
JAMES BEGOLE, CRAIG A. STRUBLE, AND CLIFFORD A. SHAFFER ■ VIRGINIA TECH

W idespread use of the Internet is giving rise to the need
for collaborative applications that link users at remote
sites. Many toolkits support the development of collab-

oration-aware applications—those developed specifically for coop-
erative work by multiple users. Another approach is collaboration
transparency—the collaborative use of applications originally
developed for a single user. When the runtime environment sup-
ports collaboration transparency, an application programmer need
not write new code to make an application collaborative. Thus,
collaboration transparency leverages the existing base of single-
user applications by extending them to collaborative use.

In this article, we review options for providing collaboration trans-
parency. We also discuss how collaboration transparency can be
incorporated into Sun Microsystems’ Java, the most widely used
vehicle for developing interactive World Wide Web applications.

Our approach is to provide collaboration transparency through
event broadcasting, in which a conference agent synchronizes
independent instances of an application and broadcasts only user
input events. This contrasts with the more commonly used method
of display broadcasting, in which all users receive a graphical
depiction of the shared application but not the application itself.
However, display broadcasting violates the Java runtime model of
client-side processing, while requiring the conference agent to dis-
tribute large amounts of graphics data to participants through the
Internet. Event broadcasting, on the other hand, conforms to the
Java runtime model and requires much less data to be distributed
(because only user input events are broadcast).

We believe event broadcasting is a promising solution to providing
collaboration transparency in Java. Unfortunately, the native plat-
form implementations of the Java Abstract Window Toolkit do not
currently provide support needed for event broadcasting, such as

F E A T U R E

57

1089-7801/ 97/$10.00 ©1997 IEEE h t tp ://compu te r.o rg/ in te rne t/ MARCH • APRIL 1997

THE JAVA ABSTRACT

WINDOW TOOLKIT

DOES NOT CURRENTLY

SUPPORT THE

COLLABORATIVE USE

OF APPLICATIONS

DEVELOPED FOR A

SINGLE USER.

MODIFICATIONS TO

THE AWT WOULD

PUT THIS CAPABILITY

WITHIN REACH.

LEVERAGING
JAVA APPLETS:
TOWARD

COLLABORATION
TRANSPARENCY

IN JAVA

.

event tagging and complete event propagation. The
required modifications are impractical for any party other
than JavaSoft, the implementers of the Java runtime envi-
ronment. We are working with JavaSoft to include these
modifications in future releases of the AWT.

WHY COLLABORATION
TRANSPARENCY?
Several Java-based toolkits are being developed to imple-
ment WWW-based collaboration-aware applications,
including the National Center for Supercomputing
Applications’ Habanero,✷ the University of Erlangen-
Nürnberg’s Promondia,✷ and Old Dominion University’s
Java Collaborator Toolset.✷ However, although these col-
laboration toolkits provide a significant capability, they
do not address the rapidly growing base of single-user
Java applets available to Internet users.

Applications developed for a single user may be used
collaboratively by modifying either the application or its
runtime environment. After modification, multiple users
may share the view and interact with the application. An
environment that provides this application-sharing capa-
bility is called a collaboration transparency system
because the shared single-user application is “unaware”
that more than one user is interacting with it.1

To illustrate the usefulness of collaboration transparency,
consider a simple single-user text editor shared among
multiple users. All users simultaneously see the current
screen view. If they add a standard chat or real-time
audio channel, they can work together productively—

even though the text editor has no built-in features to
support such collaboration.

The examples of potential uses are endless. A simple
chess interface could instantly become a two-player
game if both players saw the same screen at the same
time, and were able to move the pieces. Any drawing
application becomes a shared whiteboard. An instructor
may lead a class in a demonstration of any application
with remote or local students. Research scientists may
share dynamic visualizations of data using their precise
analysis applications. Technical support operators can
remotely control customers’ applications while helping
them with a problem.

DISPLAY VS. EVENT BROADCASTING?
As we mentioned earlier, two collaboration transparency
models are possible.

Display broadcasting
Most existing collaboration transparency environments
follow the model in Figure 1. A central conference agent
receives all user input and serializes the events—that is,
sends a single stream of events to the application.1,2 The
conference agent then distributes display updates to the
participants’ windowing systems. Display broadcasting is
so named because the users receive only a graphical
depiction of the screen state.

Examples of collaboration transparency systems that use
this model are Hewlett-Packard’s SharedX,✷ Sun Micro-
systems’ ShowMe SharedApp,✷ Microsoft’s NetMeeting,✷

Intel’s ProShare,✷ and Farallon’s Timbuktu.✷ The X Window
System is particularly suited to this centralized architec-
ture. X’s distributed display and input capabilities make it
natural to distribute a description of a single application
instance’s display to multiple users.

However, despite its popularity, display broadcasting
may be inappropriate for Web-based collaboration trans-
parency. First, it does not fit the model of the Java run-
time environment. The X architecture separates display
from computation and uses the model of a relatively
“dumb” local display server supporting a remote client
with potentially unlimited computational power. This
contrasts sharply to Java, in which anyone loading a Java
applet within a Web browser must have a new and sepa-
rate instance of that applet. The philosophy is to distrib-
ute the complete applet, including both computation and
display, to local machines as a unit. The local system is
“smarter,” and there is less network traffic.

Second, in display broadcasting, the conference agent
must distribute large amounts of data to the participants,
which may not be practical for widespread use on the
Internet. In principle, display broadcast systems such as
SharedX could be used to support collaboration trans-
parency, but although the performance of sharing X dis-

F E A T U R E

58

MARCH • APRIL 1997 h t tp ://compu te r.o rg/ in te rne t/ IEEE INTERNET COMPUTING

User B host

User
input

User
display

User A host

User
input

User
display

Merged
input

Conference
agent

Network
traffic

Conference agent host

Display
broadcaster

Application

Figure 1. Centralized application with display
broadcasting. The thick arrows represent display
data, illustrating how much more graphical data is
broadcast relative to event data (regular arrows).

.

plays is acceptable on a LAN, it is not on a WAN. Accord-
ing to Randy Smith, analysis of network traffic for
Kansas,✷ an X-based shared environment, found that the
ratio of graphics to events was nearly 10:1.3 From this, we
conclude that network traffic will dramatically decrease if
only events are shared.

Event broadcasting
In event broadcasting, multiple users share a single virtu-
al instance of the application, although each user actually
has a separate copy, as Figure 2 shows.4 This contrasts to
display broadcasting, in which users share a display of a
single application instance.

Thus, one component of the conference agent is an
event broadcaster whose job is to multiplex an input
event from any participating collaborator to every other
collaborator. This lets every collaborator invoke events to
the system. All collaborators see the invoked events
along with the feedback the events create. For example,
if one collaborator moves the scrollbar for a text compo-
nent, all participants see their corresponding copy of the
scrollbar move in their copy of the same text component.

This approach is not without potential problems. As we
have described it, event broadcasting is a replicated
architecture because an application instance is copied to
multiple users. Such architectures have not been consid-
ered suitable vehicles for achieving collaboration trans-
parency. Wladimir Minenko, for example,5 cites several
reasons for not using it. We believe only one of his
objections is serious in the context of Java, and we
believe even this one is manageable.

■ Sharing must be based on the assumption that appli-
cation behavior is deterministic. Applications are, in
fact, inherently deterministic. Applications that seem
nondeterministic by behaving differently from one
session to another are receiving input from sources
other than the users’ input events. Interacting with
the runtime environment for information such as cur-
rent time, random number seeds, files, and sockets,
can lead to seemingly nondeterministic behavior.
However, if all input to an application is replicated to
each copy of the application, the states of all copies
should be consistent.

■ The application environments of all involved hosts
must be identical. Aside from inputs, the Java Virtual
Machine is intended to make this so. We need ensure
only that each copy of the application receives the
same response for the same system call (such as ran-
dom numbers) and that all applications share
input/output resources, such as files and sockets.
This implies that the conference agent must control
such resources and distribute input and output to all
participants.

■ Copies of the shared application must be available on
each host. With Java, all participants can easily access
a copy of the application software.

■ Accommodating latecomers into an existing collabo-
rative session is nearly impossible. The reasoning is
that the state of shared applications must be updated
by playing back the input events of the whole ses-
sion—a process that is unstable and may continue for
a long time. However, by using an object persistence
mechanism, such as Java’s Object Serialization, late-
comers can be provided with a copy of a shared
application in its current state.

■ It is difficult to maintain consistency among multiple
application copies. For Java, this is the one serious
disadvantage Minenko noted. The loss of input to
one instance of the application (for example, because
of network loss) may throw it out of synchronization
with the others. Again, consistent input to all
instances should yield a consistent application state.
Ensuring that all copies actually receive the broadcast
input stream may prove the greatest challenge to
event broadcasting.

Event broadcasting may not be suitable for some types of
applications, such as large-scale simulations or ones that
use random number generators heavily. The best archi-
tecture in this case may be to combine one instance of
the computational part of the simulation with a shared
front-end interface. In a highly networked world, this
separation of computation and interface threads is likely
to become the model of choice for many large applica-
tions, regardless of collaboration issues.

L E V E R A G I N G J A V A A P P L E T S

59

IEEE INTERNET COMPUTING h t tp ://compu te r.o rg/ in te rne t/ MARCH • APRIL 1997

User A host

User
input

Application

User B host

User
input

Merged
input

Conference
agent

Network
traffic

Conference agent host

Display
broadcaster

Application

Figure 2. Replicated applications with event broad-
casting.

URLs from these pages

Habanero • www.ncsa.uiuc.edu/SDG/Software/Habanero/
Promondia • www4.informatik.uni-erlangen.de/Projects/promondia/
JCT • www.cs.odu.edu/~kvande/Projects/Collaborator/
SharedX • www.hp.com/xwindow/features/sharedx.html
SharedApp • www.sun.com/desktop/products/Multimedia/VCCT.html
NetMeeting • www.microsoft.com/netmeeting/
ProShare • www.intel.com/proshare/
Timbuktu • www.farallon.com/product/tb2/tb2winover.html
Kansas • www.sunlabs.com/research/distancelearning/kansas.html

.

IMPLEMENTATION ISSUES
To make event broadcasting a feasible way to provide
collaboration transparency in Java, we had to overcome
two main difficulties.

Event collision
Collaboration transparency must maintain the intended
behavior of the shared application. If events are naively
broadcast between collaborators, event streams for
nonatomic events such as mouse drags become confused,
and can cause conflicts among collaborators.

In Figure 3, for example, Andrew and Joanne are sharing
a drawing application, and both attempt to draw separate
freehand curves simultaneously by dragging their mouse
cursors. However, the location of the previous mouse-
drag event for Andrew is different from Joanne’s. When
the next mouse-drag events are broadcast, they conflict
because the event for Joanne uses the context from the
event for Andrew. Figure 3a shows what was intended.
Figure 3b shows the desired output corrupted by the
mouse-drag event collision. In Figure 3b, the application
has drawn a line between the alternating mouse posi-
tions of both Joanne and Andrew, instead of between the
sequential positions of Joanne’s mouse, followed by
sequential positions of Andrew’s mouse. This is an unex-
pected result for most users.

One approach to dealing with event collision and related
problems is to use an explicit floor control model.4 In the
collaborative drawing example, a possible floor control
model is pen passing: Only one collaborator, say Andrew,
can manipulate the application while all other collabora-
tors watch. The collaborators explicitly pass the pen from
one to another as each uses the application. Because
only one collaborator is in control, only one event stream
must be handled, and event collision and related prob-
lems no longer exist.

The drawback to explicit floor control is that it requires
user intervention to pass control during application use.
We generally prefer implicit floor control models, in
which the application sharing system automatically
passes the pen between collaborators as they use the

application.6 Collaborators might com-
pete more frequently for pen control in
this scenario, but we believe that most
users can and will negotiate potential
conflicts from collaboration transparen-
cy to get the most benefit from the pro-
gram’s capabilities.

To implement implicit floor control,
nonatomic events must be tagged with
appropriate context information, includ-
ing their originating location. Imple-
menters can then atomicize the entire
series of events associated with the drag
activity by buffering the drag events,

sending them as one atomic action (beginning with the
initial mouse down and ending with a mouse up) to
remote applications. Two approaches are possible:

■ The local application can buffer the series of mouse drags.
■ The event broadcaster can buffer (or block) events from

other participants until the drag series is complete.

In the second approach, the source of each event must
be available to the event broadcaster to perform filtering.
This approach may be the more suitable when the event
broadcaster is also serializing the collaborators’ events. In
event serialization, all collaborators receive the same
inputs in the same order, thus ensuring consistency
among application copies.7

Context information provides several other benefits.
When a source field is included, the event broadcaster
can filter events by user, host, or domain, for example.
Such filtering addresses security concerns by allowing
events from authorized clients only. Source information
is also needed to implement telepointers (representa-
tions of remote collaborators’ cursors) and other collab-
orative widgets.

Collaborator awareness
Another difficulty for transparent collaboration is a col-
laborator’s need to be aware of the actions and locations
of all other collaborators. Implementers often use inter-
face techniques such as telepointers and radar views to
provide such workspace awareness.8

Modern GUI elements are normally expected to deliver
feedback upon user input (such as when a button is acti-
vated), signaling that the input has been received. It is
equally important to provide this graphical feedback to
remote collaborators. Without such notice, collaborators
may be surprised by sudden changes in the application.
As a minimum, users should see GUI element reactions
to each collaborator’s inputs to the system. For example,
if collaborator A clicks on and drags the thumb button of
a scroll bar, the other collaborators should see A’s tele-
pointer move to the scroll bar, and then see the scroll bar
itself moving on their displays.

F E A T U R E

60

MARCH • APRIL 1997 h t tp ://compu te r.o rg/ in te rne t/ IEEE INTERNET COMPUTING

Andrew

Joanne Joanne

Andrew

(a) (b)

Figure 3. What happens when two users attempt to draw separate
freehand curves simultaneously by dragging their mouse cursors:
(a) desired output and (b) actual output caused by a mouse-drag
event collision.

.

PROTOTYPE
IMPLEMENTATION
With these implementation issues in
mind, we set four goals for providing
collaboration transparency in Java.

■ Any modifications to Java used to
support collaboration transparency
should come in the form of a class
library that replaces the standard
Java Core API class library without
loss of functionality.

■ A collaboration transparency library
should not restrict code written by
application developers. Application
developers should be able to write
code without concerning themselves
with collaboration details. As a corol-
lary, all Java applets supported with-
in the existing environment should
continue to be supported when used
collaboratively. (If a choice must be
made, some collaboration features
should be unsupported within cer-
tain applications, rather than limiting
which applications can run within
the collaborative environment.)

■ A collaboration transparency library
should keep up with the current
releases of the Java runtime system.

■ A collaboration transparency library
should work with anyone’s properly implemented
Java runtime system.

With these goals in mind, we conducted two experi-
ments. We first wrote a simple applet, EventClient, whose
event handler method (handleEvent()) would for-
ward any incoming (local) events to the event broadcast-
er. Figure 4 shows the key code.

The applet has a running thread that receives remote
events from the event broadcaster, and then introduces
them to the applet using the applet’s event posting
method (postEvent()). In this way, we could see
what events were actually sent from the native platform’s
windowing toolkit to the applet. We could also see
whether events posted to the applet were propagated to
and acted on by native user interface elements. The test
applet included simple user interface elements, such as
buttons and text fields.

In the second prototype, we modified the postEvent()
method in the AWT class library so that the system prints
a message when an event is posted. Figure 5 shows the
code for this. All local events were sent to the event
broadcaster, and then processed locally. The event broad-
caster then sent events to all participants other than the
originator. Again, the applet has a running thread to
receive and introduce remote events into the applet. In

L E V E R A G I N G J A V A A P P L E T S

61

IEEE INTERNET COMPUTING h t tp ://compu te r.o rg/ in te rne t/ MARCH • APRIL 1997

Figure 4. EventClient tests event propagation to and from the native
environment and the Java applet levels.

public class EventClient extends Applet implements Runnable {
EventInputStream in; // Input and Output Streams
EventOutputStream out;
Socket socket = null;

public void init()
{ // Create input and output streams from socket }

public void start()
{ // start thread to read events }

public boolean handleEvent(Event event) {
if (!(event instanceof RemoteEvent)) {

try { // Broadcast Event
out.writeEvent(event);

} catch (IOException ecp)
{ return false; }

}
return super.handleEvent(event);

}

public void run() {
while (true) {

try { // Read Remote Event
Event e = in.readEvent();
((Component)e.target).postEvent(e);

} catch(IOException ecp)
{ continue; }

} } }

Figure 5. Component.postEvent(Event e) is modified to
intercept events and broadcast them to participants.

// in java.awt.Component
public boolean postEvent(Event e) {

ComponentPeer peer = this.peer;

// Find out which events are getting posted
System.out.println(“Target: “ + this);
System.out.println(“Event: “ + e);

// Send the event
if (!(event instanceof RemoteEvent)) {

try {
out.writeEvent(event);

} catch (IOException ecp)
{ return false; }

}

// convert the event to a remote event so that
// it is not rebroadcast
e = new RemoteEvent(e);

// rest is as before

if (handleEvent(e))
return true;

//
}

.

experiments with this approach, we discovered that some
events were not sent to the applet. This indicated that the
event objects we instantiated were not acted on by the
AWT objects to which they were posted.

We conducted these experiments using JavaSoft’s Java
Development Kit version 1.0.2 on a Sun SparcStation 5
and a 120-MHz Pentium-based PC running Windows 95.
Although version 1.1, recently released, drastically
changes the event model at the Java API level, the prob-
lems we discovered using version 1.0.2 remain in the
new version. Hence the limitations we describe next will
remain for the foreseeable future.

Java AWT limitations
When we first considered modifying the Java class
libraries to make all Java applications collaborative, we
assumed that the standard buttons, text fields, and other
interface components would pass all events to the event-
handling system. We also expected the GUI elements to
respond to remotely generated events as if they were
generated by a local user. Most events can be passed and
processed between two instances of an application, but
not all events are handled properly. This is particularly
true when dealing with interface components implement-
ed through a platform’s native interface library.

The Java AWT binds GUI components, such as buttons,
to peers. Peers are platform-specific implementations of
these elements. In this way, the underlying system envi-
ronment is responsible for the display and responsive-
ness of interface elements, such as buttons, text fields,
and scroll bars. This provides the advantage of giving
users the “look and feel” of GUI components on their
native platform. For example, Macintosh buttons look
and act like Macintosh buttons. The AWT relies on the
local system to implement the code for displaying these
GUI elements and reacting to user actions. Thus, the
AWT is much smaller than it would be if it had imple-
mented all the interface elements.

Unfortunately, the AWT removes some necessary infor-
mation and control required to provide collaborators
with information about the actions of group members.
This limitation takes several forms.

Event inconsistency. The AWT is inconsistent in that some
GUI elements send all information about all events that
occur within them, while others send only some events or
only limited information.

For example, mouse events occurring within a button are
not sent to the applet. Only a high-level action event is
sent when a user clicks and releases a button. Mouse
events are never received by the application; instead the
native implementation of the button component handles
them directly. Furthermore, important information about
the local mouse position is lost once the cursor moves
within a button. When an action event is generated, the

location of the mouse within the button is always reported
as (0, 0), no matter where the button was actually pressed.

No remote events. A more important problem is that some
or all generated events posted to GUI elements are
ignored—for example, keystrokes generated by remote
events and sent to a TextField component. This occurs
because the AWT cannot instantiate an event with a
valid pData field. pData is a private field in the Event
class that contains a platform-dependent representation
of an event and is used to reintroduce events into the
platform-dependent toolkit.

When the native implementation of the Java AWT
receives an event with an invalid pData field, it simply
discards it, and the peer never receives the event. Thus,
the peer cannot provide feedback for events received
remotely, because a valid pData field cannot be created.
Jan Newmarch describes this limitation in more detail.9

Selected graphical response. In event broadcasting (as we
consider it here), when a broadcast event is received, it is
posted to the corresponding GUI element in each local
version of the applet. If the developer wrote the element
to handle some type of event, it will execute the method
associated with that event. However, with the Java
Development Kit 1.0.2 and 1.1 implementations of the
AWT, the element does not react to the posted event
graphically. This is because an event is not passed on to
the platform-dependent GUI peer when the event is post-
ed to the Java GUI object. That is, the actual screen ele-
ment is not notified of the event and so the system does
not display the graphical reaction of that element to such
an event.

Additionally, the AWT provides no mechanism that lets a
developer force an element to display input responses,
such as button clicks. This limitation means that imple-
menters cannot provide collaborator awareness to the
extent we described earlier.

Limited cursors. The AWT now provides only a small set
of predefined cursors, and there is no ability to define
new cursor shapes or colors. This limitation affects the
ability to create reasonable cursor shapes for telepointers.

Typical collaborative environments give each collabora-
tor’s telepointer a color unique to that user. To support
What You See Is What I See10 or the more relaxed What
You See Is What I Think You See11 goals for collaborative
software, a user’s cursor should be the same shape and
color locally as well as remotely.

Drawing inconsistencies. The AWT model is inconsistent
because it lets the developer draw within some of its
components, but not all. The native operating system dis-
plays the system-dependent GUI elements, such as
Button, ScrollBar, Label, TextField, and TextArea.
Consequently, in the Windows 95 version of JDK 1.0.2

F E A T U R E

62

MARCH • APRIL 1997 h t tp ://compu te r.o rg/ in te rne t/ IEEE INTERNET COMPUTING

.

the AWT cannot change the on-screen appearance of
these elements. The operating system does not draw GUI
elements derived from the Canvas class, however, so
developers are free to draw on them as they please.
Fortunately, JavaSoft appears to have addressed this
problem, since one can draw over GUI elements in the
Windows 95 and Solaris versions of JDK 1.1.

This inconsistency made it difficult to implement some
collaborative GUI elements, such as telepointers. For
example, once a telepointer moves from a canvas into a
button, it disappears, since it cannot be drawn over the
button. A local collaborator watching the remote user’s
telepointer may mistakenly think that the remote collabo-
rator is no longer participating.

Proposed solutions
We had hoped to modify only a relatively small portion
of the Java AWT to implement collaboration transparen-
cy via event broadcasting. However, we found that the
Java AWT as it exists now would require that we rewrite
all platform-dependent component peers in Java. We did
not want to do this for the same reasons that peers were
introduced originally:

■ It would further slow the already relatively slow per-
formance of Java programs.

■ It would significantly increase the size of the class
library.

■ GUI components would lose their platform-specific
look and feel.

■ Any party other than JavaSoft attempting this would
be caught in a never-ending version chase of the Java
AWT to meet the collaboration transparency library’s
goals described earlier (keeping up with current Java
runtime system releases and working with anyone’s
properly implemented Java runtime system).

Instead of rewriting all the platform-dependent component
peers in Java to implement event broadcasting, we propose
the following modifications to the standard Java AWT.

Propagate events. To exploit Java’s use of native GUI ele-
ments and implement collaboration transparency, all input
events must be available at the Java environment level,
regardless of where they occur and regardless of whether
they involve a component implemented in Java or a com-
ponent implemented in the native graphics toolkit. For
example, mouse events that occur in a button should be
delivered to the application.

Additionally, when an event is instantiated by an applica-
tion and posted to an AWT component, it should fall
through to the native platform’s windowing toolkit so
that the system will react appropriately by displaying
graphical feedback to the input event. To achieve that in
the current AWT, the Event.pData field must be
assigned a valid native platform event structure when an
Event object is constructed.

Tag events. The Event class should include information
about the source of the event, in particular, which instance of
an application generated it. This will allow a transparently col-
laborative environment to buffer and serialize user inputs to
avoid event collision, as we described earlier. Although it is
simple to add such information by extending the Event class
in version 1.0.2, the new event class hierarchy in version 1.1
requires this information to be included in the standard
AWTEvent class.

Allow cursor modifications. The Java API would benefit from
improved support for modifying the displayed mouse cursor.
This would allow the cursor on the collaborator’s screen to
match the color and shape of any telepointer on other
screens. The AWT should provide some means to set a cursor
bitmap and mask. Such a mechanism could exist within the
Cursor class of version 1.1.

CONCLUDING REMARKS
Even with the current status of the AWT, some level of
collaboration transparency is possible. Our preliminary
implementation results are available at http://simon.cs.
vt.edu/JAMM. JavaSoft is responding to many of the
issues we identified.

Collaboration transparency through event broadcasting,
as presented here, leaves open some research areas that
bear exploration before it may be applied to all applica-
tions. In addition to distributing user inputs, we must dis-
tribute other inputs such as files, network connections,
random number seeds, and current time, to maintain
consistency among the copies of the shared application.
Additionally, we believe it is important to support late-
comers to a shared application session. This enhance-
ment can be implemented by employing application
migration, copying the current state of the application
and migrating that state to the latecomer’s host.

We believe these issues are worth resolving. Collabora-
tion transparency will open up new application areas
in education, scientific research, and business as these
domains continue to stress teamwork and remote com-
puting. The ability to share applications supports the
growing shift from personal computing to interper-
sonal computing. ■

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation under grant

REC-9554206, and by Sun Microsystems. We thank Randy Smith for his

suggestions and review of an earlier draft of this article. We also thank

Amy Fowler of the JavaSoft AWT group for her comments.

REFERENCES
1. J. Lauwers and K. Lantz, “Collaboration Awareness in Support of

Collaboration Transparency: Requirements for the Next Generation

of Shared-Window Systems,” Proc. Conf. Human Factors in

Computing Systems, ACM Press, New York, 1990, pp. 303-311.

L E V E R A G I N G J A V A A P P L E T S

63

IEEE INTERNET COMPUTING h t tp ://compu te r.o rg/ in te rne t/ MARCH • APRIL 1997

.

2 O. Jones, “Multidisplay Software in X: A Survey of Architectures,”

The X Resource, Spring 1993, pp. 97-113.

3. R.B. Smith, “Kansas: A Large, Flat, Multiuser Virtual World for

Interactive Simulations,” Virginia Tech Computer Science Colloquium

Series, Apr. 1996.

4. J. Lauwers et al., “Replicated Architectures for Shared Window

Systems: A Critique,” Proc. Conf. Office Information Systems, ACM

Press, New York, 1990, pp. 249-260.

5. W. Minenko, “The Application Sharing Technology,” The X Advisor,

June 1995; http://www.unx.com/DD/advisor/.

6. T. Crowley et al., “MMConf: An Infrastructure for Building Shared

Multimedia Applications,” Proc. Computer-Supported Cooperative

Work, ACM Press, New York, 1990, pp. 329-342.

7. S. Greenberg and D. Marwood, “Real Time Groupware as a

Distributed System: Concurrency Control and its Effect on the

Interface,” Proc. Conf. Computer-Supported Cooperative Work, ACM

Press, New York, 1994, pp. 207-217.

8. C. Gutwin, S. Greenberg, and M. Roseman, “A Usability Study of

Awareness Widgets in a Shared Workspace Groupware System,”

Proc. Conf. Computer-Supported Cooperative Work, ACM Press, New

York, 1996, pp. 258-67.

9. J. Newmarch, “The Java AWT: New Event Model,” http://pandonia.

canberra.edu.au:80/java/xadvisor/eventmodel/eventmodel.html.

10. M. Stefik et al., “WYSIWIS revised: Early Experiences With Multiuser

Interfaces,” Proc. Conf. Computer-Supported Collaborative Work,

ACM Press, New York, 1986, pp. 276-290.

11. R.B. Smith, “What You See Is What I Think You See,” SIGCUE Outlook ,

Vol. 21, No. 3, 1992, pp. 18-23.

JAMES “BO” BEGOLE is a PhD candidate in computer science at Virginia

Tech. His research interests include collaborative computing and inter-

active visualization. Begole received a BS in mathematics from

Virginia Commonwealth University and an MS in computer science

from Virginia Tech. He is a member of the ACM.

CRAIG A. STRUBLE is a PhD candidate in computer science at Virginia

Tech. His interests include symbolic computation, programming lan-

guages, and collaborative software. Struble received a BS in mathe-

matics and a BS and an MS in computer science—all from Virginia

Tech. He is a member of the ACM.

CLIFFORD A. SHAFFER is an associate professor of computer science at

Virginia Tech. His research interests are in computer-aided education,

computer-supported cooperative work, spatial data structures, and

data visualization. Shaffer received a PhD in computer science from

the University of Maryland at College Park. He is a member of the

IEEE Computer Society, ACM, Sigma Xi, and American Association for

Advancement of Science.

Readers may contact Shaffer at Dept. of Computer Science, Virginia Tech,

Blacksburg, VA 24016; shaffer@cs.vt.edu.

F E A T U R E

IEEE Internet Computing actively solicits a variety of articles useful to software/hardware designers and
developers working in the domain of Internet technology and applications.

IC articles are peer-reviewed for technical accuracy before they are accepted for publication. They are subse-
quently edited for presentation to a broad audience of computer professionals. Accordingly, all articles must
include a general introduction (250-500 words) that explains the subject matter of the article to nonspecialist
readers and places the article in the broader context of Internet technologies.

In general, we look for the following kinds of articles:
■ Reports: Describing particular research or development projects and their potential or actual use. Should include tech-

niques, processes, tools, and environment (type of application domain, hardware and software platform, types of peo-
ple building and using the system, etc.) sufficient to let readers judge whether the work is relevant to their situation.

■ Surveys: Reviewing how a specific technology is applied or a real-world problem is solved today in industry and the
most promising research and development activities under way to advance the same.

■ Tutorials: Giving step-by-step instructions on how to solve a specific problem or perform a specific development task.
■ Essays: Offering interesting perspectives on the effects of Internet technologies and applications on computing theory,

engineering design or practice, or society in general.

Referees use the following criteria in their evaluations:
■ Relevance: significance of the technology and its application or effect.
■ Originality: extent to which the material is novel or nonobvious to a broad audience of computer professionals who

are applying Internet technologies in their work.
■ Validity: soundness of the technical method and conclusions.
■ Presentation: clarity of expression and suitability for a broad audience within the profession.

To submit an article for review, e-mail an abstract and, preferably, a URL for the full article to the editor in
chief or another member of the IEEE Internet Computing editorial board, who will decide whether the article
is appropriate for review the magazine. If so, you will be referred to the Publications Office for instructions to
begin the peer-review process.

More detailed author guidelines are available at our webzine, IC Online, http://computer.org/internet/.

AUTHOR GUIDELINES

.

