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Abstract. This paper describes a computing environment
named WBCSim that is intended to increase the productivity
of wood scientists conducting research on wood-based com-
posite materials. WBCSim integrates Fortran 77-based simul-
ation codes with a graphical front end, an optimization tool,
and a visualization tool. WBCSim serves as a prototype for
the design, construction and evaluation of larger scale prob-
lem solving (computing) environments. Several different
wood-based composite material simulations are supported. A
detailed description of the prototype’s software architecture
and a typical scenario of use are presented. The system
converts output from the simulations to the Virtual Reality
Modeling Language (VRML) for visualizing simulation
results.
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1. Introduction

Scientists and engineers in many application domains
commonly use modeling and simulation codes
developed in-house that have poor documentation and
a poor user interface. Typically, only the developers
of a code can make effective use of it, and these
codes are not typically integrated with tools for vis-
ualizing the results. Further, the code is often tied to
a particular computing environment. This situation
reduces the productivity of many research groups.
This paper describes a computing environment named
WBCSim that is intended to increase the productivity
of wood scientists conducting research on Wood-
Based Composite (WBC) materials. WBCSim inte-
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grates Fortran 77-based simulation codes with a
graphical, Web-based user interface, an optimization
tool and a visualization tool.

The objective of WBCSim is twofold: (1) to
increase the productivity of our WBC research group
by improving their software environment; and (2)
to design and evaluate a specific prototype Problem
Solving (computing) Environment (PSE) as a step
towards understanding how integrated PSEs should
be created. The philosophy of such computing
environments, a detailed description of the software
architecture of our prototype, and several different
wood-based composite material simulations are dis-
cussed.

A problem solving environment is a system that
provides a complete, usable and integrated set of
high level facilities for solving problems from a
prescribed domain [1,2]. PSEs allow users to define
and modify problems, choose solution strategies,
interact with and manage appropriate hardware and
software resources, visualize and analyze results,
and record and coordinate extended problem solving
tasks. In complex problem domains, a PSE may
provide intelligent and expert assistance in selecting
solution strategies, e.g. algorithms, software compo-
nents, hardware resources, data, etc. Perhaps most
significantly, users communicate with a PSE in the
language of the problem, not in the language of a
particular operating system, programming language
or network protocol. Expert knowledge of the under-
lying hardware or software is not required. Experi-
ence in dealing with large-scale engineering design
and analysis problems has indicated the critical need
for PSEs with four distinguishing characteristics: (1)
facilitate the integration of diverse codes; (2) support
human collaboration; (3) support the transparent use
of distributed resources; and (4) provide advisory
support to the user.
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WBCSim is a prototype PSE for making legacy
programs, which solve scientific problems in the
wood-based composites domain, widely accessible.
WBCSim currently provides Internet access to com-
mand-line driven simulations developed by the
Wood-Based Composites Program at Virginia Poly-
technic Institute and State University. WBCSim
leverages the accessibility of the Web to make the
simulations with legacy code available to scientists
and engineers away from their laboratories. The
simulation codes used as test cases are written in
Fortran 77 and have limited user interaction. All the
data communication is done with specially formatted
files, which makes the codes difficult to use.
WBCSim hides all this behind a server, and allows
users to graphically supply the input data, remotely
execute the simulation, and view the results in both
textual and graphical formats.

The remainder of this paper is organized as fol-
lows. Section 2 reviews some related work in the
field of PSEs. Section 3 gives a detailed description
of the three simulation models supported by
WBCSim. Section 4 explains the WBCSim user
interface. The various software architecture layers
of WBCSim and the interaction between them is
described in Section 5. To help prospective
WBCSim programmers locate files on the WBCSim
server, Section 6 explains the file structure of
WBCSim. Section 7 describes how WBCSim is
typically used. Finally, Section 8 describes the vis-
ualization phase of the simulations.

2. Related Work

In the past, problem-specific PSEs have been
developed for a wide variety of application domains.
Recently, increasing attention has been given to
broader issues, such as (1) developing a model or
architecture for PSEs, (2) leveraging the Web, (3)
supporting distributed, collaborative problem solv-
ing, and (4) providing software infrastructure
(‘middleware’) to make PSE-building easier.

One problem domain where PSEs are common is
the numerical solution of Partial Differential Equa-
tions (PDEs). An early example is ELLPACK [3],
a portable Fortran 77 system for solving two- and
three-dimensional elliptic PDEs. Its strengths include
a high-level language which allows users to define
problems and solution strategies in a natural way
(with little coding), and a relatively open architecture
which allows expert users to contribute new problem
solving modules. ELLPACK’s descendents include
Interactive ELLPACK [4], which adds a graphical

user interface and allows greater user interaction,
and Parallel ELLPACK (PELLPACK) [5], which
includes a more sophisticated and portable user
interface, incorporates a wider array of solvers, and
can take advantage of multiprocessing. PELLPACK
also includes an expert or ‘recommender’ component
named PYTHIA [6,7]. Another system which pro-
vides a high level, problem-oriented environment
for PDE-solving is SciNapse [8], a code-generation
system that transforms high-level descriptions of
PDE problems into customized C or Fortran code,
in an effort to eliminate the need for programming
by hand. Other PSEs in the PDE problem domain
include DEQSOL [9], PDEase2D [10], and PDE-
SOL [11].

PSEs are being built for a number of other scien-
tific domains as well. For example, Johnson et al.
[12] describe SCIRun, a PSE that allows users to
interactively compose, execute and control a large-
scale computer simulation by visually ‘steering’ a
dataflow network model. Bramley et al. [13,14] have
developed Linear System Analyzer, a component-
based PSE, for manipulating and solving large-scale
sparse linear systems of equations. Dabdub et al.
[15] have built a PSE for modeling air pollution
in urban areas. The WISE environment [16] lets
researchers link models of ecosystems from vari-
ous subdisciplines.

An important goal of PSE researchers is to define
a generic architecture for PSEs, and to develop
middleware (typically object-oriented) to facilitate
the construction and tailoring of problem-specific
PSEs [1]. This emphasis, along with work in Web-
based, distributed and collaborative PSEs, charac-
terizes much of the current research in PSEs. For
example, Catlin et al. [17] describe PDELab, a
multilayered, object-oriented framework for creating
high-level PSEs. PDELab supports PDESpec, a PDE
specification language that allows users to specify a
PDE problem in terms of PDE objects and the
relationships and interactions between them. Parallel
Application WorkSpace (PAWS) [18] is a CORBA-
based, object-oriented server for connecting parallel
programs and objects. Other researchers investigat-
ing object-oriented frameworks for PSE-building
include Gannon et al. [14], Balay et al. [19] and
Long and Van Straalen [20].

With the rise of the Web, PSEs are now beginning
to support distributed problem-solving and collabor-
ation. Regli [21] describes Internet-enabled com-
puter-aided design systems for engineering appli-
cations. Net PELLPACK [22], PELLPACK’s Web-
based counterpart, lets users solve PDE problems
via Java applets. Other Web-based PSEs include
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NetSolve [23] and NEOS [24]. Current PSE-related
research projects that emphasize distributed collabor-
ation include LabSpace [25], the Intelligent Syn-
thesis Environment (ISE) [26], Habanero [27],
Tango [28], Symphony [29], and Sieve [30].

3. Simulation Models

WBCSim contains three simulation models of inter-
est to scientists studying wood-based composite
materials manufacturing. Each of these models is
described briefly below.

3.1. Rotary Dryer Simulation (RDS)

The rotary dryer simulation model [31,32] was
developed as a tool to assist in the design of drying
systems for wood particles, as used in the manufac-
ture of particleboard and strandboard products. The
rotary dryer is used in about 90% of these processes.
It consists of a large, horizontally oriented, rotating
drum (typically 3–5 m in diameter and 20–30m in
length). The wet wood particles are mixed directly
with hot combustion gases at the inlet. The gas flow
provides the thermal energy for drying, as well as
the medium for pneumatic transport of the particles
through the length of the drum. Interior lifting
flanges serve to agitate and produce a cascade of
particles through the hot gases. This process uses a
co-current flow.

The RDS model consists of a series of material
and energy balance equations, which are defined for
each cascade of wood particles. A cascade cycle
begins when a particle drops off a lifting flange and
falls to the bottom of the drum. This is followed
by travel along the periphery of the drum, when the
particle is caught by a lifting flange. The cascade
ends when the particle attains its maximum angle
of repose and tumbles off of the lifting flange. The
heat and mass flows between cascade cycles, and
the distance of travel along the length of the drum
for each cycle, are determined by algebraic equa-
tions. The user must supply the inlet conditions of
the hot gases and wet wood particles, as well as
the physical dimensions of the drum and lifting
flanges, flow rates and thermal loss factor for the
dryer. The RDS model predicts the moisture content
and temperature of the wood particles for each
cascade in the drum, and predicts the gas phase
composition and temperature at each cascade.

3.2. Radio-Frequency Pressing (RFP)

The radio-frequency pressing model [33] was
developed to simulate the consolidation of wood
veneer into a laminated composite, where the energy
needed for cure of the adhesive is supplied by a
high-frequency electric field. Radio-frequency
pressing is commonly used for thick composites and
for laminated composites that are nonplanar. Wood
is a dielectric material, where the presence of water
(a common constituent of wood) and polar adhesive
molecules assist in the absorption of the electric
field energy. The model may be used to help design
alternative pressing schedules.

The RFP model consists of a collection of nonlin-
ear PDEs that describe the heat and mass transfer
within the veneer layers. The primary variables are
temperature and moisture content. The moisture con-
tent is further divided into three phases: bound
water, liquid water and water vapor. These water
phases must satisfy a criterion of local thermo-
dynamic equilibrium as represented by a nonlinear
algebraic equation. The model is one-dimensional,
with a fixed resistance to heat and mass flux at the
boundary. The results of the model include the time-
dependent temperature and moisture content profiles
in the veneer layers. A time- and temperature-depen-
dent equation also predicts the extent of adhesive
cure. The user must supply the initial density, moist-
ure content and temperature of the veneer, as well
as veneer thickness and the electric field strength.

3.3. Composite Material Analysis (CMA)

The composite material analysis model was
developed to assess the strength properties of lami-
nated fiber reinforced materials, such as plywood.
The model can perform two tasks. First, the normal
and shear stresses together with the strains and
curvatures induced by a user-defined deformed shape
in the material can be calculated. Second, it can
calculate the stresses and strains caused by the
combination of different loading conditions such as
tension, moment, torque or shear. The calculations
are based on the Composite Lamination Matrix
Theory (CLMT) and the Hoffmann failure criteria.
The model predicts the tensile strength, bending
strength and shear strength of the composite
material. The strength calculations are performed
iteratively. The load level is increased by a specific
increment until all the layers in the composite fail.
The load at the point of failure of each lamina, and
the induced stresses and strains in the laminate,
are recorded.
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This simulation was designed to allow easy speci-
fication of the type of material, thickness and orien-
tation of the fibers at each layer of the composite.
The mechanical and failure properties of different
materials are predefined. The detailed calculations
at each step of the iteration process are stored as
text files during the solution phase. The resulting
stresses and the failure load of each layer are dis-
played in a three-dimensional model of the lami-
nated composite.

4. WBCSim User Interface

The WBCSim user interface is composed of Java
applets. Figure 1 shows the applet that takes input
for the RDS simulation. The interface consists of a
set of text boxes where the user can enter values
for various input parameters. The ‘Store Problem’
button is used to store the current set of input
values, which can be retrieved later using the
‘Retrieve Problem’ button. Some simulation para-
meters are not accessible by the user, but may
be viewed by clicking on ‘Simulation Constants’.
Clicking on ‘Run Simulation’ executes the Fortran
code with the input values supplied by the user
through the applet, and produces output data in text
and graphical forms. For example, Fig. 2 shows an
output graph for the temperature and moisture con-
tent at various distances from the dryer inlet.

The input screen for the RFP simulation is similar
to the RDS input screen, as shown in Fig. 3. The
user can enter values for the parameters through
text boxes, and the results are produced in both text

Fig. 1. Input screen for RDS simulation.

Fig. 2. Output graph for RDS simulation.

Fig. 3. Input screen for RFP simulation.

and graphical forms. For example, Fig. 4 shows an
output temperature graph as a function of position
through the thickness of the laminated composite
and time during processing. The graphic is a fixed-
frame three-dimensional plot generated by Mathema-
tica.

Figure 5 shows the input screen for the CMA
simulation. Each row of input data represents a layer
of the wood composite. The user can add layers to
the composite by clicking on the leftmost checkbox
for that layer. Currently, a composite can have at
most ten layers. For each layer, the user can select
from a menu of materials, including several wood
species and synthetic materials. The material proper-
ties are predefined. Thickness and fiber orientation
may be specified for each layer. The user can enter
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Fig. 4. Output graph for RFP simulation.

Fig. 5. Input screen for CMA simulation.
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values for various forces acting on the composite
by referring to the image displayed within the applet.
Clicking on ‘Run Simulation’ executes the Fortran
code. An example of the output produced is shown
in Fig. 6.

5. Software Architecture

The software architecture for WBCSim uses a three-
tier model. The tiers correspond to (1) the legacy
simulations and various visualization and optimiz-
ation tools, perhaps running on remote computers,
(2) the user interface, and (3) the middleware that
coordinates requests from the user to the legacy
simulations and tools, and the resulting output.
These three tiers are referred to as the developer
layer, the client layer, and the server layer, respect-
ively, as shown in Fig. 7.

WBCSim supports legacy programs written in any
programming language. The only restriction is that
the program must take input parameters from the
command-line, one or more input files, or the stan-
dard input stream. In particular, WBCSim supports
the three Fortran 77 simulation codes described in
Section 3.

Fig. 6. Example output for the CMA simulation.

5.1. Developer Layer

The developer layer consists primarily of the legacy
programs on which WBCSim is based. The server
layer expects a program in the developer layer to
communicate its data (input and output) in a certain
format. Thus, legacy programs are ‘wrapped’ with
custom scripts. The scripts are written in Perl, and
each legacy program must have its own wrapper
script. The script receives input parameters from the
server, and converts those parameters as appropriate
for that legacy program. The legacy program is
executed with these parameters fed to its standard
input stream. The program’s input may direct it to
load appropriate input files. When the legacy pro-
gram terminates, the wrapper script packages the
program’s output to create an HTML page, and
passes the URL of this page to the server.

The developer layer also includes tools to help
developers get more from their simulations. In
WBCSim this concept is implemented by integrating
the legacy programs with an optimization tool and
various visualization tools.

The optimization tool provided with WBCSim is
the Design Optimization Tool (DOT) [34]. DOT
allows the user to provide ranges, as opposed to
fixed values, for the input parameters, and get a
solution that either maximizes or minimizes a given



204 A. Goel et al.

Fig. 7. WBCSim architecture overview.

output value. DOT is a sophisticated engineering
optimization subroutine incorporated into WBCSim.

WBCSim examples use two visualization tools:
Mathematica [35] and VRML [36]. Mathematica is
used to generate static three-dimensional graphs of
the simulation output. The output is also translated
to VRML. With a VRML viewer, the resulting
graphs can be viewed from various directions in the
three-dimensional viewspace. In principle, devel-
opers can add custom filters to convert a program’s
output to a useful form for any viewer of their
choice.

The simulations generate text output files contain-
ing raw data. The script that wraps the RFP simul-
ation executes Mathematica to generate GIF files,
and the VRML translator to generate VRML files.
The HTML page generated for the results of the
simulation includes links to these files.

5.2. Client Layer

The client layer is responsible for the user interface.
It also handles communication with the server layer.
This is the only layer that is visible to end-users,
and typically will be the only layer running on the
user’s local machine.

The client layer consists of the Java applets
described in the previous section. After the user
enters all the necessary parameters to control
execution of the simulation, the client communicates
these parameters along with a request to execute

the corresponding program to the server layer. The
server layer returns the URL for the HTML page
generated from the simulation’s output. The client
layer directs this page to the user’s HTML browser.

The client layer also contains viewers for the
various visualization tools found in the developer
layer. WBCSim requires a VRML 2.0 viewer for
the RFP model, a VRML 1.0 viewer for the CMA
model, and a 3D visualization Java applet. The user
is responsible for installing a VRML viewer on the
local machine, but the 3D visualization applet is
automatically downloaded from the HTTP server.

5.3. Server Layer

The server layer is the core of WBCSim as a
system distinct from its legacy code simulations
and associated data viewers. The server layer is
responsible for managing execution of the simula-
tions and for communicating with the user interface
contained in the client layer. The main part of the
server layer is the Javamatic server [37]. The Javam-
atic server is written in the Java programming langu-
age. The Javamatic server can direct execution of
multiple simulations and accept multiple requests
from clients concurrently. The results from the simu-
lations are communicated to the clients using an
HTTP server.

For security reasons, Java applets that have been
downloaded from a network are not allowed to read,
write or execute files on the client’s (local) file
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system. Since WBCSim takes input data from users
via Java applets, this means that such applets must
forward requests to execute the legacy application
through the WBCSim server for processing. The
server processes these requests and returns the
results of the transaction to the client.

WBCSim uses the JavaSocketclass to communi-
cate between the client and the server. Each time a
user issues a command through a Java applet (e.g.
he/she clicks on the ‘Run Simulation’ button), a
new client request is sent to the Javamatic server.
The Javamatic server then goes through the follow-
ing steps:

1. The main thread of the server creates a new
thread to service the request and then continues
to listen for new requests.

2. This new thread then receives the request from
the client.

3. If the request is to execute a simulation, the
server then validates the identifier in the request
using a dictionary file. The dictionary file con-
tains a list of known application identifiers along
with the path for the executable file for each. If
the validation fails, the server responds with an
error message and closes the connection.

4. If the validation succeeds, the server then
receives the arguments for the simulation and
returns a unique URL. This URL points to the
HTML file that will contain the results after
the execution.

5. The server creates a new process and takes con-
trol of the input, output and error streams. How-
ever, only the error stream is used to provide
feedback to the client. The Java Virtual Machine
buffers the output stream and the output file(s)
are available only after the process terminates.
They are not used by WBCSim for real-time
feedback.

6. The server then executes the application in the
new process. While the process is executing, the
current thread sends to the client any information
coming from the error stream.

7. The client can request termination of the
execution of the simulation, or query the status
of the server.

8. When the simulation terminates, the server closes
its socket to the client and stops the two threads.

9. The client then contacts the HTTP server (which
runs on the same machine as the Javamatic
server), and gets the content of the HTML page
generated for the simulation’s output.

6. Directory Structure of WBCSim

WBCSim simulations can be accessed from
http://wbc.forprod.vt.edu/pse/. All source and data
files required for running WBC simulations are
placed in the WBCSim home directory. The direc-
tory structure of WBCSim is shown in Fig. 8.

A brief description of the contents of each direc-
tory in WBCSim is as follows:

1. admin/ : contains files required for maintaining
the server, i.e. starting the server, setting environ-
ment variables prior to starting the server, main-
taining a log of client transactions, and the
WBCSim dictionary of recognized commands.

2. classes/ : contains the Java bytecode for
WBCSim.

3. data/archive/ : contains a log of old simul-
ation results that a user may have stored. The
log files are stored under a separate subdirectory
for each user.

4. data/input/ : contains the simulation input
files generated by a user while performing a
simulation. These files are temporary and may
be deleted.

5. data/output/ : contains the simulation output
files generated by a user while performing a
simulation. All the results have unique names
and are stored here temporarily until they are
permanently archived. These files may be deleted.

6. images/ : contains images that are displayed
on the WBCSim Web pages. Images generated
by simulations are not stored here.

7. scripts/ : contains Perl scripts for WBCSim.
8. src/fortran/ : contains Fortran code that

runs the simulations.
9. src/java/ : contains Java source code for

WBCSim.

Fig. 8. Directory structure of WBCSim.
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7. Simulation Scenario

WBCSim incorporates the legacy Fortran 77 pro-
grams that implement its models without any modi-
fications to the code. This has the advantage that if
the programmer decides to make changes in the
legacy program, such as bug fixes, recompilation
with new libraries or newer compilers, or
implementing a different algorithm, the new program
can be installed in WBCSim without additional
work. Figure 9 shows how this is possible.

Consider the RFP simulation. A Perl script (RFP
Sim Wrapper) acts as a proxy between the Javamatic
server and the simulation. This script is responsible
for converting data from the Javamatic server to a
format the RFP simulation can recognize.

In a typical scenario, the server will execute the
RFP Sim Wrapper and give it all the input para-
meters from the command line plus an additional
argument. The input parameters come directly from
the client, and they are a sequence of strings derived
from the user’s selection. The Javamatic server treats
all parameters as strings, regardless of whether they
are Boolean, numeric or alphanumeric. The
additional argument is a filename, which is access-
ible from the HTTP server. The RFP Sim Wrapper
does not return the results to the Javamatic server,
but outputs them in HTML format to that file. The
Javamatic server then returns to the client the URL
pointing to that file.

When executed, the RFP Sim Wrapper packages
all the input parameters into a file and executes the
RFP simulation. The parameters are recognized by
position, thus all parameters must be present and
have a value, even if they are not visible on the
interface or the user did not provide a value. The
client has a list of default values for all the para-
meters that are not visible on the interface, and so
it fills the blanks before sending the parameters.

The RFP simulation has its own text-based user

Fig. 9. Legacy Fortran 77 simulation code wrappers.

interface and requires input from the standard input
stream (e.g. keyboard). The RFP Sim Wrapper takes
control of the standard input stream of the RFP
simulation and generates the appropriate keystrokes
to read the input file and generate the results. It
does this by generating a new file with all the
appropriate commands, and redirecting that file at
the command-line when it executes the simulation.
This is a temporary file and is deleted when the
simulation completes execution.

While the simulation executes, RFP Sim Wrapper
takes control of the standard output stream of the
simulation and listens for specific string patterns.
These string patterns indicate major milestones in
the execution of the simulation (i.e. successful com-
pletion of a simulation step or the computation
of an intermediate value). RFP Sim Wrapper then
generates a message and outputs it to the standard
error stream. The Javamatic server captures that
message and propagates it to the client. Eventually,
the message gets to the user. The standard error
stream is used, instead of the standard output stream,
because Java buffers the standard output stream and
makes it available only after the process terminates.
In contrast, the contents of the standard error stream
are sent continuously to the parent of this process.
Arbitrary network delays can cause a group of mess-
ages to be delivered simultaneously, even though
they were generated at different times. The client
always displays the latest message and discards any
old messages.

When the simulation terminates, the wrapper takes
the results and creates a file, in HTML format, with
the filename given by the server. This file contains
a list of links that point to the results in various
formats. The RFP Sim Wrapper then runs Mathema-
tica to read the results, which are in textual format,
and generates a 3D Plot, which is a Mathematica
internal data structure. RFP Sim Wrapper then calls
the appropriate Mathematica function to output the
3D Plot to a file in encapsulated postscript format.
It also calls the VRML translator to generate a
VRML wireframe representation of the results. RFP
Sim Wrapper executes a series of filters to convert
the results to GIF images. RFP Sim Wrapper also
creates text and HTML-table versions of the results.
All these different views are stored in individual
files on the server. An archive tool manages the
files from different simulation runs.

A benefit of using the simulation code in a PSE
environment is that other software tools, such as
the DOT optimizer, can be used to provide more
functionality to the end-user. The user can provide
a range instead of a fixed value for any of the input
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parameters, and specify which component in the
output to maximize or minimize. RFP Opt Wrapper,
a Perl script, receives the input parameters from the
server plus the variables to optimize and a filename.
The wrapper then packages all the input parameters
in a file and executes DOT Wrapper, which is a
Fortran 90 program. RFP Opt Wrapper gives DOT
Wrapper the filename that contains the data, plus
the name of the program to call every time the
optimizer asks for an evaluation of the objective
function. RFP/DOT Wrapper executes the RFP
simulation once and returns the objective function
value. When the optimizer finishes, DOT Wrapper
returns the optimal parameter values and objective
function value to RFP Opt Wrapper. RFP Opt Wrap-
per then executes the RFP simulation one more time
and packages the results in the same format that RFP
Sim Wrapper uses. The advantage is that neither the
simulation code nor the optimization code needs to
be changed. To add a new optimizer with a different
optimization algorithm, the only thing that needs to
be done is to modify the wrapper script DOT Wrap-
per. The simulation code and RFP/DOT Wrapper
remain the same.

8. Visualization

VRML was chosen as the primary viewing environ-
ment for simulation output. Our approach is to
convert output generated by Fortran into a VRML
description so that the output of the simulations can
be visualized interactively. A custom-built translator
provides greater control over the description of 3D
models that third-party translators cannot provide.
VRML was chosen for the following reasons:

1. VRML is a recognized standard for visualizing
3D worlds.

2. VRML viewers are available for a wide variety
of platforms, and most of them are easy to use.

3. VRML syntax is simple, and VRML code can
be easily generated by programs [38].

VRML models were generated for the radio-
frequency pressing model and the composite material
analysis model.

I Radio-frequency pressing model: the output data
generated by RFP is a matrix of numbers where
each number represents the value of a dependent
variable with respect to two independent vari-
ables. Since this is a two-dimensional data
matrix, it is conveniently modeled as a VRML
ElevationGrid , as shown in Fig. 10. The

dependent variable here is ‘Pressure’ (y axis),
which is now represented by variations in the
height of the elevation grid, and the independent
variables are ‘Position’ (x axis) and ‘Time’ (z
axis). Each element in the matrix becomes a
colored point on the grid, and the color is
smoothly varied between the grid points.
WBCSim also provides a variant of this model,
where elements in the matrix are represented
by squares rather than points, and a different
color is assigned to each square, resulting in a
checkered elevation grid.

To ensure that the top and bottom views of
the elevation grid are able to indicate the true
height of the grid points, each grid point is
colored based on its height, with blue rep-
resenting the lowest point on the grid and red
the highest. All other grid points are colored
by linearly interpolating between blue and red
color values.

I Composite material analysis model: in this simul-
ation, the output contains information about the
forces being applied on various layers of a
composite when one or more of the layers fail
due to an applied load. The composites are
tested for strength based on their material pro-
perty, thickness of layers and orientation of the
fibers in each layer. Material properties may be
selected from a menu of various wood species.
Five testing methods have been implemented:
analysis, design, tensile strength, bending
strength and shear strength. In the analysis
method, the program calculates the deformed
shape of a multi-layered composite laminate
(e.g. plywood) caused by user-defined loads and
moments. In the design method, the program
calculates the applicable loads and moments
which cause a user-defined deformation of the
multi-layered composite. The other three
methods calculate the magnitude of the load
(tensile, bending or shear) which causes the
multi-layered composite laminate to fail. In the
analysis and design methods, one or more layers
may or may not fail, whereas in the other three
methods, the simulation continues until all the
layers fail. It is the job of the VRML translator
to decide which layers have failed by looking
at the Fortran-generated output files. Each time
a layer fails, a new VRML model is generated
containing information about the forces on each
layer at that instant. Failed layers are displayed
in red (gray in the figure), whereas active layers
are displayed in black, as shown in Fig. 11.
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Fig. 10. Pressure graph showing the variation of pressure with increasing distance from the laminate surface and with time (the
receding axis).

Fig. 11. Wireframe model of a composite showing failed layers
(gray) and active layers (black), and the orientation of fibers in
each layer. In this figure, the second layer has failed. The
horizontal protrusions are proportional in length to the magnitude
of forces being applied to the layers at the time of failure. The
direction of the protrusions is unimportant.

9. Conclusion

By providing a Web-based graphical interface to
command-line Fortran applications, WBCSim pro-
vides the following benefits:

1. It enables a wider class of users to access these
tools away from their workplaces.

2. Since these simulations take input via Java
applets, scientists and engineers working from a
variety of platforms are able to access them.

3. All processing is done on the server-end, so
users of WBCSim need not worry about software
installation issues at the client – anybody with
a Java-enabled Web browser and an Internet
connection can perform these simulations.

4. Output from the simulations is visualized graphi-
cally as compared to the earlier method of read-
ing text files generated by Fortran. This has the
advantage that the user does not need to know
what subprograms are being invoked, and what
data conversions are being done to satisfy a
request. In other words, the user can concentrate
on the intellectual aspects of the problem solution
[39], leaving data manipulation, management and
presentation to WBCSim.

In short, WBCSim provides an integrated set of
high-level facilities for solving problems in the
wood-based composites domain. It allows users to
define, record and modify problems, and to visualize
and analyze simulation results, which is the very
essence of a PSE.

The original motivation for creating WBCSim
was the more obvious effects of improved usability
provided by the graphical user interface and Web-
based access. These effects in themselves would be
enough to make WBCSim a success for the research
group that depends upon these WBC models. How-
ever, there are more significant effects of WBCSim
on the group’s productivity, which were not so
clearly predictable in advance. These effects are
related to the synergistic nature of combining the
models, an optimizer tool and a visualization tool.
The resulting integrated package immediately led to
greater use of the simulation models by the
researchers. Not only did they use the models more,
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but they used them to examine the design space in
new ways. This is borne out by the fact that the
researchers started to use parameter settings that
caused the simulations to fail, i.e. they uncovered
new bugs in the simulation codes. Once these bugs
were corrected, the researchers were able to continue
more extensive use of the models.

It is likely that this integration effect will arise
in many application domains. In general, an
increased ability to integrate simulation, optimiz-
ation, and analysis tools will allow researchers to
get more out of their tools as they find new ways
to make use of them.
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