
Database of Records Project

Assignment:
The goal of this assignment is to develop a student employee record data retrieval system for

Podunk University. To do so, you will bring together many of the concepts covered throughout the
semester. You will implement a database system supporting access by several secondary keys. The
data records will be stored in a disk file. Access to the records will be via primary key, with the
primary key index being a hash table. The actual queries will be to secondary keys, indexed by
Binary Search Trees (BSTs).

The database will store records for those students who are employees of the University. Database
records will contain six fields. The first two fields will be strings of variable length. The first string
field will be the name. The second string field will be the address. The third field is the ID string,
and should be stored as an 8-byte character array. The fourth field is student’s GPA, and should
be stored as a double. Its value will be in the range 0.00 to 4.00. The fifth field is a code for the
student’s major. It is a four-character string. The sixth field is the salary (in cents), and should
be stored as a 2-byte integer. When you create your data record object, you may reorder the fields
within the object as you see fit. You may also reorder the fields as stored in the data file.

The input to the program will be a command file containing commands, read from standard
input. Output for the program will be to standard output.

The only place where any given record will be stored in its complete form will be in the disk
file. The disk file will be managed using the first-fit memory manager that you wrote for Project 3.

Any given search command will refer to one of the key fields in the data record, known as
secondary keys. The secondary key fields that are supported by search are the Name field, the
GPA field, the Major field, and the Salary field. For each secondary key field, there will be an
associated BST, stored in memory. Thus, your program maintains four BSTs, each with its own
key type and comparator function. BST nodes will not store complete records. Instead, a BST
node will store the key value and the (8 byte) employee ID value for the associated record. The
BSTs will be implemented using templates parameters for the data types and comparator functions.

The Employee ID field for the records serves as the primary key for the database. You will use
a hash table to index the employee ID field. Recall that this is a 8-character ASCII quantity. The
hash function you will use is as follows: Take the first four bytes interpreted as an integer value
and add this to the second four bytes also interpreted as an integer value. Then, extract the middle
two bytes of the 4-byte sum (you can do this by sifting the result down by 8 bits and then copying
to an unsigned short integer). Finally, take the result and perform the modulus operation by the
size of the hash table. The collision resolution method you will use will be quadratic probing. The
hash table slots will store the primary key value (an 8-byte quantity), the byte offset in the file
that where the associated record begins, and the total size of the record in bytes.

1

Input:
You program will be called pud, and it will have two command-line parameters. The first

parameter is the name of the data record file. Note that this will be your binary file (mediated by
the memory manager) and it will be initialized to be empty/zero length at the beginning of the
program. The second parameter is the size (in slots) for the hash table.

The input file will consist of the commands enter, delete, search, and makenull. Each enter
command will require two lines of input, with a format as in the following example:

enter John Doe: 1002 Anywhere Street
JOHNDOEX 3.62 CMSC 10.50

The first line of the enter command contains two character strings, separated by a colon (:).
The first character string is the name key. The second string is the address field, but this field is
simply data – it will never be used for searching. The name key will start with a letter and will not
contain colons or line breaks. Before insertion into the database, excess spaces in both character
strings should be removed. Specifically, any leading or trailing spaces are ignored, and multiple
spaces are collapsed into a single space.

The second line of data contains the values for the remaining four fields. Field three is the
employee identification number. It will always be exactly 8 ASCII bytes. If this value duplicates
the ID of any existing record in the database, then this enter command is in error, and the record
should not be inserted into the database. Field four is the GPA, and will be expressed in the form
x.xx. Its value will be in the range 0.00 to 4.00. Values outside the range indicate an error – in
which case the record should not be inserted. Duplicates for this field are to be expected. The
fifth field is the student’s major, and will be four character long. Duplications are allowed. The
sixth field is the hourly salary, and will be expressed in the form xx.xx, where the number of digits
preceding the decimal is not fixed. This value should be converted to a 2-byte integer expressing
the salary in cents. Duplications are allowed for the salary field.

When performing an insert, you must make sure that the hash table is not full. If it is full,
output a suitable message and do not insert the record into the database.

The delete command takes one of two forms:

delete John Doe
delete 1 2.34

The first form for the delete command contains a character string. This character string must
match the string for some record’s name key exactly, after blanks have been trimmed as described
for insertion. After locating a corresponding record in the name index (if it exists), it should be
deleted from the database. This involves removing the record from the hash table, from each of
the four BSTs, and from the disk file. Use a tombstone to mark deletions from the hash table.

The second form of delete has two parameters. The first specifies a secondary key field. It
must be either 1, 2, or 3, corresponding to the GPA, Major, or Salary fields, respectively. The
second number is the key value to be deleted. Some record (if one exists) with that value will be
deleted. Once again, the record must be deleted from the hash table and BSTs.

There are three forms for the search command, as shown by these examples:

search John Doe
search 2 CMSC
search 1 3.0 3.5

2

In the first form, the search command takes a name and prints all matching records. The
second form takes two parameters. The first parameter should be in the range 1-3 (otherwise it is
an error). This number tells which field is to be searched, corresponding to the GPA, Major, or
Salary fields, respectively. The second parameter tells which value for the secondary key is to be
found. You should print all matching records. In the third from, again the first parameter specifies
which secondary is to be searched. The remaining parameters are the lower and upper bounds for
a value range, respectively. These values are inclusive (that is, records that have exactly the upper
or lower bound value are also matches). The lower bound must be less than the upper bound, or
it is an error. Complete information for all records whose key values fall between the two bounds
(inclusive) should be printed.

The makenull command will reinitialize the hash table, all BSTs, and the record file to be
empty.

You can expect all input commands to be syntactically correct.

How Searches Work:
Given that you have have some records stored in your database, here is an example for how a

search will operate. Consider the following search command:
search 3 10.00 20.00

This indicates a search in the salary field for all employees with a value between $10.00 and
$20.00. Thus, you will begin by searching in the salary BST. The search command expresses the
salary value in decimal, form, which should be converted into an integer (number of cents). Each
entry in the BST with a matching key value (one in the range 1000-2000) will have stored with it
the employee ID value for that record. You will search the hash table for each such ID value, to
recover its position on the disk. For each such record, you will ask the memory manager to retrieve
the record’s bytes. All fields of this record will then be printed to standard output.

Since you are using quadratic probing as the collision resolution method, there is a possibility
that not all slots in the tale will be probed for during a search. To avoid the possibility of an infinite
loop, limit the number of probe steps to be the size of the hash table. Thus, if the hash table is size
10, you would not attempt more than 10 probes along the probe sequence for any search or insert
operation. In the event where you do not find the record (or an empty slot) after this number of
tries, consider the search or insert to have failed.

3

