
1

B.G. Ryder, Fall 1999 1

Marmot: an Optimizing
Compiler for Java

R.Fitzgerald, T.B.Knoblock, E.Ruf,

B. Steensgaard, D. Tarditi
Microsoft Research MSF-TR-99-33

June 1999

A Prolangs Overview - October 28, 1999

B.G. Ryder, Fall 1999 2

Marmot

• Research compiler for large subset of Java
– optimizing static native-code compiler

• scalar optimizations as for Fortran
• OO optimizations as static dispatching based on CHA

– runtime system supports threads,
synchronization and exceptions, garbage
collection

– implemented in Java

2

B.G. Ryder, Fall 1999 3

Marmot

• Claimed results
– well-known optimizations can produce good

performance comparable to other Java systems

– reduces safety checks to 5-10% of execution time

– generational garbage collection works, especially
with bounded object lifetime analysis

• Multi-level IR conversion from Java to native
x86 assembly code

B.G. Ryder, Fall 1999 4

Marmot

Java class files converted to JIR, conventional virtual register
based intermediate form; presumes class files are verifiable.

3

B.G. Ryder, Fall 1999 5

Conversion to JIR - step 1
• Temporary-variable-based IR

– bblocks are multiple exit and not terminated at
function call boundaries

– special exception edges used
• labeled with class of exception, bound variable in

handler, bblock to transfer control to if exception
occurs

• Worklist algorithm converts all reachable
classes
– build temp variable model of stack operations
– makes explicit some implicit byte code operations

• e.g., class initialization

B.G. Ryder, Fall 1999 6

Conversion to JIR - step 2

• SSA conversion uses Lengauer/Tarjan
dominator tree algm and Sreedhar/Gao phi
placement algorithm
– special exception edges complicate this process
– phi nodes are eventually eliminated after high-

level optimization is complete using copies

4

B.G. Ryder, Fall 1999 7

Conversion to JIR - step 3
• Infers types from info implicit in byte code

• Types of local vars and stack cells are unspecified
• Values represented as small ints (e.g., booleans) are

mixed in class files

• Produces strongly-typed IR, with all
conversions explicit and all operator
overloading resolved.
– Per method type elaboration

– Can recover some legal typing of the code,
although may not be original typing

– cf Gagnon/Hendren Sable algorithm

B.G. Ryder, Fall 1999 8

Findings

• Type elaboration can be expensive
• Some details of source (e.g., inner classes) are

lost in byte code
– Need source-level optimizations

• Need for cleanup transformations
• Claim get larger bblocks with their exception

edges
– Vortex approach: annotate each possible

exception point with success and failure successor

5

B.G. Ryder, Fall 1999 9

High-level Optimization

• Standard optimizations
• cse and copy prop
• dead-assignment/dead variable elimination
• array bounds check optimization
• control opts (e.g.,branch removal, unreachable code)
• intermodule inlining
• loop invariant code motion, strength reduction

• OO optimizations
• reference null check removal
• stack allocation of objects
• redundant type test elimination
• uninvoked method elimination

B.G. Ryder, Fall 1999 10

High-level Optimization

• Java optimizations
• bytecode idiom recognition
• redundancy elimination and loop-invar code motion of

field and array loads
• synchronization elimination

6

B.G. Ryder, Fall 1999 11

Phase Ordering

do virtual resolution before SSA;

inter-module: reresolve virtuals, inline, fold
inline when result of inlining is estimated
smaller than original

operator-lowering translates
high-level cast checks into JIR codes

B.G. Ryder, Fall 1999 12

Findings

• Exceptions complicates the dataflow analysis
– Implicit and explicitly thrown exceptions are

problems

– Limit code motion to provably effect-free non-
throwing oprations (can’t do PRE)

• SSA rep benefits analysis/transformation, but
complicates transformation complexity
– need to keep SSA graph up-to-date as transform

• Local type propagation dependent on their
RTA info which may be too imprecise

7

B.G. Ryder, Fall 1999 13

Code Generation

• JIR --> MIR, a low-level IR
• Cleanup of converted code

– dead-code elimination, copy and constant
propagation

• Register allocation performed
– Chaitin/Briggs style allocator for 8 available regs

• Redundant jumps eliminated
• No instruction scheduling due to exceptions!

B.G. Ryder, Fall 1999 14

Runtime Support

• Written in Java
– cast, array store, instanceof checks thread

synchronization, interface call lookup

• Three garbage collectors tried
– conservative, copying, generational (2)

• Libraries (specified as in 1.1)
– use native code sparingly

• 51K LOC of Java plus 11.5K LOC C++, 3K LOC of
C++ headers, 2K LOC assembler

8

B.G. Ryder, Fall 1999 15

Performance Measurement

Benchmark suite, mostly compiler benchmarks translated from
C++ to Java by IMPACT/NET, and modified some by MS.

B.G. Ryder, Fall 1999 16

Comparisons

• Compilers
– JIT: MS Java VM

– Commercial: SuperCede

– Research: IBM HPJ (high performance compiler
for Java)

• Used Pentium II-300 Mhz PC running
Windows NT4.0, 512Mb memory
– ran programs inside loops for timings

9

B.G. Ryder, Fall 1999 17

Executed C++/Java
Benchmark Speeds

Marmot is 100%

B.G. Ryder, Fall 1999 18

Effect of Bounds Checks

10

B.G. Ryder, Fall 1999 19

Tuned Benchmarks

B.G. Ryder, Fall 1999 20

Findings

• Marmot compared well to Supercede, IBM
HPJ, MS JVM in compiled code speed

• Combined cost of array store, null pointer,
dynamic cast checks is insignificant (relative
to running times with all checks on)
– for 80% of programs is less than 10% of time

• Synchronization elimination has effects
which are very program specific

• Stack allocation reduced execution time as
much as 11%

11

B.G. Ryder, Fall 1999 21

Stack Allocation Effect

B.G. Ryder, Fall 1999 22

GC Choice

speed normalized on use of generational gc for each program;
benchmarks run w/o safety checks

12

B.G. Ryder, Fall 1999 23

Conclusions

• Marmot: native-code compiler, runtime
system, library for Java

• Focus: to create research platform,
concentrating on extending known
optimizations to Java

• Lessons
– Java bytecode is inconvenient as an IR

– Normal optimizations required extensions for
exceptions, multi-threaded storage

B.G. Ryder, Fall 1999 24

Conclusions

– SSA hard model for exceptions

– Instruction scheduling hindered

• Achieved performance comparable to other
Java systems and approaching C++

• Reduced cost of safety checks to about 4%
• Simple synchronization removal saved ~30%

on larger benchmarks
• Storage management a real runtime cost

– Stack allocation reduced time by <= 11%

