
create a great deal of functionality with relatively little
effort, and they are robust enough to be relied upon.
Indeed they can be found running much of the web
services we use every day, are used extensively as the
foundations of test harnesses, rapid prototyping envi-
ronments, and many other real world situations.

The downside to most scripting languages is that
they do not have a formal semantics but rather an op-
erational one, which can change based on the version
of the interpreter one is running! They are targeted
towards achieving practical usefulness, not theoretical
semantic correctness. However, compiled languages of-
ten reveal similar ambiguities [4]. Scripting languages
are also quite a bit computationally slower than sys-
tem programming languages, and their typically weak
typing is sometimes detrimental.

4. Realization in CORBA

The CORBA (Common Object Request Broker Ar-
chitecture) standard has defined cross-platform remote
object invocation for ten years [7]. From early on
CORBA had a proposed specification for object request
interceptors, but it was incomplete and optional. Co-
incident with version 2.4.2 and later versions, a new in-
terceptor specification was drafted, known as Portable
Interceptors [2]. With the Portable Interceptor stan-
dard, it is now possible to create debugging, monitor-
ing, and other introspection tools that will interoperate
with most vendor ORBs.

In our work, we built an intermediate interceptor
layer that took each interception point and invoked
a mirror in the scripting language Tcl/Tk. Although
not completely invisible to the application developer—
some CORBA implementations may require rebuilding
the application with different options—there is no low-
level programming needed, and CORBA analysis tools
that use interception-based data can be written com-
pletely in an easy-to-use scripting language.

CORBA Portable Interceptors are ORB-level inter-
ceptors that act upon method invocation requests and
replies. On the server side, the most basic interception
points are “receive request” and “send reply”. Thus,
CORBA interception points naturally give the analy-
sis tool access to the pre- and post-execution points of
an invocation. Also note that the interception points
are generic for the ORB rather than specific to the ob-
ject and method being invoked. Our interface makes
available to the scripting language an object ID, the
method name, and the values and types of the param-

jcook
50

eters and return values. Thus, at the script level, the
analysis can perform computations specific to the ob-
ject and/or method, by inspecting the meta-data.

5. Realization in Unix shared libraries

Shared or dynamic link libraries offer an interest-
ing deployment opportunity for our ideas, because they
are so widely used and their components are relatively
simple (C functions). Nevertheless, the environment is
one where very little meta-information is available, and
with almost no runtime meta-programming ability. It
has potential access, though, because we can modify
the dynamic loading process to allow the possibility of
binding a function call not to the original target func-
tion but to whatever we want, namely a probe point.

Once we have the call intercepted, it is “only” a
matter of programming to implement the relay of the
function call to the scripted dynamic analysis, and to
ensure that the original function is still called, to effect
the correct execution of the program. While not trivial,
it is possible. Our work is currently in the context
of the ELF object and library file formats [6], and in
the Gnu shared library loader [5] as used in the Linux
operating system.

When creating an object file which has calls to func-
tions located in shared libraries, the compiler produces
a call that uses table-based indirection (we will call
them “jump tables”). In a somewhat simplified sce-
nario, this table entry initially points not to the actual
function (since its location is not known) but to the dy-
namic loader. Thus the first call invokes the dynamic
loader, which will look up the function (by name), load
the library if necessary, figure out the actual address
of the function being called, overwrite the table entry
with the actual function address, and then jump to the
function. All subsequent calls from that call site simply
pay a tiny (one instruction) penalty of a table lookup.

Although a static name interception capability al-
ready existed with the LD PRELOAD environment
variable, we have modified the Gnu dynamic loader to
enable dynamic control of the name resolution process,
for this and other work we are doing. The dynamic
control allows runtime remapping of names to alter-
native names, on a per-link-object basis rather than
at a global level. This functionality gives us the basic
interception capability.

To avoid the necessity of low-level programming of
the probes, we created a wrapper generator that takes
function prototype definitions and generates probe
wrappers that the dynamic linker can safely redirect
the execution to. These wrappers also instantiate the
argument and return data into Tcl-accessible data, and

Figure 2. Memory usage analysis in the
shared library framework.

invoke Tcl routines before and after the original func-
tion is invoked, so that pre- and post-execution analysis
can be performed.

Thus, a dynamic analysis of an existing system can
be written completely in Tcl, except for the function
prototypes needed to generate the wrappers. Figure 2
shows an simple memory allocation analysis of an ex-
isting binary executable (Ghostview) that was written
purely in Tcl/Tk.

An interesting difference between the interception
points in this framework and in the previous one
(CORBA) is that the C shared library interception
points are specific to each function that is being in-
tercepted. At the scripting level, a procedure must be
defined for each pre- and post-interception point, for
each function being intercepted. This is quite differ-
ent than the generic interception point offered by the
CORBA. The tradeoff between the two is that specific
interception points offer more direct access to perform
very specific ad-hoc analyses, while general needs such
as event logging are much easier with the generic inter-
ception points (and the appropriate meta-data).

We have devised a mechanism for generic intercep-
tion points in the shared library framework, but are
still in the process of implementing it, and need to do
more testing and make more meta-data available to
define the actual interception.

6. Realization in Java

In both the CORBA and shared library environ-
ments we were dealing with compiled programs, and
were able to utilize API’s for the (compiled) interpreter
of a scripting language (Tcl). In these settings, there
is a clear distinction between the machine-code rep-

jcook
51

resentation of the system under observation and the
interpreted language that the dynamic analysis tool is
written in.

Java, however, presents an interesting case in that
it is already an interpreted language, at least at the
bytecode level. One might think that the Java envi-
ronment, then, does not really benefit from having dy-
namic analysis tools able to be written in a scripting
language. However, we feel that Java is a sufficiently
complex language to warrant exploration of making dy-
namic analyses easier to program.

While Java can access native code resources, and
thus could be integrated with external interpreters for
scripting languages, there has been enough interest in
the combination of Java and scripting languages that
open source versions of Java-based interpreters exist
for such popular languages as Tcl (Jacl, or Java Tcl)
and Python (Jython). This means that we can have the
scripted analysis running within the Java environment,
which reduces complexity considerably, and future en-
abling of other probe points should be easier.

To create the interface between the system under
observation with the scripting language, we have built
a class wrapper generator which uses the Byte Code
Engineering Library (BCEL [3]) to generate a wrap-
per for the public interface methods of a class. In
this wrapper we generate calls to the scripting anal-
ysis program, with the appropriate data. Thus, the
only code needed to be written by the developer inter-
ested in some ad-hoc dynamic analysis is the Tcl (Jacl)
or Python (Jython) code. As with the C library frame-
work, we offer pre- and post-execution points around
the method call, and the interception points are specific
rather than generic.

7. Conclusion

It is our hypothesis that developers would more of-
ten perform ad-hoc dynamic analyses on the system
they are building or maintaining if the cost of creating
these ad-hoc analyses was lower than it currently is. To
this end, we are experimenting with enabling the analy-
ses to be written in high level scripting languages, with
the low-level details hidden and not needing to be the
concern of the developers. We have built initial frame-
works in CORBA using the Portable Interceptor stan-
dard, in C using the dynamic linking phase of library
code access, and in Java using the BCEL toolset to ac-
cess class bytecode. Each of these is centered around
method or function call interception, but embody two
different styles of access. The CORBA framework en-
ables generic interception points, where all method
calls fire the same interception points; while the shared

library and Java frameworks enable function/method-
specific interception points. We plan to further en-
hance these frameworks and continue to explore the
bounds of usefulness for scripting languages in dynamic
analysis.

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation under grants EIA-9810732 and EIA-
0220590. The content of the information does not nec-
essarily reflect the position or the policy of the Govern-
ment and no official endorsement should be inferred.

References

[1] M. Auguston, A. Gates, and M. Lujan. Defining a pro-
gram Behavior Model for Dynamic Analyzers. In Pro-
ceedings of the 9th International Conference on Soft-
ware Engineering and Knowledge Engineering, pages
257–262. IEEE Computer Society Press, June 1997.

[2] Interceptors Published Draft with CORBA 2.4+ Core
Chapters. Technical Report ptc/2001-03-04, Object
Management Group, 2001.

[3] M. Dahm. Byte Code Engineering Library. 2002.
http://jakarta.apache.org/bcel/.

[4] S. Eisenbach and C. Sadler. Changing Java Programs.
In Proceedings of the 2001 International Conference on
Software Maintenance, pages 479–487, Nov. 2001.

[5] Gnu C Library. 2002. http://www.gnu.org/.
[6] J. Levine. Linkers & Loaders. Morgan Kaufmann, San

Diego, CA, 2000.
[7] OMG. The Common Object Request Broker: Archi-

tecture and Specification, v2.4.2. Technical Report
formal/01-02-01, Object Management Group, 2001.

[8] J. Ousterhout. Tcl and the Tk Toolkit. Profes-
sional Computing Series. Addison-Wesley, Reading,
MA, 1994.

jcook
52

	Zeller.pdf
	1 . Introduction
	2 . Deduction
	3 . Observation
	4 . Induction
	5 . Experimentation
	6 . A Hierarchy of Program Analysis
	7 . Conclusion and Future Work

	Metz.pdf
	Introduction
	Performance profiling
	Minimizing Performance Impact
	Efficient Instrumentation

	Summary
	References

	Reiss.pdf
	Languages for Dynamic Instrumentation
	Steven P. Reiss, Manos Renieris
	Department of Computer Science
	Brown University
	Providence, RI 02912-1910
	401-863-7641, FAX: 401-863-7657
	{spr,er}@cs.brown.edu
	Abstract
	1. Motivation
	2. Requirements
	3. Framework Overview
	4. Instrumentation Definition Language
	5. Analysis Language
	6. Example Approaches
	7. Acknowledgements
	8. References

