
Reconciling Responsiveness
with Performance in Pure
Object-Oriented Languages

Urs Hölzle
David Ungar

2

Outline

n Self-93 System Overview
n Novel Optimization approaches

n Type feedback
n Use of profile information

n Adaptive recompilation
n Responsiveness
n Performance

3

Self-93 System

n Terminology
n Dynamic Compilation

n “Jit”

n Adaptive Compilation

4

Type Feedback

n Profile Program
n Receiver types
n Frequency

n Profile Guided Optimization
n Predict and inline dynamically dispatched

calls
n Splitting
n Uncommon branch elimination

5

Inlining Strategies
n Not all calls should be inlined

n Inlining A may require B to be inlined to
reduce closure costs

n May increase register pressure too much.
n ???

n Self-93 currently inlines when
n Callee is small
n Caller not too big

6

Type Feedback: Benchmarks

7

Type Feedback: Performance

8

Self-93 Performance
Relative to Other Systems

9

Self-93 Size

10

Type Feedback:
Applicability for Other Systems

n Static compilation model
n Actually advantageous

n Has complete information
n Compile time not an issue

n One disadvantage
n Cannot adapt to unforeseen circumstances

n Other Languages
n Expect similar results
n Not quite as extreme

11

Adaptive Compilation

n Goal
n Achieve reasonable performance without

introducing pauses
n Emphasis: pause free execution

n Approach
n Optimize only hot spots

12

When to Recompile?

n Ideal policy
n Recompile a method only if it reduces total

execution time.
n Do so as early as possible

n Impossible to implement
n Cannot predict future
n Needs time to accumulate profile
n Ignores interaction effects

13

When to Recompile:
Self-93 Strategy
n Approximates ideal policy

n Assume past predicts future
n Method invocation counts

n Counter > threshold triggers recompile

n Eventually all methods trip counter

n Exponential Decay Mechanism
n Decay counters every n seconds

n Decay rate: half life time

n Result
n Frequency more important than total calls

14

Exponential Decay
n Is exponential decay the correct model

n Misses infrequently executed methods
n Invocation limit should vary per method
n Half life time relative to machine speed?
n Real time/cpu time

n Bottom line
n Looks depressing
n Simple counter strategy works great.

n “What” more important than “when”

15

Other possibilities for “When”
n Edge counters

n Not practical in Self
n Everything is a call
n Too much space

n PC sampling
n Discover time-consuming methods
n Not practical in self

n Too many small methods

n May be good for other languages

16

“What” to recompile?

n Method overflows counter
n Recompile just that method?

n Bad plan
n Example: set/get method

n Idea
n Walk up current stack
n Look for “good” candidate to recompile
n Use dynamic info to make inlining decisions

17

Finding Method to Recompile

18

Finding Method

n Characteristics considered
n m.size

n Size of method m

n m.count
n # invocations of m

n m.sends
n # calls made from m (approx)

n m.versions
n # times m has been recompiled

19

After Recompilation

n Replace Method
n If possible, even currently running version

n Note Benefit
n If no inlining occurred

n Avoid recompiling method again

n Hopefully
n No pauses,
n Good performance
n No training runs necessary

20

Measuring Pauses in
Interactive Systems

n What constitutes compile pause?
n Back to back compilation

n Appears as one pause

n Define: “pause cluster”
n Any period of time which

n Starts or ends with a compilation
n Compilation consumes > 50% cluster’s time
n No compilation-free interval > .5 seconds

21

Pause Clustering Example

n Makes big difference
n W/out: < 2% exceed 0.1 sec
n With: 37%

22

Evaluation of
Interactive Behavior

23

Evaluation of
Interactive Behavior (continued)

24

Startup Time

25

Startup time (continued)

26

27

Recompilation Parameters
Decay vs No Decay

28

Conclusions

n Adaptive Recompilation
n Good runtime performance
n Good interactive performance

n Pause Clustering
n Measures pauses as seen by user

n Type Feedback
n 1.7 times faster than without

29

Future Work

n Compile during free cycles
n Java Java Java…

n Same techniques
n New techniques

