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M ar mot

» Research compiler for large subset of Java

— optimizing static native-code compiler
» scalar optimizationsasfor Fortran
» OO optimizations as static dispatching based on CHA

— runtime system supportsthreads,
synchronization and exceptions, gar bage
collection

—implemented in Java
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M ar mot

 Claimed results

— well-known optimizations can produce good
per formance comparable to other Java systems

— reduces safety checksto 5-10% of execution time

— generational gar bage collection works, especially
with bounded object lifetime analysis

 Multi-level IR conversion from Javato native
x86 assembly code
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M ar mot

Fagmm e L crnpabealie praces

Javaclassfiles converted to JIR, conventional virtual register
based intermediate form; presumes classfiles are verifiable.
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ConversiontoJIR - step 1

 Temporary-variable-based IR
— bblocks are multiple exit and not terminated at
function call boundaries
— special exception edges used
* labeled with class of exception, bound variablein

handler, bblock to transfer control to if exception
occurs

 Worklist algorithm convertsall reachable
classes
— build temp variable model of stack operations

— makes explicit someimplicit byte code operations
* eg., classinitialization
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Conversionto JIR - step 2

» SSA conversion uses L engauer/Tarjan
dominator tree algm and Sreedhar/Gao phi
placement algorithm
— special exception edges complicate this process

— phi nodes ar e eventually eliminated after high-
level optimization is complete using copies
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Conversionto JIR - step 3

» Inferstypesfrom infoimplicit in byte code
» Typesof local varsand stack cells are unspecified

» Valuesrepresented as small ints (e.g., booleans) are
mixed in classfiles

* Produces strongly-typed IR, with all
conversions explicit and all operator
overloading resolved.

— Per method type elaboration

— Can recover some legal typing of the code,
although may not beoriginal typing

— cf Gagnon/Hendren Sable algorithm
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Findings

Type elaboration can be expensive

Some details of source (e.g., inner classes) are

lost in byte code

— Need sour ce-level optimizations

Need for cleanup transfor mations

Claim get larger bblockswith their exception

edges

— Vortex approach: annotate each possible
exception point with success and failur e successor
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High-level Optimization

« Standard optimizations
* cseand copy prop
dead-assignment/dead variable elimination
array bounds check optimization
control opts (e.g.,branch removal, unreachable code)
intermoduleinlining
* loop invariant code motion, strength reduction

* OO optimizations
* reference null check removal
* stack allocation of objects
* redundant typetest elimination
Be RIS uninvoked method elimination ?

High-level Optimization

» Java optimizations
* bytecode idiom recognition

 redundancy elimination and loop-invar code motion of
field and array loads

* synchronization elimination
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Phase Ordering
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do virtual resolution before SSA;

inter-module: reresolve virtuals, inline, fold
inline when result of inlining is estimated
smaller than original

operator-lowering trandates
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Findings

» Exceptions complicatesthe dataflow analysis
— Implicit and explicitly thrown exceptionsare
problems
— Limit code motion to provably effect-free non-
throwing oprations (can’t do PRE)
» SSA rep benefits analysis/transfor mation, but
complicates transfor mation complexity
—need to keep SSA graph up-to-date astransform

» Local type propagation dependent on their
RTA infowhich may betoo imprecise
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Code Generation

JIR -->MIR, alow-level IR

Cleanup of converted code

— dead-code elimination, copy and constant
propagation

Register allocation performed

— Chaitin/Briggs style allocator for 8 available regs
Redundant jumps eliminated

No instruction scheduling dueto exceptions!
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Runtime Support

 Written in Java

— cast, array store, i nst anceof checksthread
synchronization, interface call lookup

» Threegarbage collectorstried

— conservative, copying, generational (2)
o Libraries(specified asin 1.1)

— use native code sparingly

* 51K LOC of Javaplus11.5K LOC C++, 3K LOC of
C++ headers, 2K LOC assembler
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Performance M easur ement

dind lamg: imr
I Ik LEIE'AETT fsnwchum
E Thes [hliFAL i

A | The [
iR W | Thee [
[TFTIES 71| Thalh
.yres

e - = =

Benchmark suite, mostly compiler benchmarks translated from
C++ to Java by IMPACT/NET, and modified some by MS.
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Comparisons

o Compilers
—JIT: MSJavaVM
— Commercial: Super Cede

— Research: IBM HPJ (high performance compiler
for Java)

» Used Pentium [1-300 M hz PC running
Windows NT4.0, 512M b memory

—ran programsinside loops for timings
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Executed C++/Java

Benchmark Speeds
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Marmot is 100%
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Effect of Bounds Checks
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Tuned Benchmarks
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Findings

« Marmot compared well to Super cede, | BM
HPJ, MSJVM in compiled code speed

» Combined cost of array store, null pointer,
dynamic cast checksisinsignificant (relative
to running timeswith all checks on)

— for 80% of programsislessthan 10% of time
« Synchronization elimination has effects
which are very program specific

» Stack allocation reduced execution time as
uych as 11% .
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Stack Allocation Effect
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GC Choice
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speed normalized on use of generational gc for each program;
benchmarks run w/o safety checks
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Conclusions

 Marmot: native-code compiler, runtime
system, library for Java

» Focus: to create research platform,
concentrating on extending known
optimizationsto Java

e Lessons
— Java bytecodeisinconvenient asan IR

— Normal optimizationsrequired extensions for
exceptions, multi-threaded storage
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Conclusions

— SSA hard model for exceptions

— Instruction scheduling hindered

Achieved performance comparableto other
Java systems and approaching C++

Reduced cost of safety checksto about 4%
Simple synchronization removal saved ~30%
on larger benchmarks

Storage management a real runtime cost

— Stack allocation reduced time by <= 11%
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