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Abstract

We describe a binding schema markup language (BSML) for describing data interchange between scientific codes.
Such a facility is an important constituent of scientific problem solving environments (PSEs). BSML is designed
to integrate with a PSE or application composition system that views model specification and execution as a
problem of managing semistructured data. The data interchange problem is addressed by three techniques for
processing semistructured data: validation, binding, andconversion. We present BSML and describe its applica-
tion to a PSE for wireless communications system design.

1 Introduction

Problem solving environments (PSEs) are high-level software systems for doing computational science. A simple
example of a PSE is the Web PELLPACK system [20] that addresses the domain of partial differential equations
(PDEs). Web PELLPACK allows the scientist to access the system through a Web browser, define PDE problems,
choose and configure solution strategies, manage appropriate hardware resources (for solving the PDE), and visualize
and analyze the results. The scientist thus communicates with the PSE in the vernacular of the problem, ‘not in the
language of a particular operating system, programming language, or network protocol’ [16]. It is 10 years since
the goal of creating PSEs was articulated by an NSF workshop (see [16] for findings and recommendations). From
providing high-level programming interfaces for widely used software libraries [22], PSEs have now expanded to
diverse application domains such as wood-based compositesdesign [18], aircraft design [17], gas turbine dynamics
simulation [15], and microarray bioinformatics [4].

The basic functionalities expected of a PSE include supporting the specification, monitoring, and coordination
of extended problem solving tasks. Many PSE system designs employ thecompositional modelingparadigm, where
the scientist describes data-flow relationships between codes in terms of a graphical network and the PSE manages
the details of composing the application represented by thenetwork. Compositional modeling is not restricted to
such model specification and execution but can also be used asan aid in performance modeling of scientific codes [2]
(model analysis).

We view model specification and execution as a data management problem and describe how a semistructured
data model can be used to address data interchange problems in a PSE. Section 1.1 presents a motivating PSE sce-
nario that will help articulate needs from a data managementperspective. Section 2 elaborates on these ideas and
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briefly reviews pertinent related work. In particular, it identifies three basic levels of functionality—validation, bind-
ing, and conversion—at which data interchange in application composition can be studied. Sections 3, 4, and 5 de-
scribe our specific contributions along these dimensions, in the form of a binding schema markup language (BSML).
Section 6 outlines how these ideas can be integrated within an existing PSE system design. A concluding discus-
sion is provided in Section 7. Aspects of the scenario described next will be used throughout this paper as running
examples.

1.1 Motivating Example

S4W (Site-Specific System Simulator for Wireless system design) is a PSE being developed at Virginia Tech. S4W
provides deterministic electromagnetic propagation and stochastic wireless system models for predicting the perfor-
mance of wireless systems in specific environments, such as office buildings. S4W is also designed to support the
inclusion of new models into the system, visualization of results produced by the models, integration of optimiza-
tion loops around the models, validation of models by comparison with field measurements, and management of the
results produced by a large series of experiments. S4W permits a variety of usage scenarios. We will describe one
scenario in detail.

A wireless design engineer uses S4W to study transmitter placement in an indoor environment located on the
fourth floor of Durham Hall at Virginia Tech. The engineeringgoal is to achieve a certain performance objective
within the given cost constraints. For a narrowband system,power levels at the receiver locations are good indicators
of system performance. Therefore, minimizing the (spatial) average shortfall of received power with respect to
some power threshold is a meaningful and well defined objective. The major cost constraints are the number of
transmitters and their powers. Different transmitter locations and powers yield different levels of coverage. The
situation is more complicated in a wideband system, but roughly the same process applies. A wideband system
includes extra hardware not present in a narrowband system and the performance objective is formulated in terms of
the bit error rate (BER), not just the power level.

The first step in this scenario is to construct a model of signal propagation through the wireless communications
channel. S4W provides ray tracing as the primary mechanism to model site-specific propagation effects such as
transmission (penetration), reflection, and diffraction.The second step is to take into account antenna parameters
and system resolution. These two steps are often sufficient to model the performance of a narrowband system.
If a wideband system is being considered, the third step is toconfigure the specific wireless system. Parameters
such as the number of fingers of the rake receiver and forward error correction codes are considered at this step.
S4W provides a Monte-Carlo simulation of a WCDMA (wideband code division multiple access) family of wireless
systems. In either case, the engineer configures a graph of computational components as shown in Fig. 1. The ovals
correspond to computational components drawn from a mix of languages and environments. Hexagons enclose
input and output data. Aggregation is used to simplify the interfaces of the components to each other and to the
optimizer. In Fig. 1, rectangles represent aggregation. The propagation model is a component that consists of three
connected subcomponents: triangulation, space partitioning, and ray tracing. Similarly, the wireless system model
consists of (roughly) three components: data encoding, channel modeling, and signal decoding. All three steps are
further aggregated into a complete site-specific system model. This model is then used in an optimization loop.
The optimizer changes transmitter parameters (all other parameters remain fixed) and receives feedback on system
performance.

For a given environment definition in AutoCAD, the triangulation and space partitioning components are used
to reduce the number of geometric intersection tests that will be performed by the ray tracer. Several iterations
over space partitioning are necessary to achieve acceptable software performance. However, once the objective (an
average of ten triangles per voxel) is met, the space partitioning can be reused in all future experiments with this
environment. The engineer then configures the ray tracer to only capture reflection and transmission (penetration)
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Figure 1: A site-specific system model in S4W. The system model consists of a propagation model, an antenna
model (post processing), and a wireless system model.
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Figure 2: Optimizing placement of three transmitters to cover eighteen rooms and a corridor bounded by the box
in the upper left corner. The bounds for the placement of three transmitters are drawn with dotted lines. The initial
transmitter positions are marked with crosses. The optimumcoverage transmitter positions are marked with dots.

effects. Although diffraction and scattering are important in indoor propagation [5], these phenomena are computa-
tionally expensive to model in an optimization loop. The triangulation and space partitioning codes are meant for
serial execution, whereas the ray tracer and the Monte Carlowireless system models run on a 200 node Beowulf
cluster of workstations. Post processing is available in both serial and parallel versions. The ray tracer and the post
processor are written in C, whereas the WCDMA simulation is available in Matlab and Fortran 95 versions.

A series of experiments is performed for various choices of antenna patterns, path loss parameters (influenced by
material properties), and WCDMA system parameters. The predicted power delay profiles (PDPs) are then compared
with the measurements from a channel sounder and the predicted bit error rates are compared with the published
data. The parameters of the propagation model are calibrated for various locations. The validated propagation and
wireless system models are finally enclosed in an optimization loop to determine the locations of transmitters that
will provide adequate performance for a region of interest.The optimizer, written in Fortran 95, uses the DIviding
RECTangles (DIRECT) algorithm of Jones et al. [19]. The parameters to the optimization problem and the optimal
transmitter placement are depicted in Fig. 2. The optimizerdecided to move the transmitter in the upper right corner
one room to the right of its initial position and the transmitter in the lower left corner two rooms to the right of its
initial position.

What requirements can we abstract from this scenario and howcan they be flexibly supported by a data model?
We first observe the diversity in the computational environment. Component codes are written in different languages
and some of them are meant for parallel execution. In a research project such as S4W, many components are under
active development, so their I/O specifications change overtime. Second, the interconnection among components
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is also flexible. Optimizing for power coverage and optimizing for bit error rate, while having similar motivations,
require different topologies of computational components. Third, since different groups of researchers are involved
in the project, there exists significant cognitive discordance among vocabularies, data formats, components, and
even methodologies. For example, ray tracing models represent powers in a power delay profile in dBm (log scale).
However, WCDMA models work with a normalized linear scale impulse response and an aggregate called the
‘energy-to-noise ratio.’ Also, there is more than one way ofcalculating the energy-to-noise ratio. Since antennas
generate noise that depends on their parameters, detailed antenna descriptions are necessary to calculate this ratio.
However, researchers who are not concerned with antenna design seldom model the system at this level of detail.
The typical practice is to use a fixed noise level in the calculations. Simulations of wireless systems abound in such
approximations, ad hoc conversions, and simplifying assumptions.

2 PSE Requirements for Data Interchange

Culling from the above scenario, we arrive at a more formal list of data interchange requirements for application
composition in a PSE. The PSE must support:

1. components in multiple languages (C, FORTRAN, Matlab, SQL);

2. changes in component interfaces;

3. changes in interconnections among components;

4. automatic unit conversion in data-flows;

5. user-defined conversion filters;

6. composition of components with slightly different interfaces; and

7. stream processing.

The reader might be surprised that SQL is listed alongside FORTRAN, but both languages are used in S4W.
Experiment simulations are written in procedural languages, while experiment data is stored in a relational database.
Thus, developing a system that integrates with the PSE environment requires more than the ability to link scientific
computing languages. It involves overcoming the impedancemismatch between languages developed for fundamen-
tally different purposes.

The last requirement above is related to composability—theability to create arbitrary component topologies. As
data interchange is pushed deeper into the computation, theunit of data granularity needs to become correspondingly
smaller. The optimization loop is a good example of fine data granularity. We cannot accumulate all transmitter pa-
rameters over all iterations and later convert them to the format required by the simulation inside the loop, because
transmitter parameters generated by the optimizer depend on the feedback computed by the simulation. Each block
of transmitters must be processed as soon as it is available.Likewise, each value of the objective function must be
made available to the optimizer before it can produce the next block of transmitters. Usability dictates a similar
requirement. Since some models are computationally expensive (e.g., those meant for parallel execution), incre-
mental feedback should be provided to the user as early as possible. The stream processing requirement improves
composability and usability, but limits conversions to being local. Global conversions (e.g., XSLT [13]) cannot be
performed because they assume that all the data is availableat once.

While the requirements point to a semistructured data model, no currently available data management system
supports all forms of PSE functionality. This paper presents the prototype of such a system in the form of a markup
language. Observe that all of the above requirements are summarized by three standard techniques for working
with semistructured data—validation, binding, and conversion. Validation establishes data conformance to a given
schema. It is a prerequisite to most of the requirements.Binding refers to integrating semistructured data with
languages that were designed for different purposes (requirement 1). Conversion(transformation) takes care of
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requirements 2–6. Given two slightly different schemas, itis possible to generate anedit script [11] that converts
data instances from one schema to another. Requirement 7 dictates that all such conversions must be local.

2.1 Related Work

While research in PSEs covers a broad territory, the use of semistructured data representations in computational
science is not established beyond a few projects. Therefore, we only survey standard XML technologies and PSE-
like systems that make (some) use of semistructured data. Itwould be unfair to review some of these systems against
PSE data interchange requirements. Instead, our evaluation is based on how well these systems support validation,
binding, conversion, and stream processing.

Specific XML technologies for document processing are easy to classify in terms of our framework.Schema
languages(e.g., RELAX NG [12]) deal with validation and, possibly, binding. Transformation languages(e.g.,
XSLT [13]) deal with conversion. Several properties of these technologies hinder their direct applicability to a PSE
setting. First and foremost, these technologies do not workwith streams of data. Sophisticated schema constraints
and complex transformations can require buffering the whole document before producing any output. Second,
transformation languages are simply vehicles for applyingedit scripts. They cannot be used to create edit scripts.
Since our conversions are local, edit script application istrivial, but edit script creation is not.

Four major flavors of PSE-like projects that use semistructured data representations can be identified:

1. component metadata projects;

2. workflow projects;

3. scientific data interchange projects; and

4. scientific data management projects.

Projects in the first category use XML to store IDL-like (interface definition language) component descriptions
and miscellaneous component execution parameters. An example of such a project is CCAT [9], which is a dis-
tributed object oriented system. CCAT also uses XML for message transport between components, so we say that
it provides an OO binding. The second category of projects augments component metadata with workflow spec-
ifications. For example, GALE [8] is a workflow specification language for executing simulations on distributed
systems. Unlike CCAT, GALE provides XML specifications for some common types of experiments, such as pa-
rameter sweeps (CCAT uses a scripting language for workflow specification). However, GALE does not use XML
for component data. Both the component metadata and workflowprojects use XML to encode data that is not
semistructured. Their use of XML is not dictated by the need for automatic conversion. Neither generic binding
mechanisms nor conversion are provided by these projects.

The latter two groups of projects use XML for application data, not component metadata. Representatives of
the scientific data interchange group develop flexible all-encompassing schemas for specific application domains.
For example, CACTUS [7] deals with spatial grid data. CACTUS’s schema is complex enough to be considered
semistructured and this project recognizes the need for conversion filters. However, it does not provide multiple
language support and, more importantly, does not accommodate changes in the schema. CACTUS’s conversion
filters aim at code reuse, not change management. This project has OO binding and manual conversion (the sequence
of conversions is not determined automatically). Complexity of the data format precludes stream processing.

Perhaps the most relevant group of projects for our purposesinvolves the scientific data management community.
Especially interesting are the projects in rapidly evolving domains, such as bioinformatics. DataFoundry [1, 14] pro-
vides a unifying database interface to diverse bioinformatics sources. Both the data and the schema of these sources
evolve quickly, so DataFoundry has to deal with change management—by far more complex change management
than the kind we consider here. However, DataFoundry only providesmediatorsfor database access. It does not
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CCAT GALE CACTUS DataFoundry RELAX NG XSLT
Validation

√ √ √ √

Binding OO OO SQL OO
Conversion manual

√
manual

Stream Processing
√

Table 1: A survey of PSE-like systems and XML technologies. The binding row shows that most systems sup-
port only one paradigm. Only DataFoundry fully supports conversion. Other systems either provide a library of
conversion primitives and leave their composition up to theuser (CACTUS) or do not recognize the need for con-
version at all (CCAT). No system or technology fully supports validation, binding, and conversion. Most systems
and technologies cannot dynamically process streams of data.

integrate with simulation execution. This system takes full advantage of conversion, but provides only an SQL
binding. Introducing bindings for procedural languages would involve significant changes to DataFoundry.

Table 1 summarizes related work. It turns out that no known PSE-like system takes full advantage of both
binding and conversion. XML technologies for validation and binding are well established, but XML transformation
technologies do not support PSE-style conversion. Very fewsystems can integrate with a PSE execution environment
because most of them do not meet the stream processing requirement. This paper develops a system that satisfies
all of our data interchange requirements. The next three sections describe our handling of validation, binding, and
conversion. System integration is outlined in Section 6.

3 Validation

Validation establishes conformance of a data instance to a given schema. It is a prerequisite to binding and conver-
sion. (This definition of validation is a small part of the process of validation in a PSE, which is concerned with
the larger issue of a model being appropriate to solve a givenproblem; but, it suffices for the purpose of this paper.)
The schemas for PSE data are easy to obtain since computational science traditionally uses rigid data structures,
not loosely formatted documents. Describing the data structures in terms of schemas has several benefits. First,
language-neutral schemas allow for interoperability between different languages (see requirement 1 in the previous
section). Second, schemas facilitate database storage andretrieval. Third, appropriate schemas help assign interpre-
tations to various data fields. It is such interpretation that makes automatic conversion possible (requirements 2–6).

What kind of validation is appropriate for PSE data? Requirement 7 calls for the most expressive schema
language that can be parsed by a stream parser. In other words, we are looking for a schema language that can be
defined in terms of an LL(1) grammar [3]. (The LR family of grammars is more expressive, but LR parsers do not
follow stream semantics.) Therefore, a predictive parser generated for a given schema can validate a data instance.
This section describes a schema language (BSML) appropriate for a PSE and the steps for building a parser generator
for this language. We present an example, an informal overview of BSML features, and a formal definition for a large
subset of BSML in terms of a context-free grammar. Further, predictive parser generation is outlined and grammar
transformations specific to BSML are described in detail. Finally, we show that BSML is strictly less expressive
than LL(1) grammars.

Let us start with an example. Figures 3 and 4 depict a (simplified) schema for an octree environment decompo-
sition. (Fig. 3 describes it in XML notation while Fig. 4 usesa non-XML format that will be useful for describing
some functionalities of BSML). This is the most complex schema in S4W, not counting the schema for the schema
language itself. An octree consists of internal and leaf nodes that delimit groups of triangles. Recall from Section 1.1
that this grouping is used to limit the intersection tests inray tracing. The nested structure of an octree maps nicely
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into an XML tree. Since many components work with lists of triangles, there is a separate schema for a list of
triangles. As the example shows, the features of BSML closely resemble those of other schema languages, such as
RELAX NG. The only noticeable difference is the presence of units in the definitions of primitive types. Units will
be useful for certain types of conversions. Figure 5 shows anLL(1) grammar generated from the octree schema.
This grammar is then annotated with binding code and used to generate a parser for octree data. The parser can be
linked with a parallel ray tracer written in C.

The DTD for the current version of BSML is given in Appendix A.The schema language describes primitive
types and schemas. There are four base primitive types: integer, string, (IEEE) double, and boolean. Users can
derive their own primitive types by range restriction. User-derived types usually have domain-specific flavor, such
as coordinates and distances in the example above. We do not support more complicated primitive types, such
as dates and lists, because each PSE component treats them differently. Schemas consist of four building blocks:
elements, sequences, selections, and repetitions. Strictly speaking, repetitions can be expressed as selections and
sequences, but they are so common that they deserve special treatment. Derivation of schemas by restriction is
not supported, but derivation by extension can be implemented via inter-schema references. Mixed content is not
supported because it is only used for documentation. Instead, BSML supports a wildcard content type. The contents
of this type matches anything and is delivered to the component as a DOM tree [6]. We do not support referential
integrity constraints because they can delay binding and thus break requirement 7. There is no explicit construct for
interleaves. In some ways, interleaves are handled by the conversion algorithm. In other words, BSML is a simple
schema language that incorporates most common features that are useful in a PSE.

Parser generation for a BSML schema follows the standard steps from compiler textbooks [3]:

1. convert the schema to an LL(1) grammar,
2. eliminate empty productions and self-derivations,

3. eliminate left recursion,
4. perform left factoring,

5. perform miscellaneous cleanup (described in detail below),
6. compute a predictive parsing table, and

7. generate parsing code from the table.

The only steps specific to this schema language are generating an LL(1) grammar (step 1) and miscellaneous
cleanup (step 5). Since grammars have been in use for a long time, it is pertinent to define BSML semantics in terms
of how the schemas are converted to grammars. The terminals are defined by SAX events [10]. The start of element
and end of element events are denoteds(name) ande(name), respectively, wherename is element name. We omit
the attributes for simplicity, but BSML supports them in an obvious way. Further, we assume that the SAX parser
inlines external entity references. Character data is accumulated until the next start of element or end of element
event and delivered as ad(base,min,max, number, finite, units) terminal, abbreviated asd (see Appendix A for
d’s attributes). Generated code checks character data conformance to the type constraints. This definition ofd is
appropriate since BSML does not support selections based onthe type of character data.

One root non-terminal is initially generated for each schema block (element, sequence, selection, repetition),
each reference to a primitive type, and each string of user code. We denote non-terminals by capital letters, the
start non-terminal byS, the empty string byǫ, and the root non-terminals generated for the children of each schema
block byX1,X2, . . . ,Xn, n ≥ 0. Further, lower-case Greek letters denote (possibly empty) sequences of terminals,
non-terminals, and, in the next section, user codes. With this notation in mind, the definition of BSML is in Figure 6
(more details follow in future sections). We slightly deviate from a context-free grammar to allow for the constraints
on the number of repetitions (see next section). To reiterate, a grammar generated from a schema according to this
definition will undergo several standard equivalence transformations before a grammar of the form shown in Figure 5
is obtained.
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<type id=’distance’ base=’double’ number=’true’ finite=’true’/>
<type id=’coordinate’ base=’double’ number=’true’ finite=’true’/>

<schema id=’triangles’>
<repetition>
<element name=’tr’>

<repetition min=’3’ max=’3’>
<element name=’v’>
<attribute name=’x’ type=’coordinate’ units=’m’/>
<attribute name=’y’ type=’coordinate’ units=’m’/>
<attribute name=’z’ type=’coordinate’ units=’m’/>

</element>
</repetition>

</element>
</repetition>

</schema>

<schema id=’octree’>
<element name=’octree’>
<element name=’oi’ id=’oi’>

<attribute name=’x’ type=’coordinate’ units=’m’/>
<attribute name=’y’ type=’coordinate’ units=’m’/>
<attribute name=’z’ type=’coordinate’ units=’m’/>
<attribute name=’dx’ type=’distance’ units=’m’/>
<attribute name=’dy’ type=’distance’ units=’m’/>
<attribute name=’dz’ type=’distance’ units=’m’/>
<ref id=’triangles’/>
<repetition>

<selection>
<ref id=’oi’/>
<element name=’ol’>

<attribute name=’x’ type=’coordinate’ units=’m’/>
<attribute name=’y’ type=’coordinate’ units=’m’/>
<attribute name=’z’ type=’coordinate’ units=’m’/>
<attribute name=’dx’ type=’distance’ units=’m’/>
<attribute name=’dy’ type=’distance’ units=’m’/>
<attribute name=’dz’ type=’distance’ units=’m’/>
<ref id=’triangles’/>

</element>
</selection>

</repetition>
</element>

</element>
</schema>

Figure 3: BSML schemas for an octree decomposition of an environment, in XML notation. ‘tr’ stands for a triangle,
‘v’ stands for a vertex, ‘oi’ stands for an internal node, and‘ol’ stands for a leaf.
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type(distance, double, $, $, true, true, $)
type(coordinate, double, $, $, true, true, $)

schema(triangles,
repetition($, $, $, $,
element($, $, tr,

repetition($, $, 3, 3,
element($, $, v,
attribute($, x, data(coordinate,$,$,$,$,m)),
attribute($, y, data(coordinate,$,$,$,$,m)),
attribute($, z, data(coordinate,$,$,$,$,m))

)
)

)
)

)

schema(octree,
element($, $, octree,
element(oi, $, oi,

attribute($, x, data(coordinate,$,$,$,$,m)),
attribute($, y, data(coordinate,$,$,$,$,m)),
attribute($, z, data(coordinate,$,$,$,$,m)),
attribute($, dx, data(coordinate,$,$,$,$,m)),
attribute($, dy, data(coordinate,$,$,$,$,m)),
attribute($, dz, data(coordinate,$,$,$,$,m)),
ref(triangles),
repetition($, $, $, $,

selection($, $,
ref(oi),
element($, $, ol,

attribute($, x, data(coordinate,$,$,$,$,m)),
attribute($, y, data(coordinate,$,$,$,$,m)),
attribute($, z, data(coordinate,$,$,$,$,m)),
attribute($, dx, data(coordinate,$,$,$,$,m)),
attribute($, dy, data(coordinate,$,$,$,$,m)),
attribute($, dz, data(coordinate,$,$,$,$,m)),
ref(triangles)

)
)

)
)

)
)

Figure 4: BSML schemas from Figure 3 in a non-XML notation.$ stands for a missing value, i.e., a suitable default
value is supplied by BSML software.
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S → s(octree), s(oi), T, C, e(oi), e(octree)
T → ǫ
T → {Bt}, s(tr), {Bv}, s(v), e(v), {Av}, V, {Ev}, e(tr), {At}, T ′, {Et}
T ′ → ǫ
T ′ → s(tr), {Bv}, s(v), e(v), {Av}, V, {Ev}, e(tr), {At}, T ′

V → ǫ
V → s(v), e(v), {Av}, V
C → ǫ
C → {Bi}, C ′, {Ai}, C ′′, {Ei}
C ′ → s(oi), T, C, e(oi)
C ′ → s(ol), T, e(ol)
C ′′ → ǫ
C ′′ → I
I → s(oi), T, I ′

I → s(ol), T, e(ol), {Ai}, C ′′

I ′ → {Bi}, C ′, {Ai}, C ′′, {Ei}, e(oi), {Ai}, C ′′

I ′ → e(oi), {Ai}, C ′′

Figure 5: LL(1) grammar corresponding to the octree schemasin Figures 3 and 4. Attributes are omitted for
simplicity. Patterns of the form{c} will be explained in the next section (they are related to repetitions). Non-
terminalsT , T ′, andV are related to triangles; others are related to octree decomposition of a set of triangles.

element(id, opt, name,B1, B2, . . . , Bn) E → s(name),X1,X2, . . . ,Xn, e(name)
E → ǫ if opt

sequence(id, opt,B1, B2, . . . , Bn) Q → X1,X2, . . . ,Xn

Q → ǫ if opt
selection(id, opt,B1, B2, . . . , Bn) L → X1

L → X2

· · ·
L → Xn

L → ǫ if opt
repetition(id, opt,min,max,B1, B2, . . . , Bn) R → {B},X1,X2, . . . ,Xn, {A}, R′, {E}

R′ → X1,X2, . . . ,Xn, {A}, R′

R′ → ǫ
R → ǫ if opt or min = 0

data(base,min,max, number, finite, units) D → d(base,min,max, number, finite, units)
code(c) C → {c}

Figure 6: L-attributed definition of BSML. Schema primitives, in a non-XML notation, are on the left (see Figure 4
for an example) and their translations to grammar productions are on the right.B1, B2, . . . , Bn are the children of
the schema block andX1,X2, . . . ,Xn are the root non-terminals generated forB1, B2, . . . , Bn, respectively.opt is
a boolean block attribute; true means that the block is optional. {B}, {A}, {E}, and{c} are binding codes explained
in the next section. References to schema blocks (denoted byref(id)) are replaced with root non-terminals of the
blocks being referenced. Definitions related to XML attributes are omitted.
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The purpose of miscellaneous cleanup is to reduce the numberof non-terminals in the grammar. These ad-hoc
rewritings do not guarantee that the resultant grammar is minimal in any strict sense. Instead, they address some
inefficiencies that other steps are likely to introduce. These cleanup steps were also chosen such that if the grammar
were LL(1) before cleanup, it would remain LL(1) after cleanup. The grammars shown in this paper have undergone
two cleanup rewritings. Each rewriting is applied until no further rewriting is possible.

1. Maximum length common suffixes are factored out.β 6= ǫ is the maximum length common suffix of a non-
terminalA 6= S if (a) all of A’s productions have the formA → αiβ, 1 ≤ i ≤ n, (b) β is of maximum length,
and (c) neitherβ nor anyαi containA. If n = 1, A is eliminated from the grammar and all occurrences ofA
in the grammar are replaced withβ (α1 = ǫ becauseβ is of maximum length). We call such non-terminals
trivial. Trivial non-terminals are often introduced by schema-to-grammar conversion rules. Ifn > 1, all
occurrences ofA on the right-hand sides of all grammar productions are replaced withAβ and the suffixβ is
deleted from all ofA’s productions. The purpose of this rewriting is to uncover duplicate non-terminals for
the next step.

2. Only one of any two duplicate non-terminals is retained. Two non-terminalsA 6= B are duplicate if whenever
A → α is in the grammar,B → α is also in the grammar, and vice versa.A is eliminated ifA 6= S, B is
eliminated otherwise. This definition is weak, e.g.,A andB are not considered duplicate ifA → αAβ and
B → αBβ are in the grammar. However, it suffices for our purposes.

The expressive power of LL(1) grammars is well known. In practice, the limiting factor is not that the grammar
is LL(1), but that the grammar is annotated with user codes. The next section gives two examples of grammars that
are not convertible to LL(1) because binding codes are present. A more interesting question is how the expressive
power of LL(1) grammars compares to the expressive power of BSML. It is easy to see that BSML can express
a proper subset of LL(1) grammars. For example,S → s(x), e(y) is a valid LL(1) grammar, but BSML cannot
express it since no XML document that conforms to this grammar is well-formed.

Observation 1. Consider a subset of BSML that excludes repetitions and usercodes. We say that BSML can
express a grammarG if a predictive parser generated from some schema in this restricted subset of BSML can
recognize precisely the languageL(G). Clearly, BSML cannot express any grammarG that is not LL(1) (by con-
struction of the predictive parser). Further, BSML cannot express an LL(1) grammarG unless:

1. if d1 andd2 are data terminals inG, then∀α, β : S ;
+ α, d1, d2, β (data is atomic),

2. if d is a data terminal andS ⇒+ α, d, β is a derivation inG, then

∀x, γ :
(

[β ;
∗ s(x), γ] and[(β ⇒∗ e(x), γ) implies(∀y, θ : α ;

∗ θ, e(y))]
)

(no mixed contents), and

3. if s(x) is a start of element terminal,g is ǫ or a data terminal, andS ⇒+ α, s(x), β is a derivation inG, then
(

[β ;
∗ g] and[(y 6= x) implies(∀γ : β ;

∗ g, e(y), γ)]
)

; similarly, if e(y) is an end of element terminal and

S ⇒+ α, e(x), β is a derivation inG, then
(

[α ;
∗ g] and[(x 6= y) implies(∀θ : α ;

∗ θ, s(x), g)]
)

(proper

nesting of elements). 2

The first two restrictions are specific to BSML and easy to relax. However, the last restriction is inherent in any
XML schema language. A good schema language cannot describedocuments that are not well-formed. These are
the necessary conditions, but it is not clear whether or not they are sufficient. We define schemas in terms of the
schema language, not in terms of LL(1) grammars, so converting from grammars to schemas is not considered in
this paper.
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This section provided an overview of BSML features and defined BSML in terms of an ‘almost context-free’
grammar. We outlined automatic generation of predictive parsers that validate XML documents. Further, we have
shown that the descriptive power of BSML is strictly less than that of an LL(1) grammar where the terminals are
SAX events. The next section extends validation to perform binding.

4 Binding

Binding is a way to integrate semistructured data with languages that were not designed to handle it (requirement 1).
Binding can take several forms, depending on the language. For FORTRAN and C, binding usually means assigning
values to language variables and calling user-defined code to process these values (procedural binding). It can also
mean writing the data out in a format understood by the component (format conversion). For Matlab and SQL,
binding entails generating a script that contains embeddeddata and processing this script by an interpreter (code
generation). The last two kinds of binding can be thought of as XSLT-like transformations.

We implement all three kinds of binding by L-attributed definitions. The schema language is extended by
allowing user code to be injected in the schema. Schema languages that provide binding are calledbinding schema
markup languages. This section describes bindings in BSML and gives an example of their use. Further, we show
how arbitrary binding codes limit the set of schemas supported by BSML.

Let c denote an arbitrary string of code. Matching{c} means executing codec while consuming no input tokens.
No assumptions are made about the nature ofc. In particular,c can (and usually does) produce side effects, so
A → {c1}, {c2} and A → {c2}, {c1} can yield different results. Asyntax-directed definitionis a context-free
grammar extended by allowing{cj} on the right-hand sides of productions. For a syntax-directed definition to be
useful in binding,cj must contain references to parts of the document being parsed. We denote such references by
%x, wherex is the id or the name of some element or attribute. Whenx refers to an attribute or an element of some
primitive type,%x is a value of the attribute or the data contents of the element. The type of%x is determined by the
corresponding primitive type. Whenx refers to an element of a wildcard type,%x is a DOM tree constructed from
all descendants ofx, including itself. This feature can be used for XHTML [21] documentation. The set of attributes
(elements) that are available to codec depends on the placement ofc in the syntax-directed definition and the parsing
strategy. A syntax-directed definition isL-attributed if, for any derivationS ⇒+ α{c}β, anyx referenced inc is
defined in all derivations ofα. That is, all attributes (elements) must be defined in a left-to-right scan before they are
referenced. L-attributed definitions are easy to implementwith an LL(1) parser, but they restrict the set of grammars
reducible to LL(1). Luckily, these restrictions are not important in practice.

Figure 7 gives an example binding schema for a PDP (see Section 1.1) and Figure 8 shows how a parser generated
from this schema converts a PDP encoded in XML to a Matlab script. This script will then be executed by an
execution manager (see Section 6). The same schema, with different binding code, can convert an XML file to
a number of SQL INSERT statements that record the data in a relational database. The semantics of user codes
are not limited to printing, so a FORTRAN version of this binding can store the PDP in an array to be processed
later. In other words, BSML bindings are compatible with anyexecution environment that processes streams of data
(requirement 7). We use the same approach to convert semistructured data to relational data, Matlab scripts, and C
structures.

The{B}, {A}, and{E} codes in Figure 7 are generated for repetitions. They are notnecessary for this example,
but are required to enforce that each triangle has three vertices in the previous example.{B} (begin repetition)
initializes the repetition count to zero. Each repetition has its own stack of counts.{A} (append) ensures that the
maximum allowed number of repetitions is not exceeded.{E} (end) checks the minimum number of repetitions.
Thus, even simple validation (without binding) is implemented in terms of an L-attributed definition, not just an
LL(1) grammar.

Unfortunately, L-attributed definitions make predictive parsing of certain grammars impossible. User codes can
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<element name=’pdp’>
<element name=’rds’ optional=’true’ type=’time’ units=’ns’/>
<element name=’med’ optional=’true’ type=’time’ units=’ns’/>
<element name=’pp’ optional=’true’ type=’power’ units=’dBW’/>
<code>M=[</code>
<repetition>
<element name=’ray’>

<element name=’time’ type=’time’ units=’ns’/>
<element name=’power’ type=’power’ units=’dBW’/>

</element>
<code>%time %power</code>

</repetition>
<code>];</code>

</element>

(S1) S → s(pdp), R, M, P, {M=[}, C, {];}, e(pdp)
(R1) R → ǫ
(R2) R → s(rds), d, e(rds)
(M1) M → ǫ
(M2) M → s(med), d, e(med)
(P1) P → ǫ
(P2) P → s(pp), d, e(pp)
(C1) C → ǫ
(C2) C → {B}, s(ray), s(time), d, e(time),

s(power), d, e(power), e(ray),
{%time %power}, {A}, X, {E}

(X1) X → ǫ
(X2) X → s(ray), s(time), d, e(time),

s(power), d, e(power), e(ray),
{%time %power}, {A}, X

s(pdp) s(rds) s(med) s(pp) s(ray) e(pdp)
S S1

R R2 R1 R1 R1 R1

M M2 M1 M1 M1

P P2 P1 P1

C C2 C1

X X2 X1

Figure 7: (top) Binding schema for a power delay profile.rds, med, andpp stand for various optional statistics: rms
delay spread, mean excess delay, and peak power. These statistics are ignored in this example. (left) L-attributed
definition for a power delay profile.{B}, {A}, and{E} stand for codes generated by the parser generator to handle
repetitions. Otherwise, the meaning of{c} is to print stringc, followed by a new line character, after expanding
element references. For clarity, full suffix factoring was not performed, but trivial productions were eliminated.
(right) Predictive parsing table for a power delay profile.
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<pdp>
<rds>23.0998</rds>
<med>20.5691</med>
<pp>-75.5665</pp>
<ray><time>-4</time><power>-88.0937</power></ray>
<ray><time>-3</time><power>-82.4416</power></ray>
<ray><time>-2</time><power>-78.5346</power></ray>
<ray><time>-1</time><power>-76.2634</power></ray>
<ray><time>0</time><power>-75.5665</power></ray>
<ray><time>1</time><power>-76.4908</power></ray>
<ray><time>2</time><power>-79.2101</power></ray>
<ray><time>3</time><power>-84.0673</power></ray>
<ray><time>24</time><power>-86.4976</power></ray>
<ray><time>25</time><power>-84.3451</power></ray>
<ray><time>26</time><power>-84.3173</power></ray>
<ray><time>27</time><power>-85.963</power></ray>
<ray><time>28</time><power>-87.7374</power></ray>
<ray><time>29</time><power>-88.6525</power></ray>
<ray><time>43</time><power>-89.2007</power></ray>
<ray><time>44</time><power>-83.17</power></ray>
<ray><time>45</time><power>-79.2179</power></ray>
<ray><time>46</time><power>-77.3306</power></ray>
<ray><time>47</time><power>-77.4917</power></ray>
<ray><time>48</time><power>-79.645</power></ray>
<ray><time>49</time><power>-83.6205</power></ray>
<ray><time>50</time><power>-88.7676</power></ray>

</pdp>

M=[
-4 -88.0937
-3 -82.4416
-2 -78.5346
-1 -76.2634
0 -75.5665
1 -76.4908
2 -79.2101
3 -84.0673
24 -86.4976
25 -84.3451
26 -84.3173
27 -85.963
28 -87.7374
29 -88.6525
43 -89.2007
44 -83.17
45 -79.2179
46 -77.3306
47 -77.4917
48 -79.645
49 -83.6205
50 -88.7676
];

Figure 8: (left) An example PDP in XML. The data corresponds to a simulated channel in the corridor of the fourth
floor of Durham Hall, Virginia Tech. The post processor samples the channel at 1 ns time intervals to match the
output of a channel sounder. (right) Matlab encoding of the PDP on the left, output by the parser generated from the
schema in Figure 7.
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prevent elimination of left recursion or left factoring of an L-attributed definition. In the two examples below, gram-
mars induced from the left-attributed definitions by removing all user code can be transformed to LL(1). However,
the original L-attributed definitions cannot be transformed to LL(1) without losing the stream semantics of the parser.

Example 1. Consider a left-recursive schema and the corresponding left-recursive grammar (after eliminating
trivial non-terminals):

<selection id=’s’> <sequence>
<!-- empty -->

</sequence> <sequence>
<code>c</code> <ref id=’s’/>
<element name=’x’> <code>b</code> </element>

</sequence> </selection>

S → ǫ
S → {c}, S, s(x), {b}, e(x)

This grammar permits a derivation of the formS ⇒+ {c}k, (s(x), {b}, e(x))k , k > 0. However, codeb cannot
be executed beforek is known sincek executions of codec must precede the first execution of codeb. Therefore, no
LL(1) parser with stream semantics can parse documents thatconform to this schema. On the other hand, removing
{c} from the L-attributed definition yields a grammar that is easily converted to LL(1):

S → ǫ
S → S, s(x), {b}, e(x)

,
S → ǫ
S → s(x), {b}, e(x), S

This example is easy to generalize. 2

Observation 2. Consider a set of all productions for a non-terminalA. Since any sequence{c1}{c2} can be
rewritten as{c}, wherec = c1c2, we can uniquely represent this set by a single production

A → {c1}Aα1|{c2}Aα2| · · · |{cn}Aαn|β1|β2| · · · |βm,

where noβj , 1 ≤ j ≤ m, has a prefix{d}A. Immediate left recursion can be eliminated from this production
without delaying user code execution if and only if

1. c1 = c2 = · · · = cn = ǫ (no user code to the left) or

2.
(

[(βj ⇒∗ γ{d}θ, 1 ≤ j ≤ m) or (αi ⇒∗ γ{d}θ, 1 ≤ i ≤ n)] implies (d = ǫ)
)

(no user code to the right)

and(c1 = c2 = · · · = cn) (same user code to the left).

In all other cases, execution of user code must be delayed until the lastαi is matched. 2

Consider a derivation ofA that is no longer left-recursive (i.e., does not have a prefixof {d}A). All such
derivations can be written as

A ⇒+ {ci1}, {ci2}, . . . , {cik}, βj , αik , . . . , αi2 , αi1 ,

whereβj , 1 ≤ j ≤ m, stops left recursion after (at least)k + 1 steps and1 ≤ i1, i2, . . . , ik ≤ n represent the
choices forαi in the derivation. Supposeβj ⇒∗ γ{d}θ or αi ⇒∗ γ{d}θ. The sequence of codesci1 , ci2 , . . . , cik

must be executed before coded, but the LL(1) parser will only determine this sequence after it has parsed all of
βj , αik , . . . , αi2 , αi1 . Thus, eliminating left recursion entails delaying user code execution in all but the trivial cases
mentioned above.
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Example 2. Left factoring of L-attributed definitions poses similar problems. Consider the following schema and
L-attributed definition (a more realistic version of this example would have a repetition in place of thex element):

<selection> <sequence>
<code>c</code>
<element name=’x’/><element name=’y’/>

</sequence> <sequence>
<code>d</code>
<element name=’x’/><element name=’z’/>

</sequence> </selection>

S → {c}, s(x), e(x), s(y), e(y)
S → {d}, s(x), e(x), s(z), e(z)

The decision about whether to execute codec ord cannot be made untils(y) or s(z) is processed. However, removing
user codes makes this L-attributed definition easy to refactor. Again, we can show a more general condition. 2

Observation 3. Consider a set of all productions for a non-terminalA written as

A → α1β1|α2β2| · · · |αnβn|γ1|γ2| · · · |γm,

such thatα′
1 = α′

2 = · · · = α′
n = α 6= ǫ (α′ denotesα with all user code removed) andα is not a prefix of any

γ′
1, γ

′
2, . . . , γ

′
m. Let the length ofα be maximum and the lengths ofαi, 1 ≤ i ≤ n, be minimum subject ton ≥ 2, in

which case this representation ofA is unique.A can be left-factored without delaying execution of user code if and
only if

1. no rewriting ofA in the above form exists (no two definitions ofA share the same prefix, less user codes), or

2. α1 = α2 = · · · = αn (same codes to the left) andA → γ1|γ2| · · · |γm can be left-factored. 2

To summarize, we implement bindings in terms of L-attributed definitions from parsing theory. These bindings
work well in practice, but, in theory, annotating a schema that can be rewritten in LL(1) form can make it no longer
rewritable in LL(1) form. This difficulty is inherent in L-attributed definitions. We currently assume that the user
is responsible for resolving such conflicts. In practice, schemas for PSE data rarely require complicated grammars.
Repetitions take care of most of the recursive schema definitions. To make LL(1) parsing possible, troublesome
content can be simply enclosed in an extra XML element, whosestart and end tags disambiguate the transitions of
the LL(1) parser.

5 Conversion

Conversion is the cornerstone of a system’s ability to handle changes and interface mismatches. Conversion in a
PSE helps to retain historical data and facilitates inclusion of new components. We use change detection principles
from [11], with a few important differences. First, our goalis not merely to detect changes, but to make PSE com-
ponents work despite the changes. Second, we detect changesin the schema, not in the data. The PSE environment
must guarantee that the data is in the right format for the component. The job of the component is to process any data
instance that conforms to the right format. Last, change detection and conversion are local to the extent possible.
Locality is a virtue not only because it allows for stream processing, but also because it limits sporadic conversions
between unrelated entities.

Similarly to the two previous sections, this section startswith a comprehensive example. Then, we describe
the core of the conversion algorithm and outline its limitations. Finally, we extend the initial algorithm to handle
content replacements: unit conversion and user-defined conversion filters. At this point, it should not come as a
surprise to the reader that most of the technical limitations of conversion are due to binding codes, not to the nature
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of the schema language. Therefore, the tedious details of handling binding codes are omitted. The emphasis is on
non-technical limitations. What forms of semantic conversions can be ‘syntactized’ in a schema language? When
does such ‘syntactization’ back fire and produce undesired outcomes?

The functional statement of the conversion problem can be given as follows. Given the actual schemaSa and
the required schemaSr, replace binding codes inSa with binding codes inSr and conversion codes to obtain the
conversion schemaSc. Sc must describe precisely the documents described bySa, but perform the same bindings
asSr.

Example 3. Figure 9 depicts two slightly different schemas for antennadescriptions in S4W. The schema at the
bottom (actual schema) was our first attempt at defining a dataformat for antenna descriptions. This version sup-
ported only one antenna type and exhibited several inadequate representation choices. E.g., polar coordinates should
have been used instead of Cartesian coordinates because antenna designers prefer to work in the polar coordinate
system. Antenna gain was not considered in the first version because its effect is the same as changing transmitter
power. However, this seemingly unnecessary parameter should have been included because it results in a more direct
correspondence of simulation input to a physical system.

The schema at the top of Fig. 9 (required schema) improves upon the actual schema in several ways. It better
adheres to common practices and supports more antenna types. However, this schema is different from the actual
schema, while compatibility with old data needs to be retained (requirement 2). Figure 10 illustrates how addition
of conversion and binding codes to the actual schema solves the compatibility problem. A parser generated from the
conversion schema in Figure 10 will recognize the actual data and provide the required binding. 2

Following [11], the basic assumption of the conversion algorithm is that the actual schemaSa can be converted to
the required schemaSr by some sequence of ‘standard’ edits. This sequence of editsis called anedit script. Once
the possible types of edits are defined (what we can call a ‘conversion library’), the job of the conversion algorithm
is to (a) find an edit script that transforms the actual schemaSa to the required schemaSr and (b) express this
edit script as data transformations, not schema transformations. In other words, the conversion algorithm looks for a
systematic procedure that converts actual data instances that conform toSa to the required formatSr. This procedure
is expressed as a conversion schemaSc that has the structure ofSa, but binding codes fromSr and the conversion
library. Sc is then used to generate a parser that parses data instances conforming toSa and acts as if it parsed data
instances conforming toSr.

Our conversion algorithm supports four kinds of schema edits:

1. generalization,

2. restriction,

3. reordering, and

4. replacement.

We use these terms in reference to the required schema, e.g.,‘the required schema is a generalization of the actual
schema.’ Generalization and restriction of schema trees are similar to insertions and deletions in sequence alignment
problems. Reordering and replacement mostly retain their standard meaning, except we consider replacements of
sets of schema blocks, not individual schema blocks. We firstreduce the problem of converting trees to an easier
problem of converting sequences (see Figure 11). Sequence conversion (ruleQ) in this initial formulation performs
all conversions but replacements. Then, we slightly restrict this definition to make it practical and generalize ruleQ
to accommodate replacements (unit conversion and user-defined conversion filters).

The conversion algorithm revolves around the ‘determines’relation between schemas. Intuitively, an actual
schemaSa should determine a required schemaSr if any document that conforms toSa contains sufficient informa-
tion to construct an ‘appropriate’ document that conforms to Sr. ‘Appropriate’ here is obviously a domain-specific
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<element name=’antennas’>
<repetition>
<element name=’antenna’>

<element name=’id’ type=’string’ min=’1’/>
<element name=’phi’ type=’angle’/>
<element name=’theta’ type=’angle’/>
<element name=’gain’ type=’ratio’ units=’dB’ optional=’true’ default=’0’/>
<code>puts stdout "%id: %phi %theta %gain"</code>
<selection>

<element name=’waveguide’>
<element name=’width’ type=’distance’ units=’mm’/>
<element name=’height’ type=’distance’ units=’mm’/>
<code>puts stdout "waveguide: %width %height"</code>

</element>
<element name=’pyramidal_horn’>
<element name=’width’ type=’distance’ units=’mm’/>
<element name=’rw’ type=’distance’ units=’mm’/>
<element name=’height’ type=’distance’ units=’mm’/>
<element name=’rh’ type=’distance’ units=’mm’/>
<code>puts stdout "pyramidal horn: %width %rw %height %rh"</code>

</element>
</selection>

</element>
</repetition>

</element>

<element name=’antennas’>
<repetition>
<element name=’antenna’>

<element name=’id’ type=’string’ min=’1’/>
<element name=’description’ type=’*’/>
<element name=’x’ type=’coordinate’/>
<element name=’y’ type=’coordinate’/>
<element name=’z’ type=’coordinate’/>
<element name=’waveguide’>

<element name=’width’ type=’distance’ units=’in’/>
<element name=’height’ type=’distance’ units=’in’/>

</element>
</element>

</repetition>
</element>

Figure 9: Two slightly different schemas for a collection ofantennas. The component requires the top schema,
but the data conforms to the bottom schema. The bottom schema(a) represents antenna orientation in Cartesian
coordinates, not polar coordinates, (b) lacks antenna gain, (c) requires antenna descriptions, (d) measures antenna
dimensions in inches, not millimeters, and (e) covers only one antenna type. The schema at the bottom does not
contain binding codes because they are irrelevant for this example. All binding codes are in Tcl.
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<element name=’antennas’>
<repetition>
<element name=’antenna’>

<element name=’id’ type=’string’ min=’1’/>
<element name=’description’ type=’*’/>
<element name=’x’ type=’coordinate’/>
<element name=’y’ type=’coordinate’/>
<element name=’z’ type=’coordinate’/>
<code> <!-- convert coordinates from rectangular to polar -->

set _r [expr sqrt(%x*%x+%y*%y+%z*%z)]
set %phi [expr atan2(%y,%x)]
set %theta [expr acos(%z/$_r)]

</code>
<code> <!-- set default gain -->

set %gain 0
</code>
<code>puts stdout "%id: %phi %theta %gain"</code>
<element name=’waveguide’>

<element name=’width’ type=’distance’ units=’mm’/>
<code> <!-- convert units from inches to millimeters -->
set %width [expr 25.4*%width]

</code>
<element name=’height’ type=’distance’ units=’mm’/>
<code> <!-- convert units from inches to millimeters -->
set %height [expr 25.4*%height]

</code>
<code>puts stdout "waveguide: %width %height"</code>

</element>
</element>

</repetition>
</element>

Figure 10: Actual schema from Figure 9 (bottom) after inserting conversion and binding codes. This schema de-
scribes the actual documents, but provides the bindings of the required schema (top of Figure 9). We user instead
of %r because the latter could interfere with another use of the namer.
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Dr : data(basea,mina,maxa, numbera, f initea, unitsa) � data(baser,minr,maxr, numberr, f initer, unitsr)
if basea = baser,mina ≥ minr,maxa ≤ maxr, numberr ⇒ numbera, f initer ⇒ finitea,
unitsa = unitsr

E : element(ida, opta, namea, Ca1, Ca2, . . . , Can) � element(idr, optr, namer, Cr1, Cr2, . . . , Crm)
if namea = namer, opta ⇒ optr, Qa(Ca1, Ca2, . . . , Can) � Qr(Cr1, Cr2, . . . , Crm)

Eg : Xa(ida, opta, . . .) � element(idr, optr, namer, Cr1, Cr2, . . . , Crm)
if opta ⇒ optr, Qa(Xa(ida, opta, . . .)) � Qr(Cr1, Cr2, . . . , Crm)

Er : element(ida, opta, namea, Ca1, Ca2, . . . , Can) � Xr(idr, optr, . . .)
if opta ⇒ optr, Qa(Ca1, Ca2, . . . , Can) � Xr(idr, optr, . . .)

P : sequence(ida, opta, Ca1, Ca2, . . . , Can) � sequence(idr, optr, Cr1, Cr2, . . . , Crm)
if opta ⇒ optr, Qa(Ca1, Ca2, . . . , Can) � Qr(Cr1, Cr2, . . . , Crm)

Pg : Xa(ida, opta, . . .) � sequence(idr, optr, Cr1, Cr2, . . . , Crm)
if opta ⇒ optr, Qa(Xa(ida, opta, . . .)) � Qr(Cr1, Cr2, . . . , Crm)

Pr : sequence(ida, opta, Ca1, Ca2, . . . , Can) � Xr(idr, optr, . . .)
if opta ⇒ optr, Qa(Ca1, Ca2, . . . , Can) � Xr(idr, optr, . . .)

C : selection(ida, opta, Ca1, Ca2, . . . , Can) � selection(idr, optr, Cr1, Cr2, . . . , Crm)
if opta ⇒ optr,∀Cai : (∃!Crj : Cai � Crj)

Cg : Xa(ida, opta, . . .) � selection(idr, optr, Cr1, Cr2, . . . , Crm)
if opta ⇒ optr, (∃!Crj : Xa(ida, opta, . . .) � Crj)

R : repetition(ida, opta,mina,maxa, Ca1, Ca2, . . . , Can) � repetition(idr, optr,minr,maxr, Cr1, Cr2, . . . , Crm)
if mina ≥ minr,maxa ≤ maxr, opta ⇒ optr, Qa(Ca1, Ca2, . . . , Can) � Qr(Cr1, Cr2, . . . , Crm)

Rg : Xa(ida, opta, . . .) � repetition(idr, optr,minr,maxr, Cr1, Cr2, . . . , Crm)
if minr ≤ 1,maxr ≥ 1, opta ⇒ optr, Qa(Xa(ida, opta, . . .)) � Qr(Cr1, Cr2, . . . , Crm)

F : ref(ida) � ref(idr)
if Xa(ida, opta, . . .) � Xr(idr, optr, . . .)

Q : Qa(Ca1, Ca2, . . . , Can) � Qr(Cr1, Cr2, . . . , Crm)
if ∀Crj(. . . , optrj , . . .) : [(∃!Cai : Cai � Crj) or (optrj)]

Figure 11: Version 1 of the ‘determines’ relationXa(ida, opta, . . .) � Xr(idr, optr, . . .) between an actual schema
block Xa(ida, opta, . . .) and a required schema blockXr(idr, optr, . . .). We use the non-XML notation from Fig-
ure 4 plusXa(ida, opta, . . .) andXr(idr, optr, . . .) are shortcuts for any schema block (data blocks are never op-
tional and have empty ids).⇒ means logical implication and∃! means ‘there exists a unique.’ The rules are applied
top to bottom, left to right. The first matching rule wins (no backtracking). This definition will be later restricted to
make it computable and ruleQ will be extended to handle replacements.
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notion, and in the absence of a domain theory, there is no hardand fast measure of ‘appropriateness.’ Given two
slightly different schemas, only a domain expert can tell whether or not it is meaningful to attempt a conversion
from one form to another. Therefore, our conversion rules should be viewed as heuristics that we have found to
be useful enough to be supported in a conversion library. They are neither sound nor complete in an algorithmic
sense (because we do not have an objective, external, measure of ‘conversion correctness’). Instead, they represent
a tradeoff between soundness and completeness and should becarefully evaluated for use in a particular domain.
With this disclaimer in mind, version 1 of the determines relation betweenSa andSr (Sa determinesSr; Sa � Sr)
is defined in Figure 11. We will also find the notion of schema equivalence useful: we say that two schemasSa and
Sr areequivalentif Sa � Sr andSr � Sa.

The first rule (Dr) in Figure 11, for instance, says that a value of primitive type (‘data’) can be substituted for
another if they have the same base type, their ranges are compatible, and they have the same units. It ensures that
all primitive type constraints ofSr are met bySa (restriction). Thus,Dr is simply a definition of type derivation
by range restriction (the ‘r’ subscript in this and other rules stands for restriction; similarly, the ‘g’ subscript stands
for generalization). RulesE, P , andR state the obvious: two black boxes are compatible if they have compatible
wrappers (restriction) and compatible contents (any conversions). RuleC says that any choice inSa must uniquely
determine some choice inSr (restriction). RuleQ enforces that every block inSr is uniquely determined by some
block in Sa. This formulation of ruleQ ignores extra blocks inSa (restriction), permits optional elements inSr to
be unmatched (generalization), and allows for contents reordering. RuleF deals with references. Only rulesDr,
E, P , C, andR are sound. RuleF looks sound, but it makes the determines relation not computable. RuleQ is
unsound primarily because it ignores ‘unnecessary’ blocksin Sa.

RulesEg, Pg, Cg, andRg handle generalizations across schema blocks of (possibly)different types. Their
counterpartsEr andPr handle symmetric restrictions (why is there noCr or Rr?). RuleCg was demonstrated in
the example above. It is a base case for ruleC. RuleCg states that one way to generalize a schema block is to
enclose it in a selection, i.e., provide more choices inSr than were available inSa. This rule is sound. RulesEg, Pg,
andRg have similar motivations, but they are unsound. Essentially, we assume that decorating any black box with
any number of wrappers does not change the meaning of the black box (generalization). Similarly, we assume that
wrappers can be freely removed to expose the black box (restriction).

Consider a sequence of schemas that describes some physicalsystem in progressively greater detail. Suppose
some subsystem is described by a single parameter. Common practice is to allocate a single schema block to this
subsystem. What happens when a more detailed description ofthis subsystem is incorporated into the schema?
Chances are, the original schema block allocated to the subsystem will be either (a) augmented with more con-
tents (restriction part of ruleQ) or (b) wrapped in another block. The generalization and restriction rules handle
case (b). However, blind application of these rules can leadto disaster because these rules disregard some semantic
information. Examples will make these points clearer.

Example 4. One common trick used to improve wireless system performance is space-time transmit diversity
(STTD). Instead of a single transmitter antenna, the base station uses two transmitter antennas separated by a small
distance. PDPs are very sensitive to device positioning, sotwo uncorrelated transmitter antennas can produce widely
different signals at the same receiver location. If the signal from one of the antennas is weak, the signal from another
antenna will probably be strong, so the overall performanceis expected to improve. Consider how addition of STTD
to the ray tracer affects the schema of the transmitter file. The original schema is on the left and the new schema
(with STTD support) is on the right. The second antenna is optional because STTD is not used in every system due
to cost considerations.

(continued on next page)
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<element name=’tx’>
<ref id=’coordinates’/>
<element name=’power’ type=’power’/>
<element name=’freq’ type=’double’/>

</element>

<element name=’base_station’>
<element name=’tx’>

<ref id=’coordinates’/>
<element name=’power’ type=’power’/>
<element name=’freq’ type=’double’/>

</element>
<element name=’tx’ optional=’true’>

<ref id=’coordinates’/>
<element name=’power’ type=’power’/>
<element name=’freq’ type=’double’/>

</element>
</element>

The new ray tracer should be able to work with old data becauseit supports one or two transmitter antennas. The
old ray tracer should be able to work with new data, albeit theresults will be approximate when the new data contains
two transmitter antennas. Further generalizing this example ton transmitter antennas would require a repetition. We
support conversion to repetitions, but not from repetitions. For this example, we could extract any antenna because
they usually have the same parameters and are positioned close together. However, we cannot extract an arbitrary
ray from a PDP because the ray with maximum power is usually intended. Extracting any other ray would typically
produce nonsense results. 2

Example 5. Havoc can result if rulesEr andEg are applied to the same element. Element names have semantic
meaning, but this particular composition of rules allows arbitrary renaming of elements. Such renaming would make
the following two schemas equivalent.

<element name=’tx_gain’ type=’ratio’/> <element name=’snr’ type=’ratio’/>

Even though both transmitter antenna gain and signal-to-noise ratio are ratios measured in the same units (dB),
they convey largely different information. We avoid such blatant mistakes by limiting the application of generaliza-
tion and restriction rules. In particular, no element can berenamed. 2

As the last example illustrates, the ‘determines’ relationin Figure 11 needs to be restricted. It is helpful to
redefine this relation in terms of a context-free grammar that describesSaSr. Let the terminals beelement(,
sequence(, selection(, repetition(, ref(, data(, ), and all element names and other values used
in two schemas under consideration. Let the non-terminals be the labels of the rules in Figure 11, a special start
non-terminalA, and intermediate non-terminals introduced by the rules. We can formally define the necessary
restrictions by limiting the shape of the parse tree forSaSr. Consider a pathR1, R2, . . . , Rn, n > 0, from some
internal nodeR1 6= A to some internal nodeRn 6= A, where allRi, 1 ≤ i ≤ n, are rule labels. IfR is the set of
restriction rules andG is the set of generalization rules, we require that(Ri ∈ R) implies(Ri−1 /∈ G andRi+1 /∈ G),
i.e., restriction and generalization rules cannot be applied in sequence. This restriction of the parse tree disallows
renaming of elements, but does not limit the number of wrappers around black boxes. Bounded determination deals
with the latter problem. We say thatSa k-determinesSr (Sa �k Sr) if no pathR1, R2, . . . , Rn contains a substring
of (possibly different) generalization (restriction) rules of length greater thank. We leave it up to the reader to
appropriately restrict ruleF (reference). These restrictions make the ‘determines’ relation computable and enforce
locality of conversions. As a side effect, we have shown thatthe problem of constructing a conversion schema
Sc from the actual schemaSa and the required schemaSr can be reduced to validation and binding (parsing and
translation). However, schema conversion need not work with streams of data, so a parser more powerful than a
predictive parser should be used.
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It remains to consider requirements 4 and 5: unit conversionand user-defined conversion filters (replacements).
Let D be a set of all primitive types derived from double (recall that a primitive type is defined by the base type, the
range of legal values, and a unit expression). Unit conversion, e.g., converting kg/m2 to lb/in2, is the simpler of the
two replacements. Both actual and required unit expressions are converted to a canonical form (e.g., a fraction of
products of sums of CI units or dB) and then the conversion function is found. Unit conversions are functions of the
form

U : Da → Dr,

whereDa,Dr ∈ D are specific primitive types. User-defined conversion filters are functions of the form

H : Da1 × Da2 × · · · × Dan → Dr1 × Dr2 × · · · × Drm,

wheren,m > 0 and allDai,Drj ∈ D, 1 ≤ i ≤ n, 1 ≤ j ≤ m, are specific primitive types. Arithmetic operators and
common mathematical functions are allowed in user-defined conversion filters. Each user-defined conversion filter
is tagged with element namesnamea1, namea2, . . . , namean andnamer1, namer2, . . . , namerm that determine
when the filter applies. Such filters define rules of the form

(element($, $, namea1,Da1), element($, $, namea2,Da2), . . . , element($, $, namean,Dan)) �
(element($, $, namer1,Dr1), element($, $, namer2,Dr2), . . . , element($, $, namerm,Drm)).

Both kinds of filters are compiled into codes such as shown in Figure 10. RuleQ is modified to take advantage of
replacements. Basically, we are looking for (unique) partitions of the actual schema blocksCa1, Ca2, . . . , Can and
required schema blocksCr1, Cr2, . . . , Crm such that each set of schema blocks in the required partitionis determined
by some set of schema blocks in the actual partition. Determination can proceed through the rules in Figure 11, unit
conversions, and user-defined conversion filters (if everything else fails, optional blocks in the required schema can
remain unmatched).

The ultimate goal of the conversion algorithm is to find a meaningful edit script. However, this goal is impossible
to achieve without knowledge of the domain. What happens when several edit scripts exist, i.e., the problem of
finding an edit script is ambiguous? Depending on the nature of the ambiguity, we can choose any edit script, the
minimal (in some sense) edit script, or to refuse to perform conversion. The conversion algorithm described here
either settles for some local minimum (e.g., ruleE is preferred over ruleEg) or requires uniqueness of conversions
(rulesC, Cg, and most of ruleQ). Ambiguity remains an open problem that is unlikely to be solved by a syntactic
conversion algorithm. Following the principle of least user astonishment, we choose to reject most of ambiguous
conversions.

Finally, let us consider how binding codes limit conversion. We omit formal treatment of the problem and limit
the discussion to an example. It is easy to see that conversion may require delaying binding code execution. This
should not be surprising since one kind of conversion is reordering.

Example 6. Consider a required schema with binding codes (left) and an actual schema (right).

<sequence>
<element name=’a’ type=’double’/>
<code>c1</code>
<repetition>

<ref id=’b’/>
<code>c2</code>

</repetition>
<sequence>

<sequence>
<repetition><ref id=’b’/></repetition>
<element name=’x’ type=’double’/>
<element name=’y’ type=’double’/>

<sequence>
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Assume that there exists a user-defined conversion filter that calculatesa from x andy. If we ignore binding
codec2, conversion is clearly local. However, conversion withc2 present will require delaying all executions of
c2 until c1 is executed. The latter can only happen when the last piece ofthe schema is matched. In other words,
binding codes should be placed as late as possible in the schema. 2

This section presented a number of local conversions appropriate for PSE data. Conversions are carried out
by extra codes injected in the actual schema. The conversionalgorithm was built around the ‘determines’ relation
between schemas. The algorithm has some technical limitations related to binding codes, but its major limitation
is conceptual. Conversion, in the form presented here, is syntactic. It is based on the weak semistructured data
model, not on the underlying domain theory (wireless communications). Therefore, we can only speculate about the
causes of differences between the actual and required schemas. There is no guarantee that automatic conversion will
produce meaningful results. A stronger data model is necessary to perform complex, yet meaningful, conversions.

6 Integration with a PSE

A complete PSE requires functionality far beyond validation, binding, and conversion. BSML ensures that the com-
ponents can read streams of XML data, but it does not support tasks such as scheduling, communication, database
storage and retrieval, connecting multiple components into a given topology, and computational steering. We broadly
call software that performs all of these tasks anexecution manager. Figure 12 illustrates how BSML software and
the execution manager function together.

From a systems point of view, BSML schemas are metadata and the BSML software is a parser generator. Recall
that the parser generator generates parsers that perform validation, binding, and conversion functions (every such
generated parser will be able to take input data and stream itthrough the component). Both the data and the metadata
are stored in a database. We can distinguish three kinds of metadata: schemas, component metadata, and model
instance metadata. Only one form of metadata (schemas) was described in this paper. Component metadata contains
component’s local parameters, such as executable name, programming language, and input/output port schemas. It
is the kind of metadata used in CCAT. Model instance metadata, i.e., component topology and other global execution
parameters, serves a purpose similar to GALE’s workflow specifications. It supports our requirement 3.

A parser is lazily generated for each used combination of component’s input port schema (required schema) and
the schema of the data instance connected to this port (actual schema). Component metadata specifies how linking
must be performed (e.g., which of the three kinds of bindingsto use). Component instances are further managed
by the execution manager. Model instance metadata specifieshow to execute the model instance (e.g., the topology
and the number of processors), while model instance data serves as the actual (data) input to the model instance. To
summarize, the BSML parser generator creates component instances—programs that take a number of XML streams
as inputs and produce a number of XML streams as outputs. Thisrepresentation is appropriate for management of a
PSE execution environment.

6.1 Status of Prototype

In S4W, the execution manager is implemented in Tcl/Tk and most ofthe component metadata is hard-coded. Model
instance metadata consists primarily of the number of processors and a cross-product of references to model instance
data. An (incomplete) example of such a specification is

‘compute power coverage maps for these three transmitter locations in Torgersen Hall and show a graph
of BERs with the signal-to-noise ratio varying from zero to twenty dB in steps of two dB; use thirty
nodes of a 200-node Beowulf cluster.’

PostgreSQL and the filesystem serve the role of the database.Large files (e.g., floor plans) are typically stored in the
filesystem and small ones (e.g., PDPs) are usually imported into PostgreSQL. The parser generator is written in SWI
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Figure 12: BSML integration with PSE execution environment. The BSML parser generator creates parsers that
handle input ports of each component. Execution manager controls the execution of a model instance that consists
of components, model instance data, and model instance metadata. Figure 1 partially defines one such instance.

Prolog. It generates parsers in Tcl. Currently, these parsers are used mostly in the execution manager, visualization
components, and database interfacing components.

7 Discussion

We have described the use of validation, binding, and conversion facilities to solve data interchange problems in a
PSE. Since all three concepts are closely related to parsingand translation, viewing application composition in terms
of data management uncovers well-understood solutions to interface mismatch problems. The semistructured data
model allows us to syntactically define several forms of conversions that are usually implemented by hand-written
mediators in PSEs. Such automation reduces the cost of PSE development and, more importantly, brings PSEs closer
to their ultimate goal — namely, PSE users should be solving their domain-specific problems, not be beset by the
technical details of component composition in a heterogeneous computing environment.

Several extensions to the present work are envisioned. First, the expressiveness of schema languages for data
interchange and application composition can be formally characterized. This will allow us to reason about require-
ments such as stream processing from a modeling perspective. Such a study will also lead to a better understanding
of the roles that a markup language can play in a PSE. Second, dataflow relationships between components can be
made explicit. BSML guarantees that any component instancebe able to process streams of data, but synchronization
issues are meant to be resolved by the execution manager. Tighter integration of BSML and composition frameworks
can be explored. Finally, the overall view of a PSE as a semistructured data management system deserves further
exploration. For example, it seems possible to automatically generate workflow specifications from queries on a
semistructured database of simulation results.

Any good problem solving facility is characterized by ‘whatit lets you get away with.’ BSML is unique among
PSE projects in that it allows a modeler or engineer to flexibly incorporate application-specific considerations for
data interchange, without insisting on an implementation vocabulary for components.
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A BSML DTD

<!ENTITY % boolean "(true|false|t|f|yes|no|y|n)">

<!-- attributes of primitive types:
min - minimum value or string length (inclusive)
max - maximum value or string length (inclusive)
number - true means NaN is not allowed (doubles only)
finite - true means +/-infinity is not allowed (doubles only)
units - units for this type (doubles only)

-->
<!ENTITY % type_attributes "

min CDATA #IMPLIED
max CDATA #IMPLIED
number %boolean; #IMPLIED
finite %boolean; #IMPLIED
units CDATA #IMPLIED

">

<!-- what schemas and schema blocks are composed of -->
<!ENTITY % schema_contents "

(element | sequence | selection | repetition)
">
<!ENTITY % block_contents "

(%schema_contents; | default | ref | code)
">
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<!-- a collection of schemas -->
<!ELEMENT schemas ((description)?, (type | schema)*)>
<!ATTLIST schemas>

<!-- primitive type: attributes above and an optional
enumeration of legal values; derivation works by restriction;
builtin base types are: integer, string, double, boolean -->
<!ELEMENT type ((description)?, (values)?)>
<!ATTLIST type

id CDATA #REQUIRED
base CDATA #REQUIRED
%type_attributes;

>
<!-- enumeration of legal values, no value is legal if empty -->
<!ELEMENT values ((value)*)>
<!ATTLIST values>
<!ELEMENT value (#PCDATA)>
<!ATTLIST value>

<!-- schema -->
<!ELEMENT schema ((description)?, (code)*, (%schema_contents;), (code)*)>
<!ATTLIST schema

id CDATA #REQUIRED
>

<!-- an element can contain either
(a) character data of a primitive type (type attribute is present),
(b) zero or more schema blocks (type attribute is absent), or
(c) when type=’*’, any contents.

-->
<!ELEMENT element ((description)?, (attribute)*,

((values)? | (%block_contents;)*))>
<!ATTLIST element

name CDATA #REQUIRED
id CDATA #IMPLIED
optional %boolean; "false"
type CDATA #IMPLIED
%type_attributes;
default CDATA #IMPLIED

>

<!-- an attribute must contain a value of some primitive type -->
<!ELEMENT attribute ((description)?, (values)?)>
<!ATTLIST attribute

name CDATA #REQUIRED
id CDATA #IMPLIED
type CDATA "string"
%type_attributes;
default CDATA #IMPLIED

>
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<!-- a sequence is just a grouping, for convenience -->
<!ELEMENT sequence ((description)?, (%block_contents;)*)>
<!ATTLIST sequence

id CDATA #IMPLIED
optional %boolean; "false"

>

<!-- a selection denotes a mutually exclusive choice of contents -->
<!ELEMENT selection ((description)?, (%block_contents;)+)>
<!ATTLIST selection

id CDATA #IMPLIED
optional %boolean; "false"

>

<!-- a repetition denotes [min..max] repetitions of contents -->
<!ELEMENT repetition ((description)?, (%block_contents)*)>
<!ATTLIST repetition

id CDATA #IMPLIED
optional %boolean; "false"
min CDATA "0"
max CDATA "inf"

>

<!-- a reference to some block id in this schema,
or to an id of a different schema -->
<!ELEMENT ref ((description)?)>
<!ATTLIST ref

id CDATA #REQUIRED
>

<!-- user code; language and component attributes facilitate
schema reuse (different components can have the same schema,
but different binding codes) -->
<!ELEMENT code (#PCDATA)>
<!ATTLIST code

language CDATA #IMPLIED
component CDATA #IMPLIED

>

<!-- default contents must conform to BSML schema block -->
<!ELEMENT default ANY>

<!-- XHTML usually goes here -->
<!ELEMENT description ANY>
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