
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (in press)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.817

S4W: a problem-solving
environment for wireless system
design

Dhananjay Mishra1, Clifford A. Shaffer1,∗,†, Naren Ramakrishnan1,
Layne T. Watson1,2, Kyung K. Bae3, Jian He1, Alex A. Verstak1 and
William H. Tranter3

1Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg,
VA 24061, U.S.A.
2Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,
VA 24061, U.S.A.
3Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, U.S.A.

SUMMARY

This work describes the Site-Specific System Simulator for Wireless System Design (S4W), a problem-
solving environment (PSE) that integrates visualization and computational tools with a high-level graphical
user interface. S4W improves the ability of wireless system engineers to design an indoor wireless system by
encouraging them to think in terms of designing the system for optimal performance. Issues of computation
management, data management, and location of resources are hidden from the user. The complex nature of
data sets in the domain of wireless simulations calls for a customized set of visualization tools. Therefore,
a number of ad hoc visualizations were developed for S4W. A study comparing the integrated system with
an earlier, unintegrated version is presented. This helps to demonstrate the productivity gains that a PSE
provides. Copyright c© 2007 John Wiley & Sons, Ltd.

Received 25 May 2005; Revised 5 January 2007; Accepted 12 January 2007

KEY WORDS: problem-solving environment; wireless system design; visualization; database-centered
architecture

∗Correspondence to: Clifford A. Shaffer, Department of Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, U.S.A.
†E-mail: shaffer@vt.edu

Contract/grant sponsor: National Science Foundation; contract/grant numbers: EIA-9974956, EIA-9984317 and EIA-0103660

Copyright c© 2007 John Wiley & Sons, Ltd.



D. MISHRA ET AL.

1. INTRODUCTION

A problem-solving environment (PSE) is an integrated system that provides a convenient set of high-
level tools that allows users to define and modify a problem description, choose solution strategies,
manage software and hardware resources, visualize and analyze results, and record and coordinate
problem-solving tasks. They are intended to provide all the necessary tools to the user for solving some
scientific problem [1]. Gallopoulos et al. [2] suggests: ‘The time required for many design, analysis,
and production tasks will be shortened by one or two orders of magnitude. Further, the results produced
will in many cases be better and more reliable. The challenge is to encapsulate our problem-solving
knowhow into easily used, flexible systems.’ Our own experience comparing an integrated PSE with a
functionally equivalent but disparate collection of tools bears this out.

While PSEs in computational science are often complex, have a rich software architecture, and
integrate large-scale simulations, the only part of a PSE visible to the user is the user interface. The
user interface’s goal is to keep the user from worrying about underlying intricacies, while still providing
the required functionality.

The Site-Specific System Simulator for Wireless System Design (S4W) is a PSE developed at
Virginia Tech (Blacksburg, VA). The term ‘site specific’ refers to a communications channel in which
the performance characteristics of the channel are strongly dependent on the physical locations and the
environment that surrounds the transmitter and receiver. For example, in a ray-tracer-based simulation,
an explicit geometric model of the site is part of the problem specification. This is in contrast to, for
example, a simple channel model that predicts signal strength based solely on the distance between the
transmitter and receiver, which might be appropriate for computing the power received in space.

The key functionality of S4W is to predict the performance of wireless systems in specific physical
environments. S4W uses both deterministic electromagnetic propagation and stochastic wireless
system channel models as underlying simulation components. S4W supports running simulations
and visualizing results, validating simulators by comparison with field measurements, optimizing
placements of transmitters and receivers, and managing the results produced by experiments [3].

S4W has two simulators: a site-specific propagation model based on ray tracing, and a Monte
Carlo simulation for wideband code division multiple access (WCDMA) [4]. Ray tracing is a popular
high-fidelity deterministic model for wireless signal propagation. The ray tracer predicts the impulse
response of a wireless channel. S4W also includes a global optimizer based on the DIRECT algorithm
of Jones et al. [5].

A major design goal for S4W was to integrate visualization tools with the PSE and control the whole
system from one unified interface. Visualization is the key to understanding the results from large
simulations in computational science and engineering. Sometimes visualizations may be generated by
a generic tool, but more often ad hoc visualization tools are needed [6].

Feedback during runtime is useful for deciding whether a computation is performing as intended.
Based on visual feedback, a user should be able to stop and re-run the computation with different
parameters. This feature is incorporated in the design for simulation runs using S4W.

In addition to its unified interface, the other major architectural design feature for S4W is the central
role played by the database system. All problem descriptions and solution results are stored in the
database. Much of what the user does in S4W directly relates to browsing, managing, and modifying
the contents of the database.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



S4W: A PSE FOR WIRELESS SYSTEM DESIGN

Optimizer

Execution
Manager

Link−level
Simulation

w/ Ray Tracer

Database

GRAPHICAL USER INTERFACE

Figure 1. Outline of the S4W design. Components inside the dashed line form the computational unit of the PSE.
Computational components communicate with the GUI via a database.

S4W can serve the needs of at least three classes of users. The first consists of researchers designing
receivers. Such users must deal with the patterns of delay profiles in the power received. The ray tracer
simulation provided by S4W allows wireless system designers to see the power delay profiles under
various conditions, so that receivers can be designed based on these power delay profiles. The second
class of users is channel model designers who need an environment in which to test their simulators [3].
S4W allows users to conveniently compare actual measurements of an environment with the output
from the simulator for their channel model. The third class of potential users comprises field engineers
who must site transmitters and receivers in a complex building environment.

It is said ‘the whole is greater than sum of the parts’, and the synergy between the parts is key to the
success of PSEs. Prior to implementing the integrated GUI for S4W, visualizations were available
in some form for all of our components. However, the idea of a PSE entails (a) putting them in
context, (b) adding features pertinent to the nature of the problem domain, and (c) integrating with
the user interface. A sketch of the GUI’s interaction with the other components via a central database
is shown in Figure 1. A comparison of the integrated system with an earlier prototype that contained
the same simulation and optimization capabilities but without any integration is presented in Section 5.
More details concerning all aspects of the system can be found in [7].

2. RELATED WORK

Many problem-specific PSEs have been developed for various application domains. Our review is
focused on work regarding interfaces and visualizations provided by PSEs.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



D. MISHRA ET AL.

PSEs have come a long way [2] from ELLPACK [8] for solving two-dimensional (2D) and three-
dimensional (3D) elliptic partial differential equations. Geographically distributed and Web-based
PSEs, such as WEB-IS, are being used in the geosciences for remote data analysis and visualization.
WEB-IS promises to bring the user interface to handheld devices connected to the Internet via a
wireless connection [9]. Another example of a Web-based PSE is Web PELLPACK, which allows
the user to define a partial differential equation problem, choose and configure solution strategies, and
then visualize and analyze the results [10]. Many recent PSEs involve multiple platforms or the use of
multiple programming languages and distributed components over the network [11]. Network-based
PSEs are envisioned as providing network-based ‘software services’ [12]. Virtual Cell [13] is another
example of a Web-centric PSE. Similar to S4W, Virtual Cell also has a database system playing a
central role.

From simpler domains such as PDEs [8,10] and linear algebra [14], PSEs have migrated into
diverse applications such as wood-based composite design (WBCSim [15,16]), bioinformatics and
computational biology (Expresso [17], H++ [18], JigCell [19], and Virtual Cell [13]), gas turbine
dynamics simulation [20], and conceptual aircraft design (VizCraft [21]).

Some of the earliest known PSEs such as ELLPACK [8] did not have a GUI. However, interactive
ELLPACK [22] added a GUI to a later version. Later still, the parallel version of ELLPACK
(called PELLPACK [10]) had a more sophisticated and portable user interface. These three phases
of ELLPACK span a period of 13 years. The creators of PELLPACK define a PSE as having a
user interface, libraries, a knowledge base, and a ‘software bus’ for transferring data between them.
This definition also includes software systems such as Matlab, Mathematica, and Maple. PELLPACK
defined the user interface as consisting of a high-level language and graphical interface that allows the
user to specify the problem and visualize the solution in some ‘natural’ form.

A number of PSEs integrate analysis codes with optimization methods in a flexible manner, along
with a GUI for reviewing the results of an optimization. Framework for Inter-Disciplinary Optimization
(FIDO) [23] demonstrates distributed and parallel execution using an integrated user interface. FIDO
provides the ability to modify input parameters while the application is executing. iSIGHT [24]
provides a generic shell environment for multidisciplinary optimization. LMS Optimus [25] provides a
user interface in order to set up a problem, select from a number of predefined methods to be used with
the problem, and analyze the results. The DAKOTA toolkit [26] provides a flexible, object-oriented,
and extensible PSE with an integrated interface for a variety of optimization methods. VizCraft [21]
provides a GUI in a PSE for high-speed civil transport design. The interface allows users to provide
and modify values of design variables. WBCSim [15,16] has a high-level GUI available through a
Web browser that lets a user control the design variable values and shows the progress of the ongoing
simulation.

Many PSEs involve large subsystems that were developed independently. The design of interface
protocols for such components is an interesting research issue [2]. The model–view–controller (MVC)
design pattern provides a clean separation between model (computational units) and view (user
interface) [27]. In our work, the model consists of database and computational units, the controller
comprises the database APIs exposed by an experiment manager, and the view is the GUI.

From the start, visualizations have been an integral part of PSEs. Some early PSEs were designed
to only visualize data [28]. Traditionally, data analysis and visualization were performed as post-
processing steps after a simulation has been run. As simulations have increased in size, the visualization
task has become increasingly difficult, often requiring significant computation, high-performance

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



S4W: A PSE FOR WIRELESS SYSTEM DESIGN

machines, high-capacity storage, and high-bandwidth networks [29]. Messac and Chen [30] have
developed PhysPro, a MATLAB-based application for visualizing an optimization process in real
time using the physical programming paradigm. The Visual Computing Environment (VCE) provides
coupling between flow analysis codes. The Multi-Disciplinary Computing Environment (MDICE) [31]
provides users with a visual representation of the simulations being performed. In its distributed
environment, many computer programs operate concurrently and cooperatively to solve a set of
engineering problems. VizCraft [21] uses parallel coordinates to visualize the design metrics for high-
speed civil transport design within a PSE. WBCSim [15,16] integrates visualization tools in a PSE
for simulating wood-based composites. Oscill8 [32] is a system for bifurcation analysis of complex
dynamic systems.

Interactive visualization can be defined [12] as viewing the results of simulations during or after the
simulation run, with the user having control over the content and format of the graphics during their
production. A further extension of this concept is computational steering [33], where computational
resources are ‘steered’ towards a specific interesting process during the simulation [12]. Steering refers
to modifying the simulation itself during the course of the simulation. GRASPARC [28] integrated
computation and visualizations so that the scientist could view a computation as it proceeded.
Moreover, a data recording facility was incorporated to help scientists backtrack to earlier points of a
computation and restart. GRASPARC continued with the KINEX project, integrating CHEMKIN and
IRIS Explorer [34] to create special-purpose environments for computational chemists. EPSRC DIVA
integrated design, analysis, and visualization into a coherent environment based on IRIS Explorer [35].

Commercial visualization tools such as modular visualization environments have been tried in
PSEs [36]. However, generic visualization tools are seldom useful in PSEs, since the problem domain
dictates the visualization requirements. In most PSEs, ad hoc visualization tools are developed along
with the modeling code [6]. In our work, we have developed a visualization tool for each of the
simulation components to serve the specific needs of S4W users.

3. THE S4W GUI

S4W provides a unified user interface for its computational and data components. It provides users with
the capability of starting a simulation, monitoring the run of a simulation with appropriate feedback,
and viewing the results as they become available. The GUI is designed to retrieve simulation data
(both input parameter values and output results) and display them in an appropriate form. The GUI
is written as a Tcl/Tk script, which connects to a database using the Tcl database connectivity library
pgtcl [37], and uses database functions to control the simulation runs.

The GUI also provides a facility to retrieve results from the database and visualize them.
The visualizations themselves are described in Section 4. The GUI for S4W consists of three parts:
(i) the WCDMA simulator GUI, (ii) the ray tracing simulator GUI, and (iii) the DIRECT optimizer
GUI. All three tools are available from the drop-down menu on the S4W initial screen.

3.1. WCDMA simulator interface

The WCDMA interface was built on the experiment manager EMDAG [38] and provides a graphical
view of EMDAG’s text command lines. The WCDMA simulation itself runs on a 180 node parallel

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



D. MISHRA ET AL.

Figure 2. A listing of experiments for WCDMA simulations. In the right pane, we have details for one experiment.
At the bottom of the pane, there is another text box showing a small description of the experiment.

cluster with the database on a machine outside the cluster and a user interface on any other machine
that supports the Tcl/Tk interpreter. The WCDMA GUI is implemented in the following three parts.
(i) List Experiments retrieves WCDMA simulation results stored in the database with their
experiment ID, a user’s description of the experiment, the starting date of the experiment, and the
status of the simulation (Fresh, Running, Complete, or Crashed; see Figure 2). Users can start a new
experiment from here, or stop a running experiment. (ii) New Experiment opens a form to be filled
in for a new simulation run. From here we can store the parameters in the appropriate tables of the
database and invoke the database function to start the simulation on the computing unit. Storing a set
of input values can be useful in order to define a template for creating variations on experiments. Using
the clone command from the List Experiments view, we can reuse the same input parameter set and
start an actual run later on. (iii) Visualization gives options for various visualizations available for
stored results.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



S4W: A PSE FOR WIRELESS SYSTEM DESIGN

Figure 3. View of the environment map, where devices (transmitters and receivers) are to be placed.
Clicking on a transmitter causes the form on the left-hand side to pop up, which allows the user to

set parameter values for that transmitter.

3.2. Ray tracer interface

Given a three-dimensional site description and transmitter locations, the ray tracer can approximate
impulse responses at chosen receiver locations. A full ray tracing run can be divided into two parts:
environment preprocessing, and parallel 3D ray tracing. Once an environment is preprocessed, it can
be reused in many ray tracer runs. Preprocessing involves (a) converting floor plans from Autocad’s
DXF data format to the XML format understood by S4W, (b) triangulating the polygons (walls) in
the floor plan, and (c) partitioning the triangles within an octree representation to improve the speed
of the ray tracing. While these three options are sequentially dependent, the interface presents them
independently so that the steps can be performed at different times, since the output of each of these is
stored in the database and can be used later on as input for the next step. We will refer to the resulting
building description as an environment file. The ray tracer requires as input the device locations, device
parameters, and propagation simulation parameters.

Selecting an environment file draws the environment map on the screen (see Figure 3). The location
of transmitters is set on this screen by the user. A form to set the device parameters for a transmitter is
also shown in Figure 3.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



D. MISHRA ET AL.

3.3. Optimizer interface

We now describe the GUI for VTDIRECT, a numerical optimizer based on the DIRECT algorithm of
Jones et al. [5]. One goal of S4W is to support transmitter placement optimization. We wish to achieve
a certain performance objective, given the cost constraints [39]. The optimization process uses the full
system, as it involves 3D ray tracing runs to predict impulse responses at points of interest within
the environment for the transmitter locations sampled by the optimization algorithm. The ray tracer
estimates power coverage levels, which are used as the criterion for optimization. As an alternative op-
timization criterion, Monte Carlo WCDMA simulations are used to estimate the bit error rates (BERs).
In practice, surrogate functions for the WCDMA simulator are typically used to estimate the BERs, as
the full WCDMA simulation is computationally intensive. We use both simple least-squares fits and
multivariate adaptive regression splines [40] as surrogate functions for the WCDMA simulation.

The GUI for the optimizer consists of three parts, Preview, New, and Visualization. Environment
files already stored in the database can be used for new experiments. The preview tab gives a preview
of all the stored environment files and draws selected files on screen. This utility is useful when there
are many environment files stored and we need to pick the right one to plan an experiment.

An optimization run is an iterative process that invokes one or more runs of the ray tracer to compute
the impulse responses. These in turn are used to evaluate objective functions. Then new transmitter
locations are constructed according to the optimization algorithm. This process stops when one of the
optimization stopping criteria is met. An optimization experiment consists of (a) the ‘slave’ ray tracing
experiment used for objective function evaluation, (b) one or two objective functions, (c) two or more
optimization variables, and (d) additional optimization parameters.

We need to specify a ray tracing simulation template to be used by the optimizer in successive
iterations to create new transmitter location points. Defining a template is the same as defining a stand-
alone ray tracing experiment. It stores the various parameter values for devices, which are later used
by the optimizer for invoking the required ray tracing runs.

Once the ray tracer template is determined, we can set the optimizer parameters. The optimization
process can be viewed as a master controller with a loop that calls the ray tracing simulation. A GUI is
shown in Figure 4. Objective functions can be chosen from the drop-down list toward the bottom-right
corner.

Initial transmitter placement in the environment can be done using a left-click after choosing the
transmitter radio button. We can enclose each transmitter within a box, which specifies the area under
which the transmitter can be moved by the optimizer. When choosing a transmitter, we create a pair
of optimization variables: the x and y coordinates of the transmitter. When the optimizer is started,
a dialogue box displays the debug messages generated by the simulation run. As soon as an iteration
is complete and we obtain a value for the objective function a pop-up window shows a plot of the
objective value against the number of iterations so far. This gives feedback for the ongoing simulation.
Intermediate feedback is helpful since optimization runs typically last for hours.

4. VISUALIZATIONS FOR S4W

Visualization can facilitate data analysis by providing a better insight into the problem, thus allowing
novel interpretations of simulation data. In S4W, visualization allows the designer to investigate

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



S4W: A PSE FOR WIRELESS SYSTEM DESIGN

Figure 4. View of the GUI for the optimizer with two transmitters. Each of the transmitters is enclosed inside a
box, which determines the bounds on transmitter placement. The entry boxes toward the bottom of the image take

parameter values for optimizer runs.

alternative designs and formulate a new experiment based on past simulation results. S4W provides
separate visualizations for each of the three components of the system. The database acts as the
backbone of the visualization system. Upon a request to visualize simulation data, the front end of
the system connects to the database and retrieves results in a form suitable for visualization.

A series of WCDMA simulation runs are often made in order to study the effects on BER and
frame error rate (FER) caused by changes to a particular parameter value. Typically, the collection of
runs involves one parameter ‘stepping’ or changing value by a constant amount at each iteration. An
additional measure of performance is the number of frames simulated. The WCDMA visualization
provides a plot of the varying parameters against one of the output values (BER or FER). For each
experiment, we can choose one of the input parameters and one of the output parameters and view the
result in plot form. A tabular form is also provided so that users can see the values of other parameters
along with the results. Users can zoom in or zoom out of a plot.

Sometimes a designer might be interested in comparing the results of more than one experiment with
similar sweeps over one parameter and changing values for some other parameters. The Visualization

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



D. MISHRA ET AL.

button lets users compare the results from any number of experiments. They can filter the results
retrieved from the database and choose the experiments by keyword in the ID or description. Users can
choose any number of experiments using the check buttons to visualize the experiments collectively.
Once the experiments are selected, users choose between a tabular or a graphical display. Users have
all the display functionalities available for one experiment, with the only difference being that now
we have simultaneous results for multiple experiments. The graph view shows the iteration points for
different experiments with different colors. For the tabular results, a union of results from database
queries for different experiments is shown.

A ray tracing run computes impulse responses in the form of a power delay profile (PDP) at specified
locations. A PDP is a measure of the power received from the impulse at certain time/distance intervals.
The ray tracer records the ‘raw’ impulse responses generated by the computation. One impulse
response is recorded per pair of transmitter location and receiver location antennas. The composite
impulse response consists of a number of rays. Each ray is characterized by an arrival time, a power, a
phase, and arrival and departure angles [38]. A PDP is the only output of the ray tracer and is stored as
a special data type.

The complex nature of the ray tracer output demands a sophisticated visualization tool. This output
requires many steps of post-processing before the ray descriptions are converted to a standard PDP
format. For this post processing, we can extract the information in the form of a value for the peak
power of each arriving ray and then visualize this form of PDP. In this implementation, we create an
XML file containing the time of arrival and peak power for each of the arriving rays. This file is then
fed to the visualization tool, which draws it on the graph.

A run of the ray tracer starts by placing a transmitter in the environment and then measuring impulse
responses at receiver locations. The ray tracer visualization draws the environment map on the screen
and shows transmitter location and receiver locations (see Figure 5). Receiver locations can either be a
point or an area that is divided into a grid, and impulse responses are measured at grid points. When a
receiver location is clicked, a window pops up and shows the PDP at that point.

The ray tracer has been validated and calibrated with a series of measurements [38,41]. For this
purpose, the impulse response was measured at seven different locations for a transmitter placed in the
corridor of the fourth floor of Durham Hall, Virginia Tech (see Figure 5). Both measured and predicted
values of PDPs at these locations are available. A visualization of the comparison between measured
and predicted PDPs reveals the level of similarity between the two and validates the implementation
of the ray tracer. Figure 5 shows the transmitter and receiver locations. A click on any of the receiver
locations causes a window to pop up with the PDPs for both measurement and prediction (see Figure 6).
By clicking on a transmitter’s location, we can see all the PDPs (at all receiver locations) in the same
window. A zooming facility is available that allows the user to select any desired part of the graph, as
shown in Figure 6.

The optimizer predicts the positions of transmitters for the optimal performance of the wireless
system for a chosen region. We start the experiment by selecting an area of interest on the environment
map. We then place transmitters with their bounds defined within the area of interest.

Our GUI provides visualizations showing the results of the optimization. At the end of an
experiment, we obtain a final placement for the transmitters. Corresponding to this placement, we
obtain the final value of power levels inside the area of interest. A color map showing the intensity of
the power coverage gives design engineers a feel for the quality of the optimal coverage.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



S4W: A PSE FOR WIRELESS SYSTEM DESIGN

Figure 5. An environment map showing transmitter (Tx) and receiver (Rx) placements.

Under the Visualization tab of the Optimizer GUI we can retrieve all stored optimization
experiments. The filtering of experiments based on keywords is also available, i.e. we can retrieve
a subset of all experiments whose experiment ID or description contains some keyword. With a left-
click on Experiment ID, a box containing details of the experiment and a smaller box below it with a
small description of the experiment appears on the right pane, in a layout similar to that of Figure 7.
To visualize the results of the experiment, either we click on the Results button at the bottom of the
Details box, or select Visualize from the pop-up menu that comes with a right-click on Experiment
ID. Two options are available for visualization: transmitter location and power coverage visualization,
and objective function value visualization.

Selecting Transmitter location visualization brings up a window showing the environment map.
The area of interest is filled with color values indicating the power coverage for the optimal transmitter
placement (see Figure 8).

5. COMPARISONS

Sections 3 and 4 describe how S4W is now an integrated system with a high-level graphical
user interface and ad hoc visualizations. S4W is intended to provide convenient user interaction

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



D. MISHRA ET AL.

Figure 6. Simultaneous visualization of the PDPs obtained by measurement and a run of the ray tracer. The figure
at the top shows the original view, with an area to be zoomed in shown in the rectangle. The figure at the bottom

shows the selected area zoomed in.

by encapsulating the underlying implementation and connectivity details. To verify the claim, we
compared S4W as it existed before this integration and visualization work against the integrated version
of the system.

Our comparison is based on the following use-case scenario for S4W [3]. We assume that a wireless
design engineer wishes to study transmitter placement in an indoor environment located on the fourth
floor of Durham Hall at Virginia Tech. The engineering goal is to achieve a certain performance
objective, given the cost constraints. For a narrowband system, power levels at the receiver locations are

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



S4W: A PSE FOR WIRELESS SYSTEM DESIGN

Figure 7. The listing of experiments for WCDMA simulations. In the right pane we have input
parameters in the left column and output parameters in the right column. Here we can choose one

input parameter and one output parameter.

good indicators of system performance. Thus, minimizing the average shortfall of power with respect
to some threshold power value can be a good objective. Here, the major cost constraints are the number
of transmitters and their powers. Different placements of transmitters yield different levels of coverage.
Our goal is to find the optimal placement of transmitters.

We repeated the original published study (which used an unintegrated collection of tools) with
the integrated S4W system. We achieved the same results in significantly less time. The original
results could also be presented in a better way using the new visualization tools. This experiment was
originally performed using console-based commands and with no visual feedback. As the first step, the
user created a template of a ray tracing experiment, to be used by the optimizer as the starting point
for its first iteration. This involved setting various parameter values for the wireless devices. The next
step was to specify various parameter values for the numerical optimizer. Finally, the simulation was
started. This whole process involved a series of database operations of insertions and selections. In the
original version, the user was required to create a list of SQL commands to store the various parameters
for the experiment in the order specified by the schema of the corresponding database tables (for details
see [38]). That process required a high level of knowledge of the database schema and also some idea

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



D. MISHRA ET AL.

Figure 8. Visualization of power coverage on the environment map. Intensity of the color
is proportional to the power level.

of how a database works. These requirements are the antithesis of a PSE, where the system is to be
used by domain experts (electrical engineers), not system tool experts. In the integrated S4W, the GUI
takes care of all these issues.

The advantages of the current system over the old one are as follows:

1. it has relieved users of the burden of knowing about the database schemas of tables and their
interrelations;

2. users do not need to know about database functions exposed by the experiment manager;
3. users do not need to worry about errors in the SQL commands, as error checks are incorporated

into the GUI;
4. the GUI package is portable and works on any machine connected to the network.

We have tried to develop appropriate metrics to quantify the amount of effort put in by users of
the two versions of the system. Users interact with a GUI with mouse clicks. Mouse clicks can be
thought of as the basic operation in interacting with a GUI, while for a console-based user interface the
basic operation can be thought of as pressing a key. However, these two operations cannot be directly
compared. A more conservative metric is the number of lines for the console-based user interface.
A command line in the original interface is presumably replaced by some series of mouse clicks in
the GUI. This might be a difficult judgement to determine the relative ‘cost’ of a command line versus

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



S4W: A PSE FOR WIRELESS SYSTEM DESIGN

Table I. A comparison of performance between a console-based user interface and the GUI for S4W.
The middle two columns show the average time required for the listed tasks. The last two columns show
the number of mouse clicks required in the GUI versus the number of command line types typed in the

console interface.

Time taken Time taken with
with GUI console user interface Number of Number of

Task (min) (min) mouse clicks lines on console

Setting a run of optimizer 5–10 30–45 20–35 95–120
Setting a run of ray tracer 5–10 25–40 18–30 70–90
Setting a run of WCDMA 1–5 20–35 6–20 40–75

x, m

y, m

806040200

30

20

10

Figure 9. A visualization of transmitter placement from an older version of S4W. A separate program generated
the environment map and the rest of the figure was drawn using generic tools. The initial and final placements for

transmitters (large black dots and crosses, respectively) are shown.

one or more mouse clicks. Surprisingly, we found that the number of mouse clicks for the integrated
GUI is actually far less than the number of command lines originally required!

A more ‘natural’ metric we could use is the average time spent creating an experiment and sending
it to the computational unit for each implementation. A major concern with using the time to develop
the experiment as a metric is that the times might be heavily influenced by the level of user expertise.
The command line interface is likely to be especially sensitive to this concern. It is worth noting that
the command line versus mouse click comparison is more objective in this respect, even if it seems less
natural. In our comparison, both versions were performed by an expert user, which should minimize
this effect.

We measured the two user interfaces with respect to these two metrics. The results are given in
Table I. We see that the performance of the integrated system is far superior to that of the unintegrated
system. Thus, the GUI and integrated visualization tools appears to have a major effect on user
performance.

To visualize the final position(s) of the transmitter(s), an ad hoc script had been written for the
original experiment. This script drew the environment map, and the final locations of transmitters
were marked on the map manually, as shown in Figure 9. Other forms of visualizations used in [3]

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



D. MISHRA ET AL.

were generated using generic graphics tools. With the integration of visualization tools for all three
components, S4W can now generate sophisticated visualizations on its own.

6. CONCLUSIONS

The S4W project provides many experiences to share. It successfully integrates a GUI, including an
interactive visualization tool, with back-end computation (by means of a scripting language), integrates
data management and execution management by means of a relational database, incorporates the
DIRECT global search algorithm, and replaces expensive computation by computationally cheap
surrogate functions. We can outline the main contributions of S4W to the PSE community and take
stock of lessons learned from our experience as follows.

One of the primary contributions of this research is integration of data management and simulation
management by means of a relational database. The S4W architecture uses a Postgresql database as
its hub. User interface and computing units interconnect to the database, and most data processing is
performed via the database using stored functions written in C and PLSQL. This topology is suitable
for data-centric simulation experiments. It facilitates data analysis and optimizes data movement across
the network, and separates the computing platform from the user interface. We can direct computation
to any platform according to our needs. Most of the intensive computation was performed on a parallel
cluster, but small simulations (computationally not so extensive) were run on single processors.

For heterogeneous systems, scripting has often been the glue used to create an integrated system.
For our system, we had the option of using Java or scripting. We selected Tcl/Tk as the scripting
language for integration and it turned out to be a good choice. In most PSE implementation, groups
of people from different backgrounds work together. Development often runs in parallel with different
choices of programming platforms and programming languages. The final stage is integration, where
we need to take the pieces and glue them together to create the integrated system. For S4W we had
such a situation. We had different components written in different languages such as C, FORTRAN,
and MATLAB, and on different platforms such as Sun Solaris and Microsoft Windows. Our job
was to create a portable user interface. Tcl/Tk suited all our needs and worked as the glue for
all of the components. A user interface written in Tcl/Tk is platform independent. The S4W GUI
is now portable to many platforms, and has been tested on Microsoft Windows and Sun Solaris
platforms. We could have achieved this goal using Java, but Tcl/Tk scored better with extensive string
manipulation capability, excellent network connectivity, and good support for database connectivity.
Our visualization tools provide the user with the capability to view the stored simulation results
in various domain-specific formats, and also to compare results of different simulations. Since our
visualizations were written using Tcl/Tk, they integrated easily with the rest of the system.

Overall, we had a good experience using Tcl/TK as a medium for the integration of heterogeneous
PSE components and to provide a suitable GUI. Since we were developing a proof-of-concept
prototype, the flexibility that the higher-level language Tcl/TK provided for gluing together the
disparate parts was an important factor in our ability to perform rapid prototyping. We went through
many iterations of our user interfaces, which is typical when designing novel components for a PSE.
A more mature software development effort, such as a reimplementation of the system as a production
facility, might benefit from the more mature development environment that Java now provides. As a
rapid prototyping tool, Tcl/Tk proved of value to our efforts.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



S4W: A PSE FOR WIRELESS SYSTEM DESIGN

Even the fastest computers or a collection of such computers may not be good enough for some
computations. For Monte Carlo simulations of a channel model, it takes days to run the simulation on
a 180 node parallel cluster for a few hundred points. To reduce this cost while maintaining adequate
fidelity for the behavior of the WCDMA simulation, we used a multivariate adaptive regression spline
as a surrogate model. The surrogate function allowed us to effectively simulate the behavior of the
original function with six orders of magnitude less computational burden.

A typical PSE consists of three phases: data (simulation input) preparation, simulation (or
measurement), and data (simulation output) analysis. These three phases can be repeated and
interleaved in arbitrary ways. In our approach, simulation corresponds to loading data into the database,
data analysis corresponds to querying the database and presenting data visualization at the GUI
level, and data preparation corresponds to a combination of loading and querying. Objective function
evaluation for the optimizer was implemented using simple SQL queries, and format conversion and
surrogate models for PSE data are implemented as (manually) stored database functions. Thus, we have
shown that appropriate use of a state-of-the-art database management system can provide high-level
problem-solving facilities.

A sufficiently flexible relational database can act as interpreter for a scripting language specifically
designed for data processing. A library of custom data types, functions, and aggregation operators
naturally specializes this language for a particular application domain. This overloading of query
semantics within the application domain has many potential uses. Not only does this approach
simplify format conversion of the simulation data, it can ultimately change the way users look at their
experiments. Parts of simulations can, in principle, be implemented as database queries [38].

The database approach to experiment management has been explored in other projects. The ZOO
desktop experiment management environment [42] aims to achieve goals similar to ours, but lacks some
necessary features such as support for parallel simulation. Virtual Cell [13] also has the database as its
central component. We adopted a hybrid approach that incorporates both simulation data management
and simulation execution management to create the experiment manager EMDAG for S4W [38].
This experimentation demonstrated that data management can be usefully harnessed, in multiple ways,
in a PSE.

Processes that are well defined, and intellectually simple, can be captured in terms of a specific
workflow through the system. In those situations, the system can give the user strong guidance and
support through the workflow, as is the case of ‘wizard’ systems such as tax preparation software.
However, solving difficult problems is very much an exploratory process. As such, users need the
freedom to investigate and try out things. This typically means that they take an unpredictable path
through the various tools provided by the PSE. While relational schemas enforce constraints on
workflow, they enforce no centralized workflow management. This provides a good compromise
between supporting the user through specialized tasks while allowing flexibility to switch between
exploratory tasks at will.

Decision-making processes in PSEs are often complex and require support by automated
optimization techniques. S4W uses the DIRECT optimization algorithm to find the optimal locations
of transmitters. This integration turned out to be a success and this global optimization algorithm has
proved to be an effective approach in solving transmitter placement problems [3].

This brings up the issue of a fundamental tension between the human exploration of a design space
in what is actually an optimization problem versus limiting the human role to specifying the problem
and allowing the automated optimizer to find the optimal solution. Ultimately, the goal of a PSE is to

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



D. MISHRA ET AL.

automate what can be automated, and allow the user to creatively solve what cannot be solved by the
computer. Whenever an optimizer can reliably and efficiently solve the problem, it should be allowed
to do so. However, for truly complex problems, even if the optimizer can find the optimal solution,
the user will still need good visualization and some ability to ‘twiddle’ so as to be able to properly
pose the problem. Within our context, this means that the user needs to be able to define the physical
environment, and to specify constraints on transmitter and receiver locations. Not only does setting
these constraints limit the scope of the optimization problem so as to make the computation practical,
but it also is an important part of making sure that the correct problem is being solved.

Finally, high-level domain-specific schema editing tools could reduce the burden on PSE developers.
No amount of point and click gadgets can make up for flaws in the schema design with the central
database. Designing appropriate schemas and integrating these schemas with those of the other system
components is ultimately the responsibility of the PSE developer. The most problematic part of schema
development is the precise definition of simulation inputs and outputs. Once the simulation is well
defined, the data model follows.

ACKNOWLEDGEMENTS

This project was funded under NSF grants EIA-9974956, EIA-9984317 and EIA-0103660.

REFERENCES

1. Rice JR, Boisvert RF. From scientific software libraries to problem-solving environments. IEEE Computational Science
and Engineering 1996; 3(3):44–53.

2. Gallopoulos E, Houstis EN, Rice JR. Workshop on problem-solving environments: Findings and reccomendations. ACM
Computing Surveys 1995; 27(2):277–279.

3. Verstak A, He J, Watson LT, Ramakrishnan N, Shaffer CA, Rappaport TS, Anderson CR, Bae K, Jiang J, Tranter WH. S4W:
Globally optimized design of wireless communication systems. Proceedings of the Next Generation Software Workshop
at the 16th International Parallel and Distributed Processing Symposium (IPDPS’02), Fort Lauderdale, FL, April 2002.
IEEE Press: New York, 2002.

4. Rappaport TS. Wireless Communications: Principles and Practice. Prentice-Hall: Englewood Cliffs, NJ, 1996.
5. Jones DR, Perttunen CD, Stuckman BE. Lipschitzian optimization without the Lipschitz constant. Journal of Optimization

Theory and Applications 1993; 79(1):157–181.
6. Shaffer CA, Watson LT, Kafura DG, Ramakrishnan N. Features of problem-solving environments for computational

science. Proceedings of High Performance Computing Symposium at the Advanced Simulation Technology Conference,
Tentner A (ed.). Society for Modeling and Simulation International: San Diego, CA, 1999; 242–247.

7. Mishra D. Integration of graphical user interface and data visualization tools in a problem-solving environment for wireless
system design. Master’s Thesis, Department of Computer Science, Virginia Tech, April 2004.

8. Boisvert RF, Rice JR. Solving Elliptic Problems Using ELLPACK. Springer: New York, 1985.
9. Yuen DA, Garbow ZA, Erlebacher G. Remote data analysis, visualization and problem-solving environment (PSE) based

on wavelets in the geosciences. Visual Geosciences 2003; 8:83–92.
10. Markus S, Weerawarana S, Houstis EN, Rice JR. Scientific computing via the world wide web: The net PELLPACK PSE

server. IEEE Computational Science and Engineering 1997; 4(3):43–51.
11. Ramakrishnan N, Watson LT, Kafura DG, Ribbens CJ, Shaffer CA. Programming environments for multidisciplinary grid

communities. Concurrency and Computation: Practice and Experience 2002; 14:1241–1273.
12. Watson LT, Lohani VK, Kibler DF, Dymond RL, Ramakrishnan N, Shaffer CA. Integrated computing environments for

watershed management. Journal of Computing in Civil Engineering 2002; 16(4):259–268.
13. Moraru II, Schaff JC, Slepchenko BM, Loew LM. The virtual cell: An integrated modeling environment for experimental

and computational cell biology. Annuals of the New York Academy of Science 2002; 971:595–596.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



S4W: A PSE FOR WIRELESS SYSTEM DESIGN

14. Bramley R, Chiu K, Diwan S, Gannon D, Govindaraju M, Mukhi N, Temko B, Yochuri M. A component based
services architecture for building distributed applications. Proceedings of the 9th IEEE International Symposium on High
Performance Distributed Computing (HPDC’00), 1–4 August 2000. IEEE Computer Society Press: Washington, DC,
2000.

15. Goel A, Phanouriou C, Kamke FA, Ribbens CJ, Shaffer CA, Watson LT. WBCSim: A prototype problem-solving
environment for wood-based composites simulation. Engineering with Computers 1999; 15:198–210.

16. Shu J, Watson LT, Ramakrishnan N, Kamke FA, Zombori BG. An experiment management component for the WBCSim
problem-solving environment. Advances in Engineering Software 2004; 35:115–123.

17. Alscher RG, Chevone BI, Heath LS, Ramakrishnan N. Expresso—a PSE for bioinformatics: Finding answers with
microarray technology. Proceedings of the High Performance Computing Symposium at the Advanced Simulation
Technologies Conference. Society for Modeling and Simulation International: San Diego, CA, 2001; 64–69.

18. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A. H++: A server for estimating pkas and adding missing
hydrogens to macromolecules. Nucleic Acids Research 2005; 1(33):368–371.

19. Allen NA, Shaffer CA, Vass MT, Ramakrishnan N, Watson LT. Improving the development process for eukaryotic cell
cycle models with a modeling support environment. Simulation 2003; 79(12):674–688.

20. Drashansky TT, Houstis EN, Ramakrishnan N, Rice JR. Networked agents for scientific computing. Communications of
the ACM 1999; 42(3):48–54.

21. Goel A, Baker CA, Shaffer CA, Grossman B, Mason WH, Watson LT, Haftka RT. VizCraft: A problem-solving
environment for aircraft configuration design. IEEE/AIP Computing in Science and Engineering 2001; 3(1):56–66.

22. Bonomo JP, Dyksen WR, Rice JR. The ELLPACK performance evaluation system. Technical Report CSD-TR-569,
Department of Computer Sciences, Purdue University, 1986.

23. Weston RP, Townsend JC, Edison TM, Gates RL. A distributed computing environment for multidisciplinary design.
Proceedings of the 5th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, September 1994,
vol. AIAA-94-4372; 1091–1097.

24. Tong SS, Powell D, Goel S. Integration of artificial intelligence and numerical optimization techniques for the design of
complex aerospace systems. Proceedings of the Aerospace Design Conference, Irvine, CA, February 1992, vol. AIAA-92-
1189. Available at:
http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=TRD&recid=200114003961MT&recid=
A9233301AH&q=Tong+Powell+Goel+Integration+numerical+optimization&uid=788071451&setcookie=yes

25. Guisset P, Tzannetakis N. Numerical methods for modeling and optimization of noise emission applications. Proceedings
of the ASME Symposium in Acoustics and Noise Control Software at the ASME International Mechanical Engineering
Congress and Exposition, November 1997. Available at:
http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=TRD&recid=200121019115MT&q=
Guisset+Tzannetakis+Numerical+Methods+Modeling+Noise&uid=788071451&setcookie=yes

26. Eldred MS, Hart WE. Design and implementation of multilevel parallel optimization on the intel teraflops. Proceedings of
the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, September
1998, vol. AIAA-98-4707; 44–54.

27. Olsen D Jr. Developing User Interfaces. Morgan Kaufmann: San Francisco, CA, 1998.
28. Brodlie K, Poon A, Wright H, Brankin L, Banecki G, Gay A. GRASPARC: A problem-solving environment integrating

computation and visualization. Proceedings of the 4th Conference on Visualization (VIS’93), San Jose, CA, 1993; 102–109.
29. Johnson C, Parker S, Hansen C, Kindlmann GL, Livnat Y. Interactive simulation and visualization. IEEE Computer 1999;

32(12):59–61.
30. Messac A, Chen X. Visualizing the optimization process in real-time using physical programming. Engineering

Optimization Journal 2000; 32(5).
31. Kingsley G, Siegel JM Jr, Harrand VJ, Lawrence C, Luker JJ. Development of a multi-disciplinary computing environment

(MDICE). Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
St. Louis, MO, 2–4 September 1998, vol. AIAA-98-4738; 251–260.

32. Conrad ED, Tyson JJ. Oscill8: A dynamical systems and bifurcation theory toolset. Foundations of Systems Biology in
Engineering (FOSBE 2005), August 2005.

33. Parker SG, Johnson CR, Beazley D. Computational steering software systems and strategies. IEEE Computational Science
and Engineering 1997; 4(4):50–59.

34. Wright H, Brodlie KW, Brown MJ. The dataflow visualization pipeline as a problem-solving environment. Virtual
Environments and Scientific Visualization. Springer: Berlin, 1996; 267–276.

35. Wood J, Wright H, Brodlie K. Collaborative visualization. Proceedings of the 8th Conference on Visualization (VIS’97),
Phoenix, AZ, 1997. IEEE Computer Society Press: Los Alamitos, CA, 1997; 253–260.

36. Wright H, Brodlie K, Wood J, Proctor J. Problem solving environments: Extending the role of visualization systems.
Euro-Par 2000 Parallel Processing. Springer: Berlin, 2000; 1323–1331.

37. Ousterhout JK. An Introduction to Tcl and Tk. Addison-Wesley: Reading, MA, 1994.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



D. MISHRA ET AL.

38. Verstak AA. Data and computational modeling for scientific problem-solving environments. Master’s Thesis, Department
of Computer Science, Virginia Tech, July 2002.

39. He J. Global optimization of transmitter placement for indoor wireless communication systems. Master’s Thesis,
Department of Computer Science, Virginia Tech, August 2002.

40. Friedman JH. Multivariate adaptative regression splines. Annals of Statistics 1991; 19(1):1–141.
41. Anderson CR. Design and implementation of an ultrabroadband millimiter-wavelength vector sliding correlator channel

sounder and in-building multipath measurements at 2.5 and 60 GHz. Master’s Thesis, Department of Electrical
Engineering, Virginia Tech, May 2002.

42. Ailamaki A, Ioannidis Y, Livny M. Scientific workflow management by database management. Proceedings of the 10th
International Conference on Scientific and Statistical Database Management (SSDBM’98), July 1998. IEEE Computer
Society Press: Washington, DC, 1998; 190–199.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe


	1 INTRODUCTION
	2 RELATED WORK
	3 THE S4W GUI
	3.1 WCDMA simulator interface
	3.2 Ray tracer interface
	3.3 Optimizer interface

	4 VISUALIZATIONS FOR S4W
	5 COMPARISONS
	6 CONCLUSIONS

