
Int J Parallel Prog
DOI 10.1007/s10766-014-0309-6

A Framework to Analyze the Performance of Load
Balancing Schemes for Ensembles of Stochastic
Simulations

Tae-Hyuk Ahn · Adrian Sandu · Layne T. Watson ·
Clifford A. Shaffer · Yang Cao · William T. Baumann

Received: 5 June 2013 / Accepted: 6 March 2014
© Springer Science+Business Media New York 2014

Abstract Ensembles of simulations are employed to estimate the statistics of possi-
ble future states of a system, and are widely used in important applications such as
climate change and biological modeling. Ensembles of runs can naturally be executed
in parallel. However, when the CPU times of individual simulations vary consider-
ably, a simple strategy of assigning an equal number of tasks per processor can lead to
serious work imbalances and low parallel efficiency. This paper presents a new proba-
bilistic framework to analyze the performance of dynamic load balancing algorithms

T.-H. Ahn (B)
Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, TN 37831, USA
e-mail: ahnt@ornl.gov

A. Sandu · C. A. Shaffer · Y. Cao
Department of Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA
e-mail: sandu@cs.vt.edu

C. A. Shaffer
e-mail: shaffer@cs.vt.edu

Y. Cao
e-mail: ycao@cs.vt.edu

L. T. Watson
Departments of Computer Science, Mathematics, and Aerospace and Ocean Engineering,
Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA
e-mail: ltw@cs.vt.edu

W. T. Baumann
Department of Electrical and Computer Engineering, Virginia Polytechnic Institute
and State University, Blacksburg, VA 24061, USA
e-mail: baumann@vt.edu

123

Int J Parallel Prog

for ensembles of simulations where many tasks are mapped onto each processor, and
where the individual compute times vary considerably among tasks. Four load bal-
ancing strategies are discussed: most-dividing, all-redistribution, random-polling, and
neighbor-redistribution. Simulation results with a stochastic budding yeast cell cycle
model are consistent with the theoretical analysis. It is especially significant that there
is a provable global decrease in load imbalance for the local rebalancing algorithms due
to scalability concerns for the global rebalancing algorithms. The overall simulation
time is reduced by up to 25 %, and the total processor idle time by 85 %.

Keywords Dynamic load balancing (DLB) · Probabilistic framework analysis ·
Ensemble simulations · Stochastic simulation algorithm (SSA) ·
High-performance computing (HPC) · Budding yeast cell cycle

1 Introduction

Important scientific applications like climate and biological system modeling incorpo-
rate stochastic effects in order to capture the variability of the real world. For example,
biological systems are frequently modeled as networks of interacting chemical reac-
tions. At the molecular level, these reactions evolve stochastically and the stochastic
effects typically become important when there are a small number of molecules for
one or more species involved in a reaction [25]. Systems in which the stochastic effects
are important must be described statistically.

The easiest way to generate statistics for complex systems is to run ensembles of
simulations using different initial conditions and parameter values; their results sample
the probability density of all possible future states [26]. Taking advantage of the ide-
ally parallel nature of ensembles, individual runs can be easily distributed to different
processors. However, the inherent variability in compute times among individual simu-
lations can lead to considerable load imbalances. For these simulations, load balancing
among processors is necessary to avoid wasting computing resources and power.

A large body of research literature is available on static and dynamic load balancing
(DLB) techniques [5,9,19,20,23]. Two classes of DLB methods are widely used:
scheduling (work-sharing) schemes [13,18,27] and work-stealing schemes [6,21,32].
The factoring approach, one of the classical scheduling algorithms, allocates large
chunks of iterations at the beginning of the computation to reduce scheduling overhead,
and dynamically assigns small chunks towards the end of the computation to achieve
good load balancing [13]. The work-stealing approach identifies and moves tasks from
overloaded processors to idle processors. A simple yet powerful work-stealing scheme
is random polling [15]. A processor that runs out of assigned work sends requests to
randomly chosen processors, until a busy one is found. The requestee then sends part of
its work to the requestor. Scheduling schemes usually take a centralized load balancing
approach where the remaining tasks are stored in a central work queue [15,37]. Work-
stealing schemes, on the other hand, can employ both centralized and decentralized
load balancing approaches [15]. In centralized DLB a master process distributes tasks
to the workers (slave processes). In decentralized DLB, tasks are moved between peer
processes.

123

Int J Parallel Prog

This paper focuses on several work-stealing DLB methods and their application to
stochastic biochemical simulations. In the most-dividing (MD) algorithm, the proces-
sor that finishes first receives new tasks from the most overloaded processor. In the all-
redistribution (AR) algorithm, when one worker becomes idle, all remaining jobs are
evenly redistributed among all processors. In the random-polling (RP) algorithm new
tasks are received from a randomly chosen processor. In the neighbor-redistribution
(NR) algorithm, the idle processor and its neighbors redistribute evenly all remain-
ing jobs (on the neighbor processors). The Dijkstra-Scholten algorithm [12] and the
Shavit-Francez algorithm [34] are adapted for detecting termination. MD and AR use
a centralized DLB approach, whereas RP and NR employ a decentralized one.

A number of papers available in the literature have considered probabilistic analy-
ses of task scheduling. In their classical work Kruskal and Weiss [22] provide the first
probabilistic analysis of allocating independent subtasks on parallel processors. They
consider the case where running times of the subtasks are independent identically
distributed (i.i.d.) random variables with mean and standard deviation (μ, σ). Batches
of tasks of fixed size are allocated dynamically from a central work pool. Lucco [24]
considers the problem of scheduling chunks of tasks from a central work pool. He pro-
poses the Probabilistic Tapering method which computes the sizes of chunks of tasks
that keep the load imbalance bounded with high probability. Scheduling overheads are
incorporated into the theoretical analysis. Hagerup [16] considers a centralized work
pool and introduces the heuristic strategy to allocate batches to processors in such a
way as to achieve a small expected overall finishing time. Bast [3,4] has the goal to
allocate jobs from a central work pool such as to minimize the total wasted time (the
sum of all delays plus the idle times of processors). Her approach is not probabilistic,
but deterministic, and is based on estimated lower and upper bounds for processing
times of chunks of a given size.

All these previous studies [3,4,16,22,24] perform a probabilistic analysis for
scheduling algorithms, where chunks of tasks are assigned to processors from a central
work pool. Scheduling a chunk of jobs to a node changes the load of that node, but
leaves all the other loads unchanged. The current work also assumes task run times
that are i.i.d. random variables like in [22,24]. However, the current work extends the
probabilistic analysis to dynamic load balancing algorithms. The theoretical problem
is more complex than that considered in [3,4,16,22,24] since each load balancing
step changes the work load of both the work donor(s) and the work receiver(s). We
consider several dynamic load balancing strategies (most-dividing, all-redistribution,
random-polling, and neighbor-redistribution), out of which the last two use a fully
distributed work pool. There is renewed interest in scheduling and dynamic load bal-
ancing algorithms in the era of new technologies including cloud computing system
[29,30,39]. Recent work focuses on developing and testing new balancing schemes,
but there are few new results available to date on probabilistic theoretical analysis.

The novelty of the work presented in this paper consists of a new general frame-
work for analyzing work-stealing dynamic load balancing algorithms when applied
to large ensembles of stochastic simulations. In this case the established determinis-
tic analysis approaches are not appropriate, so a probabilistic analysis is developed.
The times per task are assumed to be independent identically distributed random vari-
ables with a certain probability distribution. This is a natural assumption for ensemble

123

Int J Parallel Prog

computations, where the same model is run repeatedly with different initial condi-
tions and parameter values. No assumption is made, however, about the shape of the
underlying probability density function; the proposed analysis is very general. The
level of load imbalance (defined by a given metric) is also a random variable. The
analysis focuses on quantifying the decrease in the expected value of the random
load imbalance. The probabilistic analysis reveals that the four applied DLB methods
are effective for moderate parallelism; scalability is not investigated here. While the
performance analysis is complex, the four DLB methods described here are easy to
implement. Numerical results show that they achieve considerable savings in compu-
tation time for a computational biology application. The relative performance of the
four DLB strategies is analyzed numerically for a biological problem in Sect. 5.

The paper is organized as follows. The four load balancing algorithms are presented
in Sect. 2. Section 3 explains the analysis framework, and Sect. 4 contains the prob-
abilistic analysis of the load balancing algorithms. Section 5 shows theoretical and
experimental results with a cell cycle model. Section 6 draws some conclusions.

2 Load Balancing Algorithms

This section introduces four different dynamic load balancing strategies.

2.1 Motivation

Each run of a stochastic simulation leads to different results. The goal of running an
ensemble of stochastic simulations is to estimate the probability distribution of all
possible outcomes. This typically requires thousands of simulations run concurrently
on many CPUs. The stochastic nature of the system and the potentially dramatic
differences running time per simulation can cause a severe load imbalance among
processors that are running many simulations.

Consider, for example, stochastic simulations of the budding yeast cell. For certain
mutants, a cell might never divide, or it might always divide, with some probability.
Therefore, the CPU time to run the simulation is quite different from one case to
another. Figure 1. shows 100 prototype mutant multistage cell lineage simulations
assigned statically to 10 worker processors. The results reveal a considerable load
imbalance, with the CPUs being idle for approximately 40 % of the aggregate compute
time. This results in poor utilization of computer resources, longer time to results,
and reduced scientific productivity. Dynamic load balancing strategies are required
to improve the parallel efficiency. The stochastic simulation algorithm and budding
yeast cell cycle model are explained in detail in Sect. 5.

2.2 Most-Dividing (MD) Algorithm

The most-dividing (MD) algorithm is based on the central redistribution work of
Powley [28] and Hillis [17]. The idea of the MD algorithm is presented in Fig. 2a.
First, the tasks (cell simulations) are evenly distributed to every worker processor in

123

Int J Parallel Prog

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Processor Number

E
la

p
se

d
 T

im
e

(s
ec

)

Fig. 1 Elapsed compute times for 100 prototype mutant multistage cell cycle simulations by static distrib-
ution across ten worker processors. Dotted line represents different CPU times per processor and the solid
line indicates the wall clock time

(a) (b) (c) (d)

Fig. 2 Adaptive load balancing strategies. Ellipses represent tasks to be done and gray rectangles represent
completed tasks. Right diagonal patterned ellipses indicate tasks to be done on processors whose load has
been adjusted by an adaptive load balancing algorithm. a MD DLB idea, b AR DLB idea, c RP DLB idea,
d NR DLB idea

the system. Workers concurrently execute their jobs. Due to different CPU times per
task, other processors may be well behind the first processor to finish its tasks. The
processor that finishes its jobs becomes idle. The processor with the largest num-
ber of remaining jobs is considered to be the most overloaded processor. At this
time the most overloaded processor sends out half of its remaining jobs to the idle
processor. This sequence of steps is executed repeatedly until there is no remaining
work.

To implement the MD algorithm, the idle processor has to receive new work from
the highest load processor. Therefore, the highest load processor stops its work,
and reduces its remaining work when another processor has completed all of its
work. Stopping the computation when all the tasks are completed is called termina-

123

Int J Parallel Prog

tion. The Dijkstra-Scholten algorithm [12] and the Shavit-Francez algorithm [34] are
adapted for detecting terminations using requests and acknowledgement messages.
Initially, each processor is in one of two states: inactive and active. Upon receiv-
ing a task from the master, worker processors are active. Workers send a message
to the master whenever they finish a job, and receive messages setting their state
to continue activity or become inactive once the termination condition is satisfied.
When any processor finishes its assigned jobs, the highest load processor receives
a suspend message. It suspends execution after finishing the currently active job,
reduces its tasks to half of its remaining jobs, and then resumes execution where it left
off.

2.3 All-Redistribution (AR) Algorithm

The all-redistribution (AR) method is also a centralized load balancing scheme. The
idea of the AR algorithm is presented in Fig. 2b. The initial step of the AR algorithm is
similar to that of the MD algorithm. The processor that finishes its jobs first becomes
idle, and notifies the master of its idle status. Then, the master directs all workers
to suspend execution, redistributes all remaining jobs in the workers’ queues evenly
among all workers, and finally directs the workers to resume execution.

2.4 Random-Polling (RP) Algorithm

Centralized schemes are inherently limited in terms of scalability. Due to finite com-
munications resources, bottlenecks appear when many worker processors request jobs
simultaneously from the same master. One approach to solve the scalability issue is
to organize the system into multiple master/worker partitions, which are supervised
by a dedicated supermaster process. Another approach, the decentralized scheme, is
to fully distribute and execute tasks on all processors without any master supervision.

The random-polling (RP) method is a receiver-initiated decentralized load balanc-
ing algorithm [37]. Figure 2c illustrates the idea. When a worker processor becomes
idle, it randomly polls other processors until it finds a busy one. The busy worker
becomes a donor and sends out half of its remaining jobs to the idle processor. Each
processor is selected as a donor with equal probability, ensuring that work requests
are evenly distributed.

The implementation of the RP algorithm associates with each processor one of the
following three states: available, idle, and locked. A processor with remaining jobs
beyond the active one is in the available state. A processor that finishes its jobs becomes
idle. A processor with one (active) job is locked. An idle processor randomly polls
other processors to request jobs. Upon receiving the request, an available processor
agrees to become a donor. The state of the donor processor(s) changes from available
to locked in order to avoid overlaps (i.e., to become a donor for multiple idle processors
that happened to randomly poll it). After the RP load balancing step ends, a locked
processor is released and becomes available if there are remaining jobs besides the
currently active one.

123

Int J Parallel Prog

2.5 Neighbor-Redistribution (NR) Algorithm

The idea of the neighbor-distribution (NR) decentralized load balancing scheme is
presented in Fig. 2d. A processor that finishes its jobs informs its neighbors of its idle
status. The set of neighbors is predefined based on the network topology of the system
(in this paper a 2-D torus topology is considered for the numerical experiments).
From the algorithmic perspective, the sets of neighbors can be arbitrarily defined;
assume that each processor has k − 1 neighbors. The idle processor and its neighbors
redistribute evenly all their remaining jobs (i.e., apply the AR algorithm on the subset
of k processors).

The NR load balancing step performs a local redistribution of jobs, and therefore is
suitable for parallel architectures where groups of nodes are linked directly. In this case
the NR method is related to the dimension exchange algorithm, where a dimension
corresponds to a fully connected subset [5,10,38]. Similar to RP, the NR algorithm
uses three states (available, idle, and locked) to avoid overlaps (i.e., participation by the
same processor in the balancing steps performed by two distinct groups of neighbors).

3 The Analysis Framework

This section presents a probabilistic framework for load balancing analysis. The
assumptions needed for the analysis and the metrics used to measure load imbalance
are considered.

3.1 Assumptions for the Analysis

The computational goal is to run an ensemble of n stochastic (biochemical) simula-
tions. Each individual simulation is referred to as a “task”. Due to the stochastic nature
of each simulation, the execution time t associated with a particular task cannot be
estimated in advance. (The same situation occurs with deterministic adaptive models
where the grid or time step adaptation depends on the data, and the chosen grid and
step sizes greatly affect the total compute time.) The task compute times are modeled
by random variables.

Assumption 1 The compute times associated with different tasks are independent
identically distributed (i.i.d.) random variables.

The mean and the standard deviation of the random variable task compute time T
are denoted by μT and σT , respectively. The exact shape of the probability density
function for T is not relevant for the analysis; thus, the analysis results are very general.

Assumption 1 naturally covers the case where the ensemble is obtained by running
the same model multiple times, with different initial conditions, different parameter
values, or different seeds of the pseudo random number generator. New model runs are
independent of the results of previous runs. Assumption 1 is also appropriate where
multiple models are being run, and where each model of the batch is chosen with a
specified frequency.

123

Int J Parallel Prog

Next, the mapping of the n tasks of the ensemble onto the p processors is considered.
Processor i has Ri tasks, such that R1 + · · · + Rp = n. Let ti j denote the compute
time of the j th task on the i th processor where i = 1, . . . , p, j = 1, . . . , Ri . Note
that all ti j are i.i.d. random variables according to Assumption 1. The total compute

time Xi = ∑Ri
j=1 ti j of processor i is also a random variable. In probability theory,

the central limit theorem (CLT) states that the normalized sum of a sufficiently large
number of independent identically distributed random variables, each with finite mean
and variance, will be approximately standard normally distributed [31]. Therefore,
using Assumption 1, if Ri is large enough, then Xi will be approximately normally
distributed with

E [Xi] = Ri · μT , Var [Xi] = Ri · σ 2
T.

It is therefore assumed that

Assumption 2 The number of tasks mapped onto each processor is sufficiently large
such that the probability density function of the total compute time per processor is
approximately Gaussian.

Assumption 2 allows the analysis to work with Gaussian distributions of the total
compute times per processor regardless of the underlying distribution of individual task
times. Thus a very general setting for the analysis is possible. Assumption 2 is invalid
during the winddown period (when there are only a few tasks left per processor), but
that is a small fraction of the total ensemble computation time. Even during winddown
load balancing continues to be beneficial, but the theoretical analysis cannot be directly
applied.

3.2 Metrics of Load Imbalance

The algebraic mean of the compute times per processor is defined as ηX =
1
p

∑p
i=1 Xi = 1

p

∑p
i=1

∑Ri
j=1 ti j . Note that ηX is itself a random variable with

E[ηX] = (n/p) μT . The algebraic variance of the compute times among processors
is defined by ξ2

X = 1
p−1

∑p
i=1 (Xi − ηX)2

and is also a random variable. The square root of the algebraic variance (RAV),√
ξ2

X , is also considered. The basic premise of variance is that larger variance between
the compute times on different processors is a symptom of larger load imbalance. The
first measure of the degree of load imbalance is therefore the expected value of the
algebraic variance,

E
[
ξ2

X

]
= 1

p − 1

p∑

i=1

E
[
(Xi − ηX)2

]
, (1)

or more conveniently the square root
√

E
[
ξ2

X

]
.

123

Int J Parallel Prog

200 300 400 500 600 700 800
0

200

400

600

800

1000

Time (sec)

F
re

qu
en

cy

200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

F
itt

in
g

C
D

F

0 200 400 600 800
0

200

400

600

800

1000

Time (sec)

F
re

qu
en

cy

(a) (b)

Fig. 3 Discrete cumulative histogram of compute times per cell (bar) for wild-type and mutant simulations.
The solid line represents the best-fit Gaussian CDF. a Wild-type 1,000 simulations, b Prototype mutant
1,000 simulations

Consider now the minimum and the maximum computation times among all proces-
sors, Y1 = min{X1, . . . , X p} and Yp = max{X1, . . . , X p}. These are both random
variables. The idle time spent by processor i is the difference between the maximum
time and the compute time on the processor, Yp − Xi . The second measure of load
imbalance is the expected value of the largest idle time, i.e., the difference between
the largest and the smallest compute times across all processors,

E
[
Yp − Y1

] = E
[
max{X1, . . . , X p}

]− E
[
min{X1, . . . , X p}

]
. (2)

Finally, the third measure of load imbalance is the expected value of the average idle
compute time across all processors,

E

[
1

p

p∑

i=1

(
Yp − Xi

)
]

= E
[
Yp − ηX

]
. (3)

3.3 Variability in Compute Times Per Cell

The wild-type cell lineage simulation time distribution from a simulation experiment
is plotted in Fig. 3a. This distribution is based on 1,000 budding yeast multistage
cell tracking simulations. The best continuous Gaussian CDF approximation to the
discrete cumulative histogram is also shown; it is clear that the cell cycle simulation
times are not normally distributed [35]. The wild-type simulation data from Fig. 3a
has the mean and standard deviation

μT = 488.1 sec. and σT = 116.6 sec. (4a)

Figure 3b shows the cumulative discrete histogram of 1,000 prototype budding yeast
mutant simulations. Approximately 75 % of the cells never divide and the remaining
25 % divide very irregularly. For the mutant simulation results

μT = 152.0 sec. and σT = 191.1 sec. (4b)

123

Int J Parallel Prog

4 Analysis of the Dynamic Load Balancing Algorithms

Level of load imbalance is measured by three well-defined metrics (1)–(3). The analy-
sis approach quantifies the expected value of the load imbalance metrics before and
after each work redistribution step, and assess the reduction in the expected load
imbalance.

4.1 Order Statistics

Let X1, . . . , X p be p independent identically distributed random variables with a
probability density function (PDF) fX (x), and cumulative distribution function (CDF)
FX (x). The variables Y1 ≤ Y2 ≤ · · · ≤ Yp, where the Yi are the Xi arranged in order of
increasing magnitudes, are called order statistics corresponding to the random sample
X1, . . . , X p. Therefore, Y1 = min{X1, . . . , X p} and Yp = max{X1, . . . , X p}. Some
useful facts about order statistics [11] follow. The CDF of the largest order statistic
Yp is given by

FYp (y) = Pr [Yp ≤ y] =
p∏

j=1

Pr [X j ≤ y] = [FX (y)]p

because the X j s are independent. Likewise

FY1(y) = Pr [Y1 ≤ y] = 1 − [1 − FX (y)]p.

Thus, the special probability density function for the maximum Yp and the minimum
Y1 are

fYp (y) = p [FX (y)]p−1 fX (y), (5a)

fY1(y) = p [1 − FX (y)]p−1 fX (y). (5b)

Numerical evaluation of expected order statistics is complex. Chen and Tyler [7] show
that the expected value, standard deviation, and complete PDF of the extreme order
distributions can be accurately approximated when the samples Xi are i.i.d. Gaussian.
The formulas use the expression Φ−1

(
0.52641/p

)
, where p is the sample size and

Φ−1(y) = √
2 erfinv(2y − 1) is the inverse function of the standard Gaussian CDF

Φ, and erfinv is the inverse of the error function erf(x) = 2√
π

∫ x
0 e−t2

dt . Specifically,
the expected values of the largest and the smallest order statistics of i.i.d. Gaussian
samples are, respectively,

E[Yp] ≈ μX + σX Φ−1
(

0.52641/p
)
, (6a)

E[Y1] ≈ μX − σX Φ−1
(

0.52641/p
)
. (6b)

123

Int J Parallel Prog

Numerical evidence presented in [7] indicates that the relative approximation errors
are of the order of a few percent for moderately large values of p (p ≥ 20). Note
that the compute times Xi here are not identically distributed (unless all the Ri are
the same), and thus in general (6) does not apply to the min and max compute times
Y1 and Yp. (6) is used only for initially equal Ri followed by AR, and in that case
experimental results presented in Sect. 5 indicate that the approximations (6a) and
(6b) are very close to the experimentally determined expected values.

4.2 Some Useful Results for Load Balancing

Consider the moment right after one processor (say, P1) finishes all its jobs. Define Ri

to be the number of remaining jobs outstanding (including the one currently executing)
on the processor Pi . Since the analysis is carried out at a given moment in time, the Ri

are known and are not random variables. Let ti j be the execution time for the remaining
job j on processor Pi . Let Xi be the execution time of all the remaining jobs on Pi .

Consider a load balancing step that redistributes (nonexecuting) jobs among proces-
sors. Since the total number of jobs is not changed, the algebraic mean of compute
times remains the same.

Lemma 1 Let X = [X1, . . . , X p] be the remaining compute times when the first
processor finishes its tasks, and before the load balancing is performed. Let X ′ =
[X ′

1, . . . , X ′
p] be the vector of compute times after the load balancing step. The alge-

braic mean of compute times per processor is the same random variable for all con-
figurations,

ηX = 1

p

p∑

i=1

Xi = ηX ′ = 1

p

p∑

i=1

X ′
i ,

since X ′ contains the same tasks, therefore the same execution times ti j , as X (just
distributed differently). Therefore a load balancing step does not change the expected
algebraic mean time E[ηX] = E[ηX ′].

In what follows, the algebraic mean and the algebraic variance of the remaining
number of jobs per processor are denoted by

M(R) = 1

p

p∑

�=1

R�, V(R) = 1

p − 1

p∑

i=1

(
Ri − M(R)

)2
. (7)

Lemma 2 estimates the time left to completion.

Lemma 2 Consider a task that has started but not yet finished. There is no information
about how far along the computation is. The total execution time t of the task is a
random variable from a distribution with mean μT and variation σ 2

T . Then the total
remaining execution time τ is a random variable with

E[τ] = 1

2
μT , Var[τ] = σ 2

T

3
+ μ2

T

12
.

123

Int J Parallel Prog

Proof Consider that a fraction f ∈ [0, 1] of the task still needs to run, while a fraction
(1 − f) of the task has completed. Since there is no information about the part that is
done, f is a uniformly distributed random variable, f ∈ U([0, 1]). It is important to
notice that t and f are independent random variables.

The time left to completion τ = f t is a random variable. Due to the independence
of t and f ,

E[τ] = E[f t] = E[f] E[t] = 1

2
μT .

For the variance,

E

[(

f t − 1

2
μT

)2
]

= σ 2
T

3
+ μ2

T

12
.

�	
Define adjusted numbers R̂i of tasks per processor such that E[Xi] = R̂i μT . The

definition must account for the fact that one task may be running. When all processors
are still working, one task on each processor is running. The adjusted number of tasks
is defined as

R̂i = Ri − 1

2
for i = 1, . . . , p. (8a)

Assume, without loss of generality, that P1 is the first processor that finishes its jobs
and becomes idle. All other processors have one running task, and therefore

R̂1 = 0 and R̂i = Ri − 1

2
for i = 2, . . . , p. (8b)

Right after the load balancing step the processor Pi has R′
i tasks to execute. On

processors P2, . . . , Pp the first task is the one being executed, but all the R′
1 tasks on

P1 are newly assigned and queued: none has started yet. This leads to

R̂1 = R′
1 and R̂i = R′

i − 1

2
for i = 2, . . . , p. (8c)

The following lemma is a useful ingredient in proving the main results of the paper.

Lemma 3 The expected value of the algebraic variance of the compute times (1)
depends on both the algebraic variance of the number of tasks, and the variance of
the individual compute times, and is given by

E
[
ξ2

X

]
= V(R̂) μ2

T + M(R̂) σ 2
T + p − 1

p

(

−1

6
σ 2

T + 1

12
μ2

T

)

, (9)

where the R̂i represent the adjusted numbers of tasks per processor (8). The algebraic
mean M(R̂) and the algebraic variance V(R̂) are defined in (7).

123

Int J Parallel Prog

Proof Redefine ti j to be the time remaining for job j on processor Pi ; the (random)
compute times per processor and their average are

Xi =
Ri∑

j=1

ti j , ηX = 1

p

p∑

�=1

R�∑

m=1

t�m .

Each processor Pi , i ≥ 2, has one task in progress with expected completion time
μT /2 when P1 finishes its tasks. Note that if P1 is idle (right before load balancing)
then R1 = 0. If P1 is not idle (right after load balancing step) then none of the tasks
assigned to it has started and E[t1 j] = μT for j = 1, . . . , R1. Consequently, the mean
compute time of the first job is different on P1 than it is on other processors;

E[ti j] =

⎧
⎪⎪⎨

⎪⎪⎩

μT /2, i = 2, . . . , p and j = 1,

μT , i = 2, . . . , p and 2 ≤ j ≤ Ri ,

μT , i = 1 and R1 ≥ 1,

0 , i = 1 and R1 = 0.

Now

Xi − ηX =
Ri∑

j=1

ti j − 1

p

p∑

�=1

R�∑

m=1

t�m =
(

1 − 1

p

) Ri∑

j=1

ti j − 1

p

p∑

�=1,�
=i

R�∑

m=1

t�m

=
(

1 − 1

p

) Ri∑

j=1

(
ti j − E[ti j]

)+
(

1 − 1

p

) Ri∑

j=1

E[ti j]

− 1

p

p∑

�=1
�
=i

R�∑

m=1

(t�m − E[t�m]) − 1

p

p∑

�=1
�
=i

R�∑

m=1

E[t�m]. (10)

Recall R̂i was defined so that
∑Ri

j=1 E[ti j] = R̂i μT , and

(

1 − 1

p

) Ri∑

j=1

E[ti j] − 1

p

p∑

�=1
�
=i

R�∑

m=1

E[t�m] = (
R̂i − M(R̂)

)
μT .

Note that E
[∑Ri

j=1

(
ti j − E[ti j]

)] = 0 . E[(Xi − ηX)2] will be determined from (10).

First apply Lemma 2 to get

E
[(

ti j − E[ti j]
)2
]

=

⎧
⎪⎪⎨

⎪⎪⎩

σ 2
T
3 + μ2

T
12 , i = 2, . . . , p and j = 1,

σ 2
T , i = 2, . . . , p and j ≥ 2,

σ 2
T , i = 1and R1 ≥ 1,

0 , i = 1 and R1 = 0.

123

Int J Parallel Prog

In compact notation

Ri∑

j=1

E
[(

ti j − E[ti j]
)2
]

= R̂i σ 2
T +

(

−1

6
σ 2

T + 1

12
μ2

T

)

(1 − δi1),

where δi1 is the Kronecker delta. Due to the independence of individual compute
times, E

[(
ti j − E[ti j]

)
(t�m − E[t�m])] = 0 for j
= m ori
= �. Hence

E[(Xi − ηX)2] = (
R̂i − M(R̂)

)2
μ2

T + 1

p

(
M(R̂) + (p − 2) R̂i

)
σ 2

T

+
(

−1

6
σ 2

T + 1

12
μ2

T

)(
p2 − p − 1 − (p2 − 2p) δi1

p2

)

.

Finally the expected value of the algebraic variance

E
[
ξ2

X

]
= 1

p − 1

p∑

i=1

E[(Xi − ηX)2]

= V(R̂) μ2
T + M(R̂) σ 2

T + p − 1

p

(

−1

6
σ 2

T + 1

12
μ2

T

)

.

�	
Lemma 3 provides insight into how the load balancing algorithms reduce the alge-

braic variance of compute times per processor. Any redistribution of tasks does not
change the total number of tasks, and therefore does not change the algebraic mean
M(R̂). The second and the third terms in (9) are invariant with any load balancing
algorithm. However, a reduction in the algebraic variance V(R̂) of the number of
tasks will decrease the expected algebraic variance of the compute times by reducing
the first term in (9). Therefore the following corollary can be derived.

Lemma 4 Let R and R′ be the number of tasks per processor before and after a load
redistribution step, respectively. Let X and X ′ be the compute times per processor
before and after a load redistribution step, respectively. The decrease in the expected
value of the algebraic variance of the compute times (1) is

E
[
ξ2

X

]
− E

[
ξ2

X ′
]

= (
V(R̂) − V(R̂′)

)
μ2

T , (11)

where the R̂i represent the adjusted numbers of tasks per processor (8).

4.3 Analysis of Static Distribution

Let Xi be total job execution time for processor i and ti j be the j th job time of
Xi in the static (no dynamic load balancing) approach. Assume the total number n

123

Int J Parallel Prog

of jobs is a multiple of the number p of processors. Processor i is assigned R =
�n/p� = n/p jobs, so that Xi = ∑R

j=1 ti j for i = 1, . . . , p. From the analysis in
the previous section, the total times per processor are i.i.d. approximately Gaussian
random variables X1, . . . , X p with mean and variance given by

μX = R μT , σ 2
X = R σ 2

T . (12)

The expected value of the algebraic variance (1) is given by Eq. (9) where all R̂i = R,

E
[
ξ2

X

]
= Rσ 2

T + p − 1

p

(

−1

6
σ 2

T + 1

12
μ2

T

)

. (13)

Let Y be the order distribution of X : Y1 ≤ Y2 ≤ · · · ≤ Yp. From (5a)–(5b),

E[Yp] =
∞∫

−∞
y p [FX (y)]p−1 fX (y) dy, (14a)

E[Y1] =
∞∫

−∞
y p [1 − FX (y)]p−1 fX (y) dy (14b)

with the Gaussian probability density function fX (y) and the Gaussian cumulative
distribution function FX (y). From (14a)–(14b) together with the simulation data (4a),
the probabilistic load imbalance measures (2)–(3) can be evaluated by numerical inte-
gration.

Alternatively, the approximations (6) can be used together with (12) to obtain

E[Yp−Y1] ≈ 2
√

R σT Φ−1
(

0.52641/p
)

, E[Yp−ηY] ≈ √
R σT Φ−1

(
0.52641/p

)
.

4.4 Analysis of MD Dynamic Load Balancing

Call P1 the first processor that finishes its jobs and becomes idle. At this time each
processor Pi , i > 1, has Ri outstanding jobs and a total remaining execution time
Xi . By the CLT, each of X2, . . . , X p is approximately normally distributed if all Ri

are large. The first (running) job on P2, . . . , Pp has a different PDF and a negligible
effect on compute time statistics, assuming that Ri � 1 for i ≥ 2.

In the MD algorithm the highest loaded processor sends half of its unfinished jobs
to the idle processor. Assume, without loss of generality, that and Pp has the highest
load of Rp unfinished jobs. The MD load balancing step moves �Rp/2� jobs from the
processor Pp to P1. The loads for P2, . . . , Pp−1 are not changed. Therefore, the number

of jobs per processor after redistribution is R′
1 =

⌊
Rp
2

⌋
, R′

2 = R2 , . . . , R′
p−1 =

Rp−1, R′
p =

⌈
Rp
2

⌉
.

123

Int J Parallel Prog

Let X ′
i be the remaining compute time for processor Pi after the MD load balancing

step. From the above X ′
i = Xi for i = 2, . . . , p − 1. For the first and last processors

the expected values of the compute times are

E[X ′
1] = R′

1 μT =
⌊

Rp

2

⌋

μT , E[X ′
p] =

(

R′
p − 1

2

)

μT =
(⌈

Rp

2

⌉

− 1

2

)

μT .

The above expression accounts for the fact that Pp has one task in progress. Further-
more,

E[X ′
p] − E[X ′

1] =
(

Rp mod 2 − 1

2

)

μT .

The following propositions prove that each MD redistribution step decreases the level
of load imbalance as measured by the metrics (1)–(3).

Proposition 1 The expected value of the algebraic variance of the compute times per

processor (1) decreases after a MD DLB step by E[ξ2
X] − E[ξ2

X ′] = Rp (Rp−1)

2 (p−1)
μ2

T .

Proof The average adjusted number of tasks per processor is the same before and after
MD load balancing, M(R̂) = M(R̂′). The decrease in the algebraic variance of the
adjusted number of tasks is

V(R̂) − V(R̂′) = 1

p − 1

(
(R̂1 − M(R̂))2 − (R̂′

1 − M(R̂))2

+ (R̂p − M(R̂))2 − (R̂′
p − M(R̂))2

)
= Rp (Rp − 1)

2 (p − 1)
.

Lemma 4 provides the difference between the expected variances of compute times
across processors before and after a MD load balancing step,

E[ξ2
X] − E[ξ2

X ′] = Rp (Rp − 1)

2 (p − 1)
μ2

T . (15)

The MD algorithm can be meaningfully applied only when the number of tasks
on the most overloaded processor is Rp ≥ 2. The relation (15) then provides a strict
decrease in the expected value of the algebraic variance of compute times. �	
Proposition 2 The expected value of the largest idle time (2) is monotonically

decreased after a MD DLB step, that is, E
[
Y ′

p − Y ′
1

]
≤ E

[
Yp − Y1

]
.

Proof Before the MD load balancing step, the expected maximum imbalance is
E[Yp] − E[Y1] = E[Yp] ≥ E[X p] = R̂p μT .

After the MD load balancing step, the new expected maximum imbalance time is
E[Y ′

p] − E[Y ′
1]. Consider the random variables

Zmin = min{X2, . . . , X p−1}, Zmax = max{X2, . . . , X p−1} ≤ Yp.

123

Int J Parallel Prog

The smallest and the largest order statistics after MD balancing are Y ′
1 =

min{X ′
1, X ′

p, Zmin} and Y ′
p = max{X ′

1, X ′
p, Zmax }. There are nine possible com-

binations of Y ′
1 and Y ′

p values. Two of them lead to Y ′
1 = Y ′

p, i.e., the maximum idle
time is zero after the MD load balancing step. The remaining seven combinations are
as follows:

(1) Y ′
1 = Zmin and Y ′

p = Zmax ; (2) Y ′
1 = Zmin and Y ′

p = X ′
p;

(3) Y ′
1 = Zmin and Y ′

p = X ′
1; (4) Y ′

1 = X ′
p and Y ′

p = Zmax ;
(5) Y ′

1 = X ′
p and Y ′

p = X ′
1; (6) Y ′

1 = X ′
1 and Y ′

p = Zmax ;
(7) Y ′

1 = X ′
1 and Y ′

p = X ′
p.

In Case (1) the balanced times fall between Zmin and Zmax . The expected maximum
idle time reduction is

{E[Yp] − E[Y1]} − {E[Y ′
p] − E[Y ′

1]} = {E[Yp] − E[Y1]} − {E[Zmax] − E[Zmin]}
= {E[Yp] − E[Zmax]} + {E[Zmin]} ≥ E[Zmin] ≥ 0.

The reductions of expected maximum idle times for Cases (2) to (7) are straightforward
verification as the Case (1).

Case (2): {E[Yp] − E[Y1]} − {E[Y ′
p] − E[Y ′

1]} = E[Yp] − {E[X ′
p] − E[Zmin]}

≥ E[Yp] − E[X ′
p] ≥ R̂p μT − (⌈

Rp/2
⌉− 0.5

)
μT > 0.

Case (3): {E[Yp] − E[Y1]} − {E[Y ′
p] − E[Y ′

1]} = E[Yp] − {E[X ′
1] − E[Zmin]}

≥ E[Yp] − E[X ′
1] ≥ (

Rp − 0.5 − ⌊
Rp/2

⌋)
μT > 0.

Case (4): {E[Yp] − E[Y1]} − {E[Y ′
p] − E[Y ′

1]} = E[Yp] − {E[Zmax] − E[X ′
p]}

≥ E[X ′
p] = (⌈

Rp/2
⌉− 0.5

)
μT > 0.

Case (5): {E[Yp] − E[Y1]} − {E[Y ′
p] − E[Y ′

1]} = E[Yp] − {E[X ′
1] − E[X ′

p]}
≥ (

R̂p − ⌊
Rp/2

⌋+ ⌈
Rp/2

⌉− 0.5
)

μT > 0.

Case (6): {E[Yp] − E[Y1]} − {E[Y ′
p] − E[Y ′

1]} = E[Yp] − {E[Zmax] − E[X ′
1]}

≥ E[X ′
1] > 0.

Case (7): {E[Yp] − E[Y1]} − {E[Y ′
p] − E[Y ′

1]} = E[Yp] − {E[X ′
p] − E[X ′

1]}
≥ (

R̂p + 0.5 + ⌊
Rp/2

⌋− ⌈
Rp/2

⌉)
μT > 0.

Therefore, after a MD load balancing step, the expected maximum time imbalance
is always the same or reduced. If R2 ≥ 1 and Rp−1 ≥ 1, then E[Zmin] > 0. Then
expected maximum time is always decreased after a MD DLB step. �	
Proposition 3 The expected value of the average idle time (3) does not increase after

a MD DLB step, that is, E
[
Y ′

p − ηX ′
]

≤ E
[
Yp − ηX

]
.

Proof The decrease in the expected average idle time is (since ηX ′ = ηX)

E
[
Yp − ηX

]− E
[
Y ′

p − ηX ′
]

= E
[
Yp
]− E

[
Y ′

p

]
.

123

Int J Parallel Prog

Consider each of the possible values of Y ′
p separately.

(1)Y ′
p = Zmax : E[Yp − Y ′

p] = E
[
Yp − Zmax

] ≥ 0;
(2)Y ′

p = X ′
1 : E[Yp − Y ′

p] ≥
[

R̂p −
⌊

Rp

2

⌋]

μT > 0;

(3)Y ′
p = X ′

p : E[Yp − Y ′
p] ≥

[

R̂p −
⌈

Rp

2

⌉

− 1

2

]

μT > 0;

by assuming that Rp > 1. �	

4.5 Analysis of AR Dynamic Load Balancing

In the AR algorithm, all remaining jobs on all processors are equitably redistributed
among all processors right after P1 finishes its jobs and becomes idle. At this time
each processor Pi , i = 2, . . . , p, has Ri remaining jobs and a remaining execution
time Xi . One job is in progress with an expected completion time μT /2 and Ri − 1
jobs are queued. Ri is known and not a random variable because the analysis is carried
out at a given time. The total number of remaining jobs is

∑p
i=1 Ri . Let

b =
(p∑

i=1

Ri

)

mod p, r = �M(R)� = M(R) − b

p
, and r̂ = r − 1

2
.

The new number of jobs that the AR algorithm assigns to processor Pi is

R′
i =

⎧
⎨

⎩

r, if b = 0 and i = 1, . . . , p,

r, if b
= 0 and i = 1, . . . , p − b,

r + 1, if b
= 0 and i = p − b + 1, . . . , p.

Let X ′
i denote the execution time of the jobs on Pi after the AR step. The expected

value of X ′
i is

E[X ′
i] =

⎧
⎨

⎩

r μT , if i = 1,

r̂ μT , if i = 2, . . . , p − b,

(̂r + 1) μT , if i = p − b + 1, . . . , p.

(16)

Proposition 4 The expected algebraic variance (1) of X ′ is smaller than the expected
algebraic variance of X after an AR DLB step, that is, E[ξ2

X ′] < E[ξ2
X], assuming

V(R̂) > 1/4.

Proof According to Lemma 4 the expected decrease in the algebraic variance of the
execution times is proportional to the decrease in the algebraic variance of the modified
number of jobs. The AR algorithm redistributes the number of jobs equitably, such that
after the load balancing step the algebraic variance of the number of tasks is the smallest
among all possible distributions. Therefore the AR load balancing algorithm decreases

123

Int J Parallel Prog

the expected variability of execution times across processors by the maximum possible
amount, and E[ξ2

X ′] < E[ξ2
X].

The algebraic variance after AR load balancing is

V(R̂′) = 1

p − 1

p∑

i=1

(
R̂′

i − M(R̂′)
)2 = p (4b + 1) − (2b + 1)2

4 p (p − 1)
≤ 1

4

for 0 ≤ b ≤ p − 1. The decrease in the expected value of the algebraic variance of
the compute times is E

[
ξ2

X

]− E
[
ξ2

X ′
] ≥ (

V(R̂) − 1
4

)
μ2

T .

For the remaining part of the analysis consider the case where the mean number of
jobs is large, M(R) � 1. In this case r + 1 ≈ r ≈ r̂ , i.e., the jobs are nearly equally
distributed to processors by the AR step. Moreover, the fact that one job has started
on each of P2 to Pp but not on P1 has a negligible effect on the statistics of compute
times (which are dominated by the large number of queued tasks). Therefore assume
that M(R) is large, b = 0, and no jobs have started on any of the processors. The AR
algorithm recursively returns to the initial circumstances of the previous AR step, but
with a smaller number of jobs. The equal distribution of work and the CLT permit
approximation of the compute times per processor X ′

1, . . . , X ′
p with i.i.d. Gaussian

random variables.

Proposition 5 If Rp is sufficiently large, the expected value of the largest idle time

(2) is decreased after an AR DLB step, that is, E
[
Y ′

p − Y ′
1

]
< E

[
Yp − Y1

]
.

Proof The maximum compute time before balancing is at least equal to the compute
time on the processor with the largest number of remaining jobs (assumed to be Pp

without loss of generality). This implies that E[Yp] ≥ E[X p] = Rp μT . Similarly,
the minimum compute time is at most equal to the compute time on the processor
with the smallest number of remaining jobs. Therefore E[Y1] ≤ E[X1] = R1 μT =
0 , Rp μT ≤ E[Yp − Y1], and

(
Rp − M(R)

)
μT ≤ E[Yp − ηY]. The expected values

of the greatest and the least order statistics in Gaussian samples can be accurately
approximated using (6a)–(6b). Under the above simplifying assumptions (b = 0
and no processes have started) all the Xi are (approximately) i.i.d. normal random
variables. From (6a), (6b), and (16),

E[Y ′
p] = r μT + √

r σT Φ−1(0.52641/p) + err p(p),

E[Y ′
1] = r μT − √

r σT Φ−1(0.52641/p) + err1(p).

Assume that the relative approximation errors have an upper bound ε < 0.5 for all
p ≥ 20:

∣
∣errp(p)

∣
∣ ≤ ε ·

∣
∣
∣r μT + √

r σT Φ−1(0.52641/p)

∣
∣
∣ ,

|err1(p)| ≤ ε ·
∣
∣
∣r μT − √

r σT Φ−1(0.52641/p)

∣
∣
∣ ,

123

Int J Parallel Prog

taking the relative errors with respect to the approximate values for convenience. Note
that the results in [7] estimate ε ≤ 0.04. Consequently,

E[Y ′
p] − E[Y ′

1] = 2
√

r σT Φ−1(0.52641/p) + errp(p) − err1(p).

For bounded numbers of processors p ≤ pmax the inverse function Φ−1(0.52641/p)

is bounded by Φ−1(0.52641/pmax) = Cmax ≈ 4.4 for pmax = 1, 000, 000. Therefore,

E[Y ′
p] − E[Y ′

1] ≤ 2 Cmax
√

r σT + ∣
∣errp(p)

∣
∣+ |err1(p)|

≤ 2 (1 + ε) Cmax
√

r σT + 2 ε r μT .

The decrease in expected maximum idle time is at least

E
[
Yp − Y1

]− E
[
Y ′

p − Y ′
1

]
≥ (

Rp − 2 ε r
)

μT − 2 (1 + ε) Cmax
√

r σT

> (1 − 2 ε) Rp μT − 2 (1 + ε) Cmax
√

Rp σT ≥ 0

for r < Rp and Rp ≥ 4 (1+ε)2 C2
max

(1−2 ε)2

(
σT
μT

)2
.

This lower bound for Rp does not depend on p (20 ≤ p ≤ pmax), but depends
only on σT and μT . �	

Proposition 6 If Rp > (1 + ε + g) r for some g > 0 and r is sufficiently large, the
expected value of the average idle time (3) is decreased after an AR DLB step, that is,

E
[
Y ′

p − ηX

]
< E

[
Yp − ηX

]
.

Proof Before an AR load balancing step, since E[Yp] ≥ E[X p] = Rp μT as before,
the mean load imbalance is E

[
Yp − ηX

] ≥ (
Rp − r

)
μT .

After the AR step, and using ε from the proof of Proposition 5, the mean load
imbalance becomes

E
[
Y ′

p − ηX

]

= r μT + √
r σT Φ−1(0.52641/p) + errp(p) − rμT

≤ (1 + ε)
(

r μT + √
r σT Φ−1(0.52641/p)

)
− rμT

≤ ε rμT + (1 + ε) Cmax
√

r σT .

Therefore, the difference after the AR step is

E
[
Yp − ηX

]− E
[
Y ′

p − ηX

]
≥ (

Rp − r − ε r
)

μT − (1 + ε) Cmax
√

r σT

> g r μT − (1 + ε) Cmax
√

r σT .

123

Int J Parallel Prog

The expected mean idle time decreases if Rp is sufficiently large, when

Rp > (1 + ε + g) r ≥ (1 + ε + g)

(
(1 + ε) Cmax σT

g μT

)2

.

�	

4.6 Analysis of RP Dynamic Load Balancing

Recall that P1 is the first processor that finishes its tasks and becomes idle. In the
RP algorithm, the idle processor sends requests to randomly chosen processors until a
busy one is found. Assume, without loss of generality, that Pk is the busy processor that
was chosen randomly. Pk has the load of Rk unfinished jobs. The RP load balancing
step moves �Rk/2� jobs from the busy processor Pk to P1. The loads of the processors
other than P1 and Pk are not changed. Pp has the highest load of Rp unfinished jobs
as before. Let X ′

i be the remaining compute time for processor Pi after the RP DLB
step. From the above, X ′

i = Xi for i = 2, . . . , p and i
= k. For the processors P1 and

Pk , the expected values of the compute times are E[X ′
1] = R′

1 μT =
⌊

Rk
2

⌋
μT , and

E[X ′
k] = (

R′
k − 1

2

)
μT =

(⌈
Rk
2

⌉
− 1

2

)
μT .

The above expression accounts for the fact that Pk has one task in progress. Fur-
thermore,

E[X ′
k] − E[X ′

1] =
(

Rk mod 2 − 1

2

)

μT .

The following propositions prove that each RP redistribution step decreases the level
of load imbalance as measured by the metrics (1)–(3).

Proposition 7 The expected value of the algebraic variance of the compute times per
processor (1) decreases after a RP DLB step by

E[ξ2
X] − E[ξ2

X ′] = (M(R))2 − M(R) + V(R)

2(p − 1)
μ2

T .

Proof Assume the probability that the Pk is randomly chosen as a donor processor is
1/(p − 1). The average adjusted number of tasks per processor is the same before and
after RP load balancing, M(R̂) = M(R̂′). The decrease in the algebraic variance of
the adjusted number of tasks is

V(R̂) − V(R̂′) = 1

p − 1

(
(R̂1 − M(R̂))2 − (R̂′

1 − M(R̂))2

+(R̂k − M(R̂))2 − (R̂′
k − M(R̂))2

)
= Rk (Rk − 1)

2 (p − 1)
.

123

Int J Parallel Prog

Lemma 4 and the probability that Pk is randomly chosen as a donor processor provide
the difference between the expected variances of compute times across processors
before and after a RP DLB step

E[ξ2
X] − E[ξ2

X ′] =
p∑

k=2

1

p − 1

(
Rk (Rk − 1)

2 (p − 1)

)

μ2
T = μ2

T

2(p − 1)2

p∑

k=2

(
R2

k − Rk

)

= μ2
T

2(p − 1)2

p∑

k=2

{
(Rk − M(R))2 + (2M(R) − 1) Rk − (M(R))2 }

= (M(R) − 1)2 + (M(R) − 1) + V(R)

2(p − 1)
μ2

T > 0

for M(R) > 1. �	
Proposition 8 The expected value of the largest idle time (2) is not increased after a

RP DLB step, that is, E
[
Y ′

p − Y ′
1

]
≤ E

[
Yp − Y1

]
.

Proof Before the RP load balancing step, the expected maximum imbalance is E[Yp]−
E[Y1] = E[Yp] ≥ E[X p] = R̂p μT .

After the RP load balancing step, the new expected maximum imbalance time is
E[Y ′

p] − E[Y ′
1]. If Pk = Pp has the highest load of Rp, the proof is the same as that

for Proposition 2. Otherwise 1 < k < p. Consider the random variables

Zmin = min{X2, . . . , Xk−1, Xk+1, . . . , X p},
Zmax = max{X2, . . . , Xk−1, Xk+1, . . . , X p} ≤ Yp.

The smallest and the largest order statistics after the RP load balancing step are Y ′
1 =

min{X ′
1, X ′

k, Zmin} and Y ′
p = max{X ′

1, X ′
k, Zmax }. Seven possible combinations of

Y ′
1 and Y ′

p values are considered as in the proof of Proposition 2.

(1) Y ′
1 = Zmin and Y ′

p = Zmax ; (2) Y ′
1 = Zmin and Y ′

p = X ′
k ;

(3) Y ′
1 = Zmin and Y ′

p = X ′
1; (4) Y ′

1 = X ′
k and Y ′

p = Zmax ;
(5) Y ′

1 = X ′
k and Y ′

p = X ′
1; (6) Y ′

1 = X ′
1 and Y ′

p = Zmax ;
(7) Y ′

1 = X ′
1 and Y ′

p = X ′
k .

In Case (1) the balanced times fall between Zmin and Zmax . That the expected max-
imum idle time reduction is greater than or equals to zero is proved the same as for
Case (1) in Proposition 2. The reductions of expected maximum idle times for Cases
(2) to (7) are shown by straightforward verification. Therefore, after a RP DLB step,
the expected maximum time imbalance is always the same or reduced. Note that if
Rp ≥ 2 and r ≥ 1, then the expected maximum time imbalance is always reduced.
This condition is general in load balancing steps. �	
Proposition 9 The expected value of the average idle time (3) is not increased after

a RP DLB step, that is, E
[
Y ′

p − ηX ′
]

≤ E
[
Yp − ηX

]
.

123

Int J Parallel Prog

Proof The decrease in the expected average idle time is

E
[
Yp − ηX

]− E
[
Y ′

p − ηX ′
]

= E
[
Yp
]− E

[
Y ′

p

]

since ηX ′ = ηX .
Consider each of the possible values of Y ′

p separately.

(1) Y ′
p = Zmax : E

[
Yp
]− E

[
Y ′

p

]
= E

[
Yp − Zmax

] ≥ 0;

(2) Y ′
p = X ′

1 : E
[
Yp
]− E

[
Y ′

p

]
≥
[

Rp −
⌊

Rk

2

⌋

− 1

2

]

μT > 0;

(3) Y ′
p = X ′

k : E
[
Yp
]− E

[
Y ′

p

]
≥
[

Rp −
⌈

Rk

2

⌉]

μT ≥ 0.

In the first case Y ′
p = Zmax , Zmax is the same as Yp except when the donor proces-

sor Pk is randomly selected to be the most overloaded processor Pp. Therefore the
expected value of the reduction in the average idle time is zero for most RP load
balancing steps. �	

4.7 Analysis of NR Dynamic Load Balancing

In the NR algorithm, the idle processor sends requests to neighbor processors to
redistribute the remaining jobs on the neighbor processors and itself. Assume that
the number of neighbor processors of the idle processor is k − 1 and changes with
different network topologies. Let P1 be the idle processor that finishes its jobs with its
neighbor processors P2, . . . , Pk . Before the NR load balancing step, each processor
Pi , i = 2, . . . , k, has Ri remaining jobs and a remaining execution time Xi . One job is
in progress with an expected completion time μT /2 and Ri −1 jobs are queued. Let b =(∑k

i=1 Ri

)
mod k M̃(R) = 1

k

∑k
i=1 Ri , r = ⌊

M̃(R)
⌋ = M̃(R)− b

k , and r̂ = r − 1
2 .

The new number of jobs that the NR algorithm assigns to processor Pi is

R′
i =

⎧
⎨

⎩

r, i = 1, . . . , k − b,

r + 1, i = k − b + 1, . . . , k,

Ri , i = k + 1, . . . , p.

Let X ′
i denote the execution time of the jobs on Pi after the NR step. The expected

value of X ′
i is

E[X ′
i] =

⎧
⎪⎪⎨

⎪⎪⎩

r μT , if i = 1,

r̂ μT , if i = 2, . . . , k − b,

(̂r + 1) μT , if i = k − b + 1, . . . , k.

R̂i μT , if i = k + 1, . . . , p.

Define M̃(R̂) = 1
k

∑k
i=1 R̂i , Ṽ(R̂) = 1

k−1

∑k
i=1

(
R̂i − M̃(R̂)

)2
.

123

Int J Parallel Prog

Proposition 10 The expected algebraic variance (1) of X ′ is smaller than the expected
algebraic variance of X after an NR DLB step, that is, E[ξ2

X ′] < E[ξ2
X], assuming

Ṽ(R̂) > 1/4.

Proof Since R′
i = Ri for i = k + 1, . . . , p,

V(R̂) − V(R̂′) = 1

p − 1

{
k∑

i=1

(
R̂i
)2 −

k∑

i=1

(
R̂′

i

)2

}

= k − 1

p − 1

(
Ṽ(R̂) − Ṽ(R̂′)

)
.

Proposition 4 provides the algebraic variance of the modified number of jobs after
the NR load balancing step, since it is the same as the AR load balancing step for Pi

where i = 1, . . . , k.

Ṽ(R̂′) = 1

k − 1

k∑

i=1

(
R̂′

i − M̃(R̂′)
)2 = k (4b + 1) − (2b + 1)2

4 k (k − 1)
≤ 1

4
.

for 0 ≤ b ≤ k −1. Finally the decrease in the expected value of the algebraic variance
of the compute times is

E
[
ξ2

X

]
− E

[
ξ2

X ′
]

≥ k − 1

p − 1

(

Ṽ(R̂) − 1

4

)

μ2
T .

�	
Proposition 11 The expected value of the largest idle time (2) is monotonically

decreased after a NR DLB step, that is, E
[
Y ′

p − Y ′
1

]
≤ E

[
Yp − Y1

]
.

Proof Before the NR load balancing step the expected maximum imbalance is

E[Yp] − E[Y1] = E[Yp] ≥ E[X p] = R̂p μT .

After the NR load balancing step, the new expected maximum imbalance time is
E[Y ′

p] − E[Y ′
1]. Consider the random variables

Zmin = min{X ′
1, . . . , X ′

k}, Zmax = max{X ′
1, . . . , X ′

k} ≤ max{X1, . . . , Xk} ≤ Yp ,

Wmin = min{X ′
k+1, . . . , X ′

p} ≥ Y1 = 0 , Wmax = max{X ′
k+1, . . . , X ′

p} ≤ Yp.

The smallest and the largest order statistics after NR balancing are Y ′
1 = min{Zmin,

Wmin} and Y ′
p = max{Zmax , Wmax }. There are four possible combinations of Y ′

1 and
Y ′

p values:

(1) Y ′
1 = Zmin and Y ′

p = Wmax ; (2) Y ′
1 = Wmin and Y ′

p = Wmax ;
(3) Y ′

1 = Zmin and Y ′
p = Zmax ; (4) Y ′

1 = Wmin and Y ′
p = Zmax .

123

Int J Parallel Prog

Case (1) : {E[Yp] − E[Y1]} − {E[Y ′
p] − E[Y ′

1]}
= {E[Yp] − E[Wmax]} + E[Zmin] ≥ E[Zmin] ≥ 0.

Case (2) : {E[Yp] − E[Y1]} − {E[Y ′
p] − E[Y ′

1]}
= {E[Yp] − E[Wmax]} + E[Wmin] ≥ 0.

Case (3) : {E[Yp] − E[Y1]} − {E[Y ′
p] − E[Y ′

1]}
= {E[Yp] − E[Zmax]} + E[Zmin] ≥ 0.

Case (4) : {E[Yp] − E[Y1]} − {E[Y ′
p] − E[Y ′

1]}
= {E[Yp] − E[Zmax]} + E[Wmin] ≥ 0.

�	
Proposition 12 The expected value of the average idle time (3) does not increase after

a NR load balancing step, that is, E
[
Y ′

p − ηX ′
]

≤ E
[
Yp − ηX

]
.

Proof The decrease in the expected average idle time is (since ηX ′ = ηX by
Lemma 1)

E
[
Yp − ηX

]− E
[
Y ′

p − ηX ′
]

= E
[
Yp
]− E

[
Y ′

p

]
.

From the proof of Proposition 11,

Y ′
p = max{Zmax , Wmax } ≤ Yp.

Therefore, E
[
Yp
]− E

[
Y ′

p

]
≥ 0. �	

5 Theoretical and Experimental Results

This section provides theoretical and experimental load balancing results with the
budding yeast cell cycle model. To evaluate the four load balancing algorithms, the
ensemble of simulations is executed on Virginia Tech’s System X supercomputer [33].
The supercomputer has 1,100 Apple PowerMac G5 nodes, with dual 2.3 GHz PowerPC
970FX processors and 4GB memory.

5.1 Stochastic Simulation of the Budding Yeast Cell Cycle Model

The cycle of cell growth, DNA synthesis, mitosis, and cell division is the fundamental
process by which cells grow, develop, and reproduce. The molecular machinery of
eukaryotic cell cycle control is known in more detail for budding yeast, Saccharomyces
cerevisiae, than for any other organism. Therefore, the unicellular budding yeast is an
excellent organism for which to study cell cycle regulation.

We have implemented a stochastic model for the budding yeast cell cycle [1,36]
based on the original model of Chen et al. [8]. Gillespie’s SSA [14] is executed on
the cell cycle model. To accurately mimic the experimental protocol, we choose cells

123

Int J Parallel Prog

Fig. 4 Multistage cell cycle tracking diagram. ID is the cell identification tag. Cell modeling simulations
should be executed beginning at each cell emergence time

from a specific distribution of initial conditions, and simulate all of their progeny.
Existing stochastic simulators based on the Gillespie’s SSA treat one system with one
initial molecular state vector. To simulate all of the progeny, whose initial states are
different, multicycle cell lineage tracking is needed, as illustrated in Fig. 4. Biologists
are interested in the number of cells in existence at a specific final time. The algorithm
for the multistage cell cycle implementation is described in detail in [2].

5.2 Numerical Evaluation of Static Distribution

To assess how well the theoretical estimates of load imbalance metrics agree with the
simulation results, consider the case with n = 1, 000 cell cycle simulations distributed
evenly across p = 25 processors, which results in R = 40 tasks per processor. To
evaluate probabilistic measures the expected maximum CPU time E[Yp] and minimum
CPU time E[Y1] can be calculated in two ways: the integral method (14a)–(14b)
and the approximation method (6a)–(6b). E[Yp] = 20, 973 and E[Y1] = 18, 075
calculated from the integral method are similar to the approximation method results
of E[Yp] = 20, 965 and E[Y1] = 18, 083. Results from both methods match the
experimental results in Table 1.

Probabilistic measures (1)–(3) of load imbalance are the root expected algebraic
variance of times across the processors,

√
E
[
ξ2

X

] =
√

p

p − 1
· R · σ 2

T ≈ 752.65 seconds,

123

Int J Parallel Prog

Table 1 Average, maximum, minimum, RAV (square root of the algebraic variance) of compute times,
maximum idle time, and average (percentage) idle time for wild-type cell simulations

Metrics Static MD AR RP NR

1,000 Runs (25 processors)
Avg comp. time 19,524 19,362 19,277 19,515 19,578

Max comp. time 20,795 19,781 19,709 19,836 19,931

Min comp. time 18,055 19,084 19,033 19,254 19,175

RAV comp. time 680 195 172 150 210

Max idle time 2,740 697 676 582 756

Avg idle time 1,271 419 432 321 352

Idle time (%) 6.5 2.2 2.2 1.7 1.8

Theoretical E[
√

ξ2
X] 753 240 198 220 241

10,000 Runs (100 processors)

Avg comp. time 47,880 47,778 48,039 47,991 48,020

Max comp. time 51,050 48,289 48,413 48,412 48,556

Min comp. time 44,431 47,354 47,802 47,725 47,643

RAV comp. time 1,272 196 154 187 227

Max idle time 6,619 935 611 687 914

Avg idle time 3,170 511 374 421 536

Idle time (%) 6.6 1.1 0.8 0.9 1.1

Theoretical E[
√

ξ2
X] 1,176 229 198 297 378

The static and the four explored load balancing approaches are compared by results from both a small and
a large ensemble. Units are seconds

the expected worst case load imbalance,

E[Yp] − E[Y1] ≈ 2, 898 seconds,

and the expected idle time per processor,

E
[
Yp − ηX

] ≈ 1, 449 seconds.

In the simulation experiment based on 1,000 simulations with fa static distribu-
tion over 25 processors, the root algebraic variance of CPU times is 679.83 s, the
maximum load imbalance Yp − Y1 is 2,740.42 s, and the average CPU idle time
(1/p)

∑p
i=1(Yp − Xi) = 1, 270.75 s. The theoretical probabilistic measures of load

imbalance are consistent with the simulation experiment values.

5.3 Numerical Evaluation of Theoretical Analysis for the Load Balancing
Algorithms

In this section, the approximations employed in the theoretical analysis of the four
different dynamic load balancing algorithms are compared to the experimental results
numerically. Figure 5a–d compare the theoretical root expected algebraic variance of

123

Int J Parallel Prog

(a) (b)

(c) (d)

(e) (f)

(h)(g)

Fig. 5 Numerical comparison of the experimental RAV to the theoretical root expected algebraic variance
of compute times across the processors for the four load balancing algorithms. 1,000 runs with 25 processors
for a–d and 10,000 runs with 100 processors for e–h, a MD load balancing, b AR load balancing, c RP
load balancing, d NR load balancing, e MD load balancing, f AR load balancing, g RP load balancing, h
NR load balancing

123

Int J Parallel Prog

compute times across the processors for each load balancing step to the experimental
square root of the algebraic variance (RAV) with n = 1, 000 tasks on p = 25 proces-
sors. To investigate in the case of many tasks on many processors, the theoretical and
experimental results of n = 10, 000 tasks on p = 100 processors are considered in
Fig. 5e–h.

The numerical reduction of the expected algebraic variance of the compute times
across the processors before and after a load balancing step is quantified in Propositions
1, 4, 7, and 10 for each load balancing algorithm. In the MD analysis, Proposition 1
provides that the numerical root expected algebraic variance of the compute times
across the processors after a load balancing step that is

√
E[ξ2

X ′] =
√

E[ξ2
X] − Rp (Rp − 1)

2 (p − 1)
μ2

T .

In the AR analysis, Proposition 4 provides that

√
E[ξ2

X ′] =
√

E[ξ2
X] − (

V(R̂) − V(R̂′)
)
μ2

T

where V(R̂′) = p (4b+1)−(2b+1)2

4 p (p−1)
.

In the RP analysis, Proposition 7 provides that

√
E[ξ2

X ′] =
√

E[ξ2
X] − (M(R))2 − M(R) + V(R)

2(p − 1)
μ2

T .

In the NR analysis, Proposition 10 provides that

√
E[ξ2

X ′] =
√

E[ξ2
X] − k − 1

p − 1

(
Ṽ(R̂) − Ṽ(R̂′)

)
μ2

T

where Ṽ(R̂′) = k (4b+1)−(2b+1)2

4 k (k−1)
. Figure 5 shows that the variance decreases con-

sistently on each iteration as predicted by the theory for all load balancing cases.
Table 1 shows the final root expected algebraic variance of the compute times versus
experimental root of the algebraic variance across the processors. As expected, the
theoretical values are larger than experimental results since the theory provides upper
bounds for the metric (1).

5.4 Load Balancing Results for Wild-Type Yeast

This section describes load balancing results for the wild-type and a prototype mutant
budding yeast cell cycle models. 1,000 simulations with 25 processors and 10,000
simulations with 100 processors are executed for these experiments. With the static
distribution of the wild-type simulations, the variance of the CPU times is not huge
because wild-type cells divide in a relatively regular fashion. The simulation time is

123

Int J Parallel Prog

Fig. 6 The average idle CPU times comparison for the static distribution and the final step of the load
balancing methods

just affected by the stochastic nature of the SSA. Nevertheless, the four DLB methods
reduce the wall clock time compared to the static method; the differences are approx-
imately 1,000 s (4.9 % of static distribution wall clock time) for 1,000 runs with 25
processors, and 2,800 s (5.4 % of static distribution wall clock time) for 10,000 runs
with 100 processors. Table 1 demonstrates the efficiency of the four DLB algorithms
clearly.

For the static load balancing case of the prototype mutant simulations, the variance
of compute times is huge because of the characteristics of mutant simulations. The
DLB algorithms reduce the wall clock times by approximately 26 % for 1,000 runs
with 25 processors, and by approximately 21 % for 10,000 runs with 100 processors.
The four DLB algorithms lead to greater improvements for the mutant than for the
wild-type simulations. Appendix C shows detailed experimental results of the mutant
simulations.

Figure 6 compares the average idle CPU times for the static and four DLB algo-
rithms. For the wild-type simulations, the DLB algorithms have eliminated approx-
imately two thirds of the idle time for 25 processors (from 6.5 % of the total CPU
time down to 2 % of the total CPU time), and roughly 85 % for the 100 processor
experiment (from 7 % of the total CPU time down to 1 % of the total CPU time).

The communication time for the load balancing methods should be considered. The
total communication times for the four DLB algorithms are approximately 0.2 s for
1,000 runs with 25 processors and 1.0 s for 10,000 runs with 100 processors. Therefore,
the total communication time for the DLB is negligible compared to elapsed wall clock
time. The centralized and decentralized DLB algorithms have similar performance for
these simulations without considering scalability.

5.5 Load Balancing Results for Mutant Yeast

This section presents experimental results for a prototype budding yeast mutant cell
cycle model. For the mutant strain considered, the initial cell might never divide at
all or it might divide several times and then cease division [8]. Therefore, the CPU
time to simulate such a mutant cell varies, even if the end time of the simulation is
fixed. For these simulations, the four dynamic load balancing algorithms show huge
advantages in CPU utilization.

123

Int J Parallel Prog

(a) (b) (c) (d)

(h)

(e)

(j)(i)(f) (g)

Fig. 7 Elapsed compute times per processor (diamond marker) and wall clock time (solid line) of prototype
mutant multistage cell cycle simulations. 1,000 runs with 25 processors for a–e and 10,000 runs with 100
processors for f–j. Small grey rectangular height represents each job time for the processor, a Static b MD
DLB, c AR DLB, d RP DLB, e NR DLB, f Static, g MD DLB, h AR DLB, i RP DLB, j NR DLB

Figure 7 shows the overall wall clock times per processor. Figure 7a–e show results
for 1,000 runs with 25 processors and Fig. 7f–j show results for 10,000 runs with 100
processors. For the static load balancing case, the variance of compute times is huge
because of the characteristics of mutant simulations. The DLB algorithms reduce the
wall clock times by approximately 26 % for 1,000 runs with 25 processors, and by
approximately 21 % for 10,000 runs with 100 processors. The four DLB algorithms
lead to greater improvements for the mutant than for the wild-type simulation.

Table 2 also shows the improved efficiency of the four DLB algorithms compared
to a static method. Statements similar to those for Table 1 can be made about Table 2,
but the differences for mutant simulation are considerably more pronounced than for
wild-type simulation. Average processor idle time was reduced by 85 % or more for
each dynamic algorithm and on each ensemble (from 30 % of the total CPU time down
to only 4 % of the total CPU time).

6 Conclusions and Future Work

This paper introduces a new probabilistic framework to analyze the effectiveness of
load balancing strategies in the context of large ensembles of stochastic simulations.
Ensemble simulations are employed to estimate the statistics of possible future states
of the system, and are widely used in important applications such as climate change
and biological modeling. The present work is motivated by stochastic cell cycle mod-
eling, but the proposed analysis framework can be directly applied to any ensemble
simulation where many tasks are mapped onto each processor, and where the task
compute times vary considerably.

The analysis assumes only that the compute times of individual tasks can be modeled
as independent identically distributed random variables. This is a natural assumption
for an ensemble computation, where the same model is run repeatedly with different
initial conditions and parameter values. No assumption is made about the shape of the

123

Int J Parallel Prog

Table 2 Average, maximum, minimum, RAV (square root of the algebraic variance) of compute times,
maximum idle time, and average (percentage) idle time for mutant cell simulations

Metrics Static MD AR RP NR

1,000 Runs (25 processors)
Avg comp. time 6,079 5,612 5,740 6,090 6,044

Max comp. time 8,054 5,922 5,965 6,387 6,333

Min comp. time 3,995 5,417 5,554 5,921 5,865

RAV comp. time 943 165 118 125 150

Max idle time 4,059 505 411 466 468

Avg idle time 1,975 310 225 297 289

Idle time (%) 32.5 5.5 3.9 4.9 4.8

10,000 Runs (100 processors)

Avg comp. time 13,921 14,042 13,990 13,911 13,927

Max comp. time 18,038 14,617 14,606 14,371 14,466

Min comp. time 8,950 13,801 13,815 13,767 13,545

RAV comp. time 1,695 193 164 137 229

Max idle time 9,088 815 791 604 921

Avg idle time 4,117 575 616 460 539

Idle time (%) 29.6 4.1 4.4 3.3 3.9

The static and the four explored load balancing approaches are compared by results from both a small and
a large ensemble. Units are seconds

underlying probability density; therefore the analysis is widely applicable. The level
of load imbalance, as given by well defined metrics, is also a random variable. The
analysis focuses on determining the decrease in the expected value of load imbalance
after each work redistribution step. The analysis is applied to the four dynamic load
balancing strategies. The analysis reveals that the expected level of load imbalance is
monotonically decreased after one step of each of the algorithms.

Numerical results support the theoretical analysis. On an ensemble of budding yeast
cell cycle simulations, compute times required to simulate each cell cycle progression
using Gillespie’s algorithm are inherently variable due to the stochastic nature of the
model. Dynamic load balancing reduces the total compute (wall clock) times by about
5 % for ensembles of wild type cells, and by about 25 % for ensembles of mutant cells.
Average processor idle time is reduced by 85 % or more for ensembles of mutant cells,
which have widely varying running times.

An interesting direction that will be investigated in the future is to use the pro-
posed analysis framework to design improved dynamic load balancing algorithms
(and perhaps even optimal algorithms with respect to certain load balancing metrics).
Scalability, not investigated here, will also be analyzed in the future. Since the cen-
tralized load balancing algorithms are not expected to scale well, the results of our
analysis showing global improvements by the local load balancing algorithms in espe-
cially significant. Finally, a challenging problem is to analyze load balancing for large
ensemble runs with different models, where the i.i.d. assumption does not hold.

123

Int J Parallel Prog

Acknowledgments The authors thank the two anonymous reviewers whose comments helped improve
this work. This work is supported in part by awards NIGMS/NIH 5 R01 GM078989, AFOSR FA9550-
09-1-0153, NSF DMS-0540675, NSF CCF-0916493, NSF OCI-0904397, NSF DMS-1225160, and NSF
CCF-0953590.

References

1. Ahn, T.-H., Watson, L., Cao, Y., Shaffer, C., Baumann, W.: Cell cycle modeling for budding yeast with
stochastic simulation algorithms. Comput. Model. Eng. Sci. 51(1), 27–52 (2009)

2. Ball, D., Ahn, T.-H., Wang, P., Chen, K., Cao, Y., Tyson, J., Peccoud, J., Baumann, W.: Stochastic
exit from mitosis in budding yeast: model predictions and experimental observations. Cell Cycle 10,
999–1099 (2011)

3. Bast, H.: Dynamic scheduling with incomplete information. In: Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA ’98), pp. 182–191. ACM, New York,
NY, USA (1998)

4. Bast, H.: Provably Optimal Scheduling of Similar Tasks. Ph.D. thesis, Universitat des Saarlandes
(2000)

5. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall,
Upper Saddle River (1989)

6. Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by work stealing. In: Proceedings
of Annunal Symposyum on Foundations of Computer Science, pp. 356–368 (1994)

7. Chen, C.C., Tyler, C.: Accurate approximation to the extreme order statistics of Gaussian samples.
Commun. Stat. Simul. Comput. 28(1), 177–188 (1999)

8. Chen, K., Calzone, L., Csikasz-Nagy, A., Cross, F., Novak, B., Tyson, J.: Integrative analysis of cell
cycle control in budding yeast. Mol. Biol. Cell 15(8), 3841–3862 (2004)

9. Chu, W., Holloway, L., Lan, M.T., Efe, K.: Task allocation in distributed data processing. Computer
13(11), 57–69 (1980)

10. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J. Parallel Distrib.
Comput. 7, 279–301 (1989)

11. David, H., Nagaraja, H.: Order Statistics, 2nd edn. Wiley, Hoboken (2003)
12. Dijkstra, E., Scholten, C.: Termination detection for diffusing computations. Inf. Process. Lett. 11(1),

1–4 (1980)
13. Flynn, L., Hummel, S.: The Mathematical Foundations of the Factoring Scheduling Method. Tech.

rep., IBM Research, Report RC18462 (1992)
14. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–

2361 (1977)
15. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Computing, 2nd edn. Addison-

Wesley, Boston (2002)
16. Hagerup, T.: Allocating independent tasks to parallel processors: An experimental study. J. Par-

allel Distrib. Comput. 47(2), 185–197 (1997). http://www.sciencedirect.com/science/article/pii/
S0743731597914118

17. Hillis, W.: The Connection Machine. MIT Press, Cambridge (1986)
18. Hummel, S., Schonberg, E., Flynn, L.: Factoring: a practical and robust method for scheduling parallel

loops. Commun. ACM 35(8), 90–101 (1992)
19. Iqbal, M., Saltz, J., Bokhari, S.: A comparative analysis of static and dynamic load balancing strategies.

ACM Perform. Eval. Revis. 11(1), 1040–1047 (1985)
20. Jacob, J., Lee, S.Y.: Task spreading and shrinking on a network of workstations with various edge

classes. In: Proceedings of the 1996 International Conference on Parallel Processing, vol. 3, pp. 174–
181 (1996)

21. Karp, R., Zhang, Y.: Randomized parallel algorithms for backtrack search and branch-and-bound
computation. J. ACM 40, 765–789 (1993)

22. Kruskal, C., Weiss, A.: Allocating independent subtasks on parallel processors. IEEE Trans. Softw.
Eng. SE-11(10), 1001–1016 (1985)

23. Lester, B.: The Art of Parallel Programming. Prentice-Hall, Upper Saddle River (1993)
24. Lucco, S.: A dynamic scheduling method for irregular parallel programs. SIGPLAN Not. 27(7), 200–

211 (1992)

123

http://www.sciencedirect.com/science/article/pii/S0743731597914118
http://www.sciencedirect.com/science/article/pii/S0743731597914118

Int J Parallel Prog

25. McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. 94, 814–
819 (1997)

26. Murphy, J., Sexton, D., Barnett, D., Jones, G., Webb, M., Collins, M., Stainforth, D.: Quantification
of modelling uncertainties in a large ensemble of climate change simulations. Nature 430, 768–772
(2004)

27. Polychronopoulos, C., Kuck, D.: Guided self-scheduling: a practical scheduling scheme for parallel
supercomputers. IEEE Trans. Comput. 36, 1425–1439 (1987)

28. Powley, C., Ferguson, C., Korf, R.: Depth-first heuristic search on a SIMD machine. Artif. Intell. 60(2),
199–242 (1993)

29. Randles, M., Lamb, D., Taleb-Bendiab, A.: A comparative study into distributed load balancing algo-
rithms for cloud computing. In: 2010 IEEE 24th International Conference on Advanced Information
Networking and Applications Workshops (WAINA), pp. 551–556 (2010)

30. Ren, X., Lin, R., Zou, H.: A dynamic load balancing strategy for cloud computing platform based on
exponential smoothing forecast. In: 2011 IEEE International Conference on Cloud Computing and
Intelligence Systems (CCIS), pp. 220–224 (2011)

31. Rice, J.: Mathematical Statistics and Data Analysis, 3rd edn. Duxbury Press, Belmont (2001)
32. Rudolph, L., Slivkin-Allalouf, M., Upfal, E.: A simple load balancing scheme for task allocation in

parallel machines. In: Proceedings of the Third Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA ’91), pp. 237–245. ACM, New York, NY, USA (1991)

33. System X Supercomputer. http://www.arc.vt.edu/arc/SystemX/
34. Shavit, N., Francez, N.: A new approach to detection of locally indicative stability. In: Proceedings

of the 13th International Colloquium on Automata, Languages and Programming (ICALP ’86), pp.
344–358. Springer, London (1986)

35. Trivedi, K.: Probability and Statistics with Reliability, Queueing, and Computer Science Applications,
2nd edn. Wiley, Hoboken (2001)

36. Wang, P., Randhawa, R., Shaffer, C., Cao, Y., Baumann, W.: Converting macromolecular regulatory
models from deterministic to stochastic formulation. In: Proceedings of the 2008 Spring Simulation
Multiconference (SpringSim’08), High Performance Computing Symposium (HPC-2008), pp. 385–
392. Society for Computer Simulation International, San Diego, CA, USA (2008)

37. Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications Using Networked Work-
stations and Parallel Computers, 2nd edn. Prentice-Hall, Upper Saddle River (2004)

38. Xu, C.Z., Lau, F.C.M.: Analysis of the generalized dimension exchange method for dynamic load
balancing. J. Parallel Distrib. Comput. 16(4), 385–393 (1992)

39. Zhang, Z., Zhang, X.: A load balancing mechanism based on ant colony and complex network theory
in open cloud computing federation. In: 2010 2nd International Conference on Industrial Mechatronics
and Automation (ICIMA), vol. 2, pp. 240–243 (2010)

123

http://www.arc.vt.edu/arc/SystemX/

	A Framework to Analyze the Performance of Load Balancing Schemes for Ensembles of Stochastic Simulations
	Abstract
	1 Introduction
	2 Load Balancing Algorithms
	2.1 Motivation
	2.2 Most-Dividing (MD) Algorithm
	2.3 All-Redistribution (AR) Algorithm
	2.4 Random-Polling (RP) Algorithm
	2.5 Neighbor-Redistribution (NR) Algorithm

	3 The Analysis Framework
	3.1 Assumptions for the Analysis
	3.2 Metrics of Load Imbalance
	3.3 Variability in Compute Times Per Cell

	4 Analysis of the Dynamic Load Balancing Algorithms
	4.1 Order Statistics
	4.2 Some Useful Results for Load Balancing
	4.3 Analysis of Static Distribution
	4.4 Analysis of MD Dynamic Load Balancing
	4.5 Analysis of AR Dynamic Load Balancing
	4.6 Analysis of RP Dynamic Load Balancing
	4.7 Analysis of NR Dynamic Load Balancing

	5 Theoretical and Experimental Results
	5.1 Stochastic Simulation of the Budding Yeast Cell Cycle Model
	5.2 Numerical Evaluation of Static Distribution
	5.3 Numerical Evaluation of Theoretical Analysis for the Load Balancing Algorithms
	5.4 Load Balancing Results for Wild-Type Yeast
	5.5 Load Balancing Results for Mutant Yeast

	6 Conclusions and Future Work
	Acknowledgments
	References

