Marmot: an Optimizing
Compiler for Java

R.Fitzgerald, T.B.Knaoblock, E.Ruf,
B. Steensgaard, D. Tarditi
Microsoft Research M SF-TR-99-33
June 1999

A Prolangs Overview - October 28, 1999

B.G. Ryder, Fall 1999 1

M ar mot

» Research compiler for large subset of Java

— optimizing static native-code compiler
» scalar optimizationsasfor Fortran
» OO optimizations as static dispatching based on CHA

— runtime system supportsthreads,
synchronization and exceptions, gar bage
collection

—implemented in Java

B.G. Ryder, Fall 1999 2

M ar mot

 Claimed results

— well-known optimizations can produce good
per formance comparable to other Java systems

— reduces safety checksto 5-10% of execution time

— generational gar bage collection works, especially
with bounded object lifetime analysis

 Multi-level IR conversion from Javato native
x86 assembly code

B.G. Ryder, Fall 1999 3

M ar mot

Fagmm e L crnpabealie praces

Javaclassfiles converted to JIR, conventional virtual register
based intermediate form; presumes classfiles are verifiable.

B.G. Ryder, Fall 1999 4

ConversiontoJIR - step 1

 Temporary-variable-based IR
— bblocks are multiple exit and not terminated at
function call boundaries
— special exception edges used
* labeled with class of exception, bound variablein

handler, bblock to transfer control to if exception
occurs

 Worklist algorithm convertsall reachable
classes
— build temp variable model of stack operations

— makes explicit someimplicit byte code operations
* eg., classinitialization

B.G. Ryder, Fall 1999 5

Conversionto JIR - step 2

» SSA conversion uses L engauer/Tarjan
dominator tree algm and Sreedhar/Gao phi
placement algorithm
— special exception edges complicate this process

— phi nodes ar e eventually eliminated after high-
level optimization is complete using copies

B.G. Ryder, Fall 1999 6

Conversionto JIR - step 3

» Inferstypesfrom infoimplicit in byte code
» Typesof local varsand stack cells are unspecified

» Valuesrepresented as small ints (e.g., booleans) are
mixed in classfiles

* Produces strongly-typed IR, with all
conversions explicit and all operator
overloading resolved.

— Per method type elaboration

— Can recover some legal typing of the code,
although may not beoriginal typing

— cf Gagnon/Hendren Sable algorithm

B.G. Ryder, Fall 1999 7

Findings

Type elaboration can be expensive

Some details of source (e.g., inner classes) are

lost in byte code

— Need sour ce-level optimizations

Need for cleanup transfor mations

Claim get larger bblockswith their exception

edges

— Vortex approach: annotate each possible
exception point with success and failur e successor

B.G. Ryder, Fall 1999 8

High-level Optimization

« Standard optimizations
* cseand copy prop
dead-assignment/dead variable elimination
array bounds check optimization
control opts (e.g.,branch removal, unreachable code)
intermoduleinlining
* loop invariant code motion, strength reduction

* OO optimizations
* reference null check removal
* stack allocation of objects
* redundant typetest elimination
Be RIS uninvoked method elimination ?

High-level Optimization

» Java optimizations
* bytecode idiom recognition

 redundancy elimination and loop-invar code motion of
field and array loads

* synchronization elimination

B.G. Ryder, Fall 1999 10

Phase Ordering

r [T]
rED | e it
raEEA oo el
b -y | | e
presrre |

do virtual resolution before SSA;

inter-module: reresolve virtuals, inline, fold
inline when result of inlining is estimated
smaller than original

operator-lowering trandates
B.G. Ryder, Fall 1999 high-level cast checksinto JIR codes| =

Findings

» Exceptions complicatesthe dataflow analysis
— Implicit and explicitly thrown exceptionsare
problems
— Limit code motion to provably effect-free non-
throwing oprations (can’t do PRE)
» SSA rep benefits analysis/transfor mation, but
complicates transfor mation complexity
—need to keep SSA graph up-to-date astransform

» Local type propagation dependent on their
RTA infowhich may betoo imprecise

B.G. Ryder, Fall 1999 12

Code Generation

JIR -->MIR, alow-level IR

Cleanup of converted code

— dead-code elimination, copy and constant
propagation

Register allocation performed

— Chaitin/Briggs style allocator for 8 available regs
Redundant jumps eliminated

No instruction scheduling dueto exceptions!

B.G. Ryder, Fall 1999 13

Runtime Support

 Written in Java

— cast, array store, i nst anceof checksthread
synchronization, interface call lookup

» Threegarbage collectorstried

— conservative, copying, generational (2)
o Libraries(specified asin 1.1)

— use native code sparingly

* 51K LOC of Javaplus11.5K LOC C++, 3K LOC of
C++ headers, 2K LOC assembler

B.G. Ryder, Fall 1999 14

Performance M easur ement

dind lamg: imr
I Ik LEIE'AETT fsnwchum
E Thes [hliFAL i

A | The [
iR W | Thee [
[TFTIES 71| Thalh
.yres

e - = =

Benchmark suite, mostly compiler benchmarks translated from
C++ to Java by IMPACT/NET, and modified some by MS.

B.G. Ryder, Fall 1999 15

Comparisons

o Compilers
—JIT: MSJavaVM
— Commercial: Super Cede

— Research: IBM HPJ (high performance compiler
for Java)

» Used Pentium [1-300 M hz PC running
Windows NT4.0, 512M b memory

—ran programsinside loops for timings

B.G. Ryder, Fall 1999 16

Executed C++/Java

Benchmark Speeds

El.lnu-;.'-a
Ml
W
"

Marmot is 100%

B.G. Ryder, Fall 1999

Effect of Bounds Checks

' P PN
fjﬁf &

ler, Fall 1999

.G. Ryd

Tuned Benchmarks

] b b Mammd
i E K .- a4 g

B.G. Ryder, Fall 1999 19

Findings

« Marmot compared well to Super cede, | BM
HPJ, MSJVM in compiled code speed

» Combined cost of array store, null pointer,
dynamic cast checksisinsignificant (relative
to running timeswith all checks on)

— for 80% of programsislessthan 10% of time
« Synchronization elimination has effects
which are very program specific

» Stack allocation reduced execution time as
uych as 11% .

B.G. Ryder,

10

Stack Allocation Effect

by e o b M

SEEEE L EREE

B.G. Ryder, Fall 1999 21

GC Choice

T

3

3

7

5

S PESNAE A ORI TR
z
7

3

i

* if 1"'&? d'srq_a*ﬁ qe-*‘!"Ir #F ﬂﬁ!.i- -.'?F " -
P

speed normalized on use of generational gc for each program;
benchmarks run w/o safety checks

B.G. Ryder, Fall 1999 22

Conclusions

 Marmot: native-code compiler, runtime
system, library for Java

» Focus: to create research platform,
concentrating on extending known
optimizationsto Java

e Lessons
— Java bytecodeisinconvenient asan IR

— Normal optimizationsrequired extensions for
exceptions, multi-threaded storage

B.G. Ryder, Fall 1999 23

Conclusions

— SSA hard model for exceptions

— Instruction scheduling hindered

Achieved performance comparableto other
Java systems and approaching C++

Reduced cost of safety checksto about 4%
Simple synchronization removal saved ~30%
on larger benchmarks

Storage management a real runtime cost

— Stack allocation reduced time by <= 11%

B.G. Ryder, Fall 1999 24

12

