
Deterministic Global Parameter Estimation for a Budding Yeast Model

T. D. Panning ∗, L.T. Watson∗, N. A. Allen ∗, C. A. Shaffer∗, J. J. Tyson†
Department of Computer Science∗,

Department of Biology†,
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

Keywords—DIRECT (DIviding RECTangles) algo-

rithm, direct search, MADS (Mesh Adaptive Direct

Search) algorithm, computational biology

Abstract—Two parallel deterministic direct search

algorithms are used to find improved parameters for

a biological model. The model is a system of

differential equations designed to simulate the cell cycle

of budding yeast. Comparing the model simulation

results to experimental data is difficult because most

of the experimental data is qualitative rather than

quantitative; an algorithm to convert simulation results

to biological phenotypes is presented. Vectors of

parameters defining the differential equation model are

rated by a discontinuous objective function. Parallel

results on a 2200 processor supercomputer are presented

for a global optimization algorithm, DIRECT, and a

local optimization algorithm, MADS.

1. INTRODUCTION
Molecular cell biology is ultimately about how cells

convert genes into behavior. This includes how a cell

creates proteins from genes, how those proteins interact,

and how the proteins physically affect the cell. The

central biological question addressed here is how the

proteins interact with each other, and specifically, how

those interactions regulate the cell cycle of budding

yeast (Saccharomyces cerevisiae).

The budding yeast cell cycle consists of several

phases, with cell division occurring in the final phase.

A new cell starts in G1 phase, where it performs the

normal cell functions while it waits until it reaches a

size sufficient to replicate. Upon reaching the correct

size, the cell enters S phase where it synthesizes a copy

of its DNA. After DNA synthesis has completed, the

cell enters M phase where the DNA copies are separated

and the cell divides, creating two new cells that are in

G1 phase.

To model the protein interactions that govern the

cell cycle, biological modelers construct differential

equations that describe the rate at which each protein
concentration changes. The concentration of protein X
is written as [X]. If protein A is degraded by protein
B, then the model will include a differential equation
similar to

d[A]

dt
= −c[B],

with the initial condition [A](0) = A0. The parameter
c determines the rate at which B degrades A. The
budding yeast cell cycle model in [5] is composed of
over 30 such differential equations, some of which are
nonlinear. In addition, the budding yeast model consists
of many different initial value problems, because some
of the concentrations are reset when events (a), (b), (c),
and (e) occur (as described in Section 2.1). In the above
example, an additional initial value problem would be
created if the value of [A] were reset to zero when [B]
rose through (the value) one. This type of modeling can
be aided by software tools such as the JigCell problem
solving environment [1,2].

In the budding yeast model there are about 140 rate
constant parameters similar to c in the above example.
In some cases, these parameters can be calculated
directly from laboratory experiments (e.g., protein
half-lives), but most parameters would be difficult
to obtain directly from experimentation. Normally,
the modelers determine these remaining parameters
by repeatedly making educated guesses, executing the
model, comparing the simulation results with the
laboratory data, and then refining their guesses. The
biologists call this process “parameter twiddling” [2].

Parameter twiddling is a time intensive method;
nonetheless, it was used to obtain a parameter vector
for which the model’s predictions are consistent with
all but twelve of the 115 mutants of the budding yeast
species for which experimental data exists. Obviously,
the biologists would prefer a method that allows them
to spend more time working on the model and less
time twiddling parameters. In addition, a person can
only keep track of a few parameters at one time, which

DEVS/HPC/MMS'06 195 ISBN 1-56555-304-7

makes it easy for a person to unwittingly miss a portion

of the parameter space. For these reasons, the biologists

would prefer to use a tool that could determine “good”

parameters relatively quickly and accurately.

Section 3 describes one proposed mathematical for-

mulation of “good” that may allow a computer code

to find an acceptable vector of parameters. This
formulation uses a discontinuous objective function that

evaluates to zero when there is a perfect match between

the experimental data and the simulation results, and

it evaluates to increasingly larger numbers to indicate

worse matches. Another possible formulation for future

consideration would use a smooth system of inequalities

that would be satisfied if and only if the simulation

results are acceptable.

Section 2 describes the biological problem in some

detail. Section 3 formulates a discontinuous objective

function, reflecting biological criteria for an acceptable

model. Two deterministic algorithms, DIRECT and
MADS, that are applicable to global parameter estima-

tion, are very briefly described in Section 4. Numerical

results on a parallel supercomputer (2200 processor

System X) are given in Section 5. Parallel efficiency

and scalability are important issues to be addressed

separately—the emphasis here is on the biological prob-

lem, the discontinuous objective function formulation,

and the practical applicability of DIRECT and MADS

to such optimization problems.

A phenotype is a description of the observable

characteristics of an organism (as opposed to a genotype,

which is a description of the genetic characteristics of

an organism). Throughout this paper, the observed
phenotype refers to the phenotype that was recorded

in a laboratory experiment. The predicted phenotype

refers to the phenotype that the mathematical model

(with its associated parameters) predicts. The wild type

is the normal strain of an organism. The mutant strains

have genetic changes that make them behave differently

from the wild type in some way.

2. PHENOTYPES
Experimental biologists have studied many budding

yeast mutants to learn about the cell cycle regulatory

system. Of these mutants, the modelers have chosen 115
that they wish to model. A model of budding yeast can

be considered correct only if it is able to duplicate the

behavior of these mutants. When the model is used to

simulate a mutant, the parameter vector can be changed

only in ways that are analogous to the genetic changes

in the mutant. Consider the hypothetical proteins A

and B presented in the previous section: if a mutant

had a modified form of B that did not degrade A, then
in the parameter vector for that mutant, c would be set
to zero and all of the other parameters would be set to
the wild type values.

When comparing the model to the experimental data,
it is important to realize that much of the data from
laboratory experiments is qualitative. Such data is
of the form “the cell lived” or “the cell was unable
to escape G1 phase.” The quantitative data that is
available (e.g., G1 phase length, cell mass at division) is
generally imprecise. With all of these uncertainties, it is
easy to suspect that many, clustered parameter vectors
could allow the model to reproduce the experimental
data. In fact, this is a desirable feature of the model; for
survival, biological systems are necessarily insensitive to
small fluctuations in the rate constants, so one would
expect the model to behave similarly.

2.1 Rules of Viability
To compare the solutions of the differential equations

with the experimental data, it is necessary to determine
whether and when a simulated cell arrests. There
are four rules of viability that determine whether a
simulated cell is considered viable or inviable.
1. The modeled cell must execute the following events

in order, or else the cell is considered inviable:
(a) DNA licensed for replication (modeled by a drop

in [Clb2] + [Clb5] below Kez2);
(b) start of DNA synthesis (due to a subsequent rise

in [Clb2] + [Clb5], causing [ORI] to increase above
one) before a wild-type cell in the same medium
would divide twice;

(c) alignment of DNA copies (due to a rise in [Clb2],
causing [SPN] to increase above one);

(d) separation of DNA copies (modeled by [Esp1]
increasing above 0.1, due to Pds1 proteolysis at
anaphase);

(e) cellular division (modeled by [Clb2] dropping
below a threshold Kez).

2. The cell is inviable if division occurs in an “unbudded
cell” (i.e., if [BUD] does not reach the value 0.8
before event (e) occurs).

3. The cell cycle should be stable such that the squared
relative difference of the masses and G1 phase lengths
in the last two cycles is less than 0.05.

4. Lastly, the modeled cell is considered inviable if the
cell mass is greater than four or less than one-fourth
times the steady-state mass at division of the wild
type in the same medium.

These rules are used by an algorithm (called a
transform) that outputs a phenotype from the solutions

ISBN 1-56555-304-7 196 DEVS/HPC/MMS'06

to the differential equations. The transform keeps

track of what stage the cell is in, where the stages are

demarcated by the events in the first rule of viability.

The first stage is unlicensed, which ends when the first

event, DNA licensed for replication, occurs. The other

four stages are, in chronological order, licensed, fired,

aligned, and separated. When the simulated cell is in the

separated stage, cellular division signals the transition

back to the unlicensed stage. If one of the rules of

viability is broken, the transform sets an error flag

and records the stage when the error occurred and the

number of cycles (i.e., cell divisions) completed.

3. DISCONTINUOUS MINIMIZATION
The objective function takes the observed phenotype

and predicted phenotype for all of the mutants and

computes a nonnegative score. Zero indicates a perfect

match and larger numbers indicate increasingly worse

matches. The ensuing discussion uses the symbol O

for observed phenotype values and P for predicted

phenotype values.

A budding yeast phenotype for a single mutant is

represented by a six-tuple (v, g, m, a, t, c), where the

viability v ∈ {viable, inviable}, the real number g > 0

is the steady state length of the G1 phase, the real

number m > 0 is the steady state mass at division, the

stage when arrest occurred is

a ∈ {unlicensed, licensed, fired, aligned, separated},
the positive integer t is the arrest type, and the

nonnegative integer c is the number of successful

cycles completed. The observed and predicted phe-

notypes are written O = (Ov , Og , Om, Oa, Ot, Oc) and

P = (Pv , Pg , Pm, Pa, Pt, Pc), respectively. Arrest types

cannot be compared unless the stage of arrest is the

same for both phenotypes.

In what follows, the ωs and σs are constants defined in

Table 1. The rating function, R, compares the observed

and predicted phenotypes for a mutant. This rating

function is a modified version of the one developed by

N. Allen et al. [3]; the only difference is that if Ov or

Pv is missing, then R(O,P) = ωv. The rating function

is split into four cases depending on the viability of the

observed and predicted phenotypes. If Ov = inviable,

Pv = viable, and Oc is missing, then R(O,P) = ωv, the

same as if Oc = 0. Otherwise, if a needed classifier

is missing, the term is simply dropped and does not

contribute to the objective function. In the case

that classifiers are missing, this allows the objective

function value to be at or near zero when viability

is in agreement between the phenotypes, and forces

larger objective function values when viability is not in

agreement.

The rating function R(O,P) when all classifiers are

present is given by

ωg ×
(
Og − Pg
σg

)2

+ ωm ×
(

ln Om
Pm

σm

)2

,

if Ov = viable and Pv = viable, by

ωv ×
1

1 + Pc
,

if Ov = viable and Pv = inviable, by

δO,P + ωc ×
(
Oc − Pc
σc

)2

,

if Ov = inviable and Pv = inviable, and by

ωv ×
1

1 +Oc
,

if Ov = inviable and Pv = viable, where δ is a real

valued discrete function, used to assess a penalty for the

arrest stage and type, given by

δO,P =

{
ωa, if Oa 6= Pa,
ωt, if Oa = Pa and Ot 6= Pt,
0, if Oa = Pa and Ot = Pt.

The rating function is tuned by parameters to

allow the modeler to adjust the relative importance of

classifiers. The parameters given by Table 1 were set so

that a rating of around ten indicates a critical error in

the model’s prediction of a phenotype.

Symbol Definition Value
ωg G1 length weight 1.0

σg G1 length scale 10.0

ωm Mass at division weight 1.0
σm Mass at division scale ln 2

ωa Arrest stage weight 10.0

ωt Arrest type weight 5.0

ωc Cycle count weight 10.0
σc Cycle count scale 1.0

ωv Viability weight 40.0

Table 1. Constants used in objective function.

Denote the real numbers by R, the nonnegative

integers {0, 1, 2, . . .} by Z+, and the integers by Z . Let

P = (v, g,m, a, t, c)

= {viable, inviable} × (0,∞)2

× {unlicensed, licensed, fired, aligned, separated}
× {1, . . . , 10} × Z+

DEVS/HPC/MMS'06 197 ISBN 1-56555-304-7

be the space of all budding yeast phenotypes and let

the domain of the objective function be the box

Ω = {x ∈ R143 : si/ui ≤ xi ≤ si × ui,
i = 1, . . . , 143},

where u ∈ R143 are positive scale factors reflecting

modelers’ knowledge about the rate constants, and

s ∈ R143 is the modeler’s best guess point. Let

Tj : Ω→ P simulate the jth mutant with the parameters

x1, . . . , x143 and compute the phenotype. Then the

objective function f : Ω→ [0,∞) is defined by

f(x) =

Nm∑

j=1

µjR(Oj , Tj(x)),

where Nm is the number of mutant experiments, and

µi ∈ {1, 4} is a weight that indicates whether the ith

mutant is of normal or high importance. The objective

function value at the biologists’ best previously known

point [5] is 433.

4. ALGORITHMS
This section describes two algorithms that show

promise for optimizing the discontinuous objective

function described in the previous section. Consider the

problem of minimizing f : B → R, where B = [l, u] ⊂
Rn is a box.

4.1. DIRECT
The DIRECT (Dividing Rectangles) global minimiza-

tion algorithm [11] requires the objective function to be

Lipschitz continuous to guarantee convergence. Even

though the objective function used here is discontinuous,

the DIRECT algorithm seems to be an efficient and

reasonable deterministic sampling strategy worth trying.

The DIRECT algorithm is one of a class of deter-

ministic direct search algorithms that does not require

gradients. It works by iteratively dividing the search

domain into boxes that have exactly one function value

at the box’s center. In each iteration, the algorithm

determines which boxes are most likely to contain a

better point than the current minimum point—these

boxes are called “potentially optimal”. It then subdi-

vides the potentially optimal boxes along their longest

dimensions. Intuitively, a box is considered potentially

optimal if it has the potentially best function value for

a given Lipschitz constant. The formal definition from

[11] follows.

Definition. Suppose that the unit hypercube has been

partitioned into m (hyper) boxes. Let ci denote the

center point of the ith box, and let di denote the

distance from the center point to the vertices. Let ε > 0

be a positive constant. A box j is said to be potentially

optimal if there exists some K̃ > 0 such that for all
i = 1, . . . ,m,

f(cj)− K̃dj ≤ f(ci)− K̃di, for all i = 1, . . . ,m,

f(cj)− K̃dj ≤ fmin − ε|fmin|.
The DIRECT algorithm is described by the following

six steps [7].
Step 1. Normalize the design space B to be the unit

hypercube. Sample the center point ci of
this hypercube and evaluate f(ci). Initialize
fmin = f(ci), evaluation counter m = 1, and
iteration counter t = 0.

Step 2. Identify the set S of potentially optimal
boxes.

Step 3. Select any box j ∈ S.
Step 4. Divide the box j as follows:

(1) Identify the set I of dimensions with the
maximum side length. Let δ equal one-third
of this maximum side length.

(2) Sample the function at the points c± δei for
all i ∈ I , where c is the center of the box and
ei is the ith unit vector.

(3) Divide the box j containing c into thirds
along the dimensions in I , starting with the
dimension with the lowest value of wi =
min{f(c+ δei), f(c− δei)}, and continuing to
the dimension with the highest wi. Update
fmin and m.

Step 5. Set S = S − {j}. If S 6= 0 go to Step 3.
Step 6. Set t = t+ 1. If iteration limit or evaluation

limit has been reached, stop. Otherwise, go
to Step 2.

For an illustration of how the DIRECT algorithm
searches the domain on an example problem, see [12].
Both serial [7] and parallel [8] versions of DIRECT have
been described in the literature.

4.2. MADS
A MADS (Mesh Adaptive Direct Search) algorithm,

as defined by Audet and Dennis [4], minimizes a
nonsmooth function f : Rn → R∪ {+∞} under general
constraints x ∈ Ω ⊆ Rn, Ω 6= ∅. If Ω 6= Rn, the
algorithm works with fΩ, which is equal to f on Ω
and +∞ outside Ω. Using fΩ in lieu of f is called
a “barrier” approach to handling arbitrary constraints
x ∈ Ω.

In each iteration, a MADS algorithm evaluates the
objective function fΩ at a finite number of trial points.
Central to these algorithms is the concept of a mesh,
which is a discrete set of points in Rn. Every previous

ISBN 1-56555-304-7 198 DEVS/HPC/MMS'06

trial point must lie on the current mesh, and in each
iteration the algorithm may only generate new trial

points on the current mesh. This is not as restrictive
as it might sound because the algorithm changes the
mesh after each iteration (with the restriction that all

previously evaluated points remain in the new mesh).
To further define the mesh, three entities—∆m

k ,
D, Sk—must be introduced. First, the mesh size

parameter ∆m
k > 0 controls the granularity of the mesh

at iteration k; after the kth iteration, ∆m
k+1 is adjusted

from ∆m
k depending on the success of that iteration.

The second entity is an n × nD matrix D, where each
column D·j = Gzj (for j = 1, 2, . . . , nD) for some fixed

nonsingular generating matrix G ∈ Rn×n and nonzero
integer vector zj ∈ Zn. The columns of D must also
be a positive spanning set, Pos(D) = Rn (i.e., the cone

generated by nonnegative combinations of columns of
D spans Rn). Lastly, Sk is the set of points where
the objective function has been evaluated by the start

of iteration k. Now that those entities have been
introduced, the current mesh can be precisely defined.

At iteration k, the current mesh is

Mk =
⋃

x∈Sk
{x+ ∆m

k Dz : z ∈ NnD}.

This ensures that all previously evaluated points are
included in the mesh. It also shows that a smaller ∆m

k

will result in a more refined mesh, while a larger ∆m
k

will create a coarser mesh.
Now that the mesh has been defined, the iterations

of a MADS algorithm can be described. Each iteration

consists of two steps: the search step and the poll
step. The search step may evaluate fΩ at any finite
number of mesh points. At which mesh points fΩ is
evaluated depends on the precise MADS algorithm in

use. A MADS algorithm may even do zero evaluations
in the search step; the search step is said to be
empty when no points are considered. If the search

step fails to find a mesh point at which fΩ is less
than minx∈Sk fΩ(x), then the algorithm performs the
poll step by generating and evaluating fΩ at new trial

points around the current incumbent solution xk, where
fΩ(xk) = minx∈Sk fΩ(x). The poll size parameter ∆p

k

limits the distance between xk and the new trial points.

The set of new trial points is called a frame, and
xk is called the frame center. The MADS frame is
constructed using xk , ∆p

k, ∆m
k , and D to obtain a set Dk

of positive spanning directions.

Definition. At iteration k, the MADS frame is defined

to be the set

Pk = {xk + ∆m
k d : d ∈ Dk} ⊂Mk,

where Dk is a positive spanning set such that 0 /∈ Dk

and for each d ∈ Dk,
• d can be written as a nonnegative integer combination

of the columns of D: d = Du for some vector
u ∈ NnD ,
• the distance from the frame center xk to a frame

point xk + ∆m
k d ∈ Pk is bounded by a constant times

the poll size parameter: ∆m
k ‖d‖∞ ≤ ∆p

k‖D‖∞ (where

‖ · ‖∞ indicates the maximum norm),
• limits (as defined in Coope and Price [6]) of the

normalized sets Dk are positive spanning sets.

The algorithm evaluates fΩ at points in the frame
Pk until it encounters an improved point x∗ (fΩ(x∗) <
fΩ(xk)) or it has evaluated fΩ at all of the points in Pk.

After the algorithm has executed the search step
and (conditionally) the poll step, it sets the mesh size
and poll size parameters, ∆m

k+1 and ∆p
k+1, for the next

iteration. If the iteration successfully found a better
mesh point xk+1 such that fΩ(xk+1) < fΩ(xk), then
∆m
k+1 will be larger than or equal to ∆m

k ; otherwise,

∆m
k+1 will be smaller than ∆m

k . The poll size parameter

∆p
k+1 must be set such that ∆m

k+1 ≤ ∆p
k+1, and it must

satisfy

lim inf
k→∞

∆m
k = 0⇐⇒ lim inf

k→∞
∆p
k = 0.

Exactly how ∆m
k+1 and ∆p

k+1 are generated is

determined by the individual algorithm in use; see the
example algorithm presented later in this section.

In summary, the MADS class of algorithms is
described by the following five steps.

Step 1. Let x0 ∈ Ω and 0 < ∆m
0 ≤ ∆p

0. Let D be an
n × nD matrix with the properties described
earlier. Set the iteration counter k := 0.

Step 2. Perform the search step. This step varies
among the individual algorithms; in all al-
gorithms fΩ is evaluated at a finite subset
of points (called trial points) on the mesh
Mk. If a trial point y is found such that
fΩ(y) < fΩ(xk), then the algorithm may go to
Step 4 with xk+1 := y.

Step 3. Perform the poll step, evaluating fΩ at points
from the frame Pk ⊂ Mk until a frame point
xk+1 is found with fΩ(xk+1) < fΩ(xk) or fΩ

has been evaluated at all of the points in Pk .
Step 4. Update ∆m

k+1 and ∆p
k+1 according to the

specific algorithm’s rules. In all algorithms,
(1) ∆m

k+1 is greater than or equal to ∆m
k if an

improved mesh point is found,
(2) ∆m

k+1 is less than ∆m
k if an improved mesh

point is not found,
(3) ∆p

k+1 is greater than or equal to ∆m
k+1, and

DEVS/HPC/MMS'06 199 ISBN 1-56555-304-7

(4) lim inf j→∞∆m
j = 0⇐⇒ lim infj→∞∆p

j = 0.

Step 5. If an appropriate stopping criterion has been

met, stop. Otherwise, set k := k + 1 and go

back to Step 2.

The previous discussion presents the MADS class of

algorithms. The following discussion describes a specific

instance of the class for n = 2. To emphasize the poll

step of the algorithm, there is no search step in the

algorithm presented here.

In this MADS algorithm,

D =

(
1 0 −1 0
0 1 0 −2

)
.

Notice that a MADS mesh constructed using this matrix

is identical to a mesh constructed using the matrix

B =

(
1 0 −1 0
0 1 0 −1

)
.

However, ‖D‖∞ = 2 while ‖B‖∞ = 1; thus, a MADS

frame constructed using D instead of B will extend

twice as far in every direction. From D, the matrix Dk

is generated (using random coefficients as described in

[4]) at the beginning of the kth iteration so that it is

a positive spanning set, and so that the (normalized)

columns of Di, for i = 1, 2, . . ., are dense in the unit

circle S1.

The mesh size parameter ∆m is updated according

to the rules:

∆m
0 = 1,

∆m
k+1 =

∆m
k /4, if xk is a minimizing

frame center,
4∆m

k , if an improved mesh
point is found, and
if ∆m

k ≤ 1
4 ,

∆m
k , otherwise.

The poll size parameter ∆p is updated according to the

rule ∆p
k =

√
∆m
k . These rules ensure that ∆m

k is always

a power of 1/4 less than or equal to one, and ∆m
k is

always less than or equal to ∆p
k.

5. RESULTS
All computation took place on System X, a cluster of

1100 dual-processor Mac G5 nodes.

NOMAD is a C++ implementation of the MADS

class of algorithms. To take advantage of System X,

NOMAD’s implementation of the poll step was par-

allelized using a master/worker paradigm. The master

ran the MADS algorithm as presented and sent requests

to the workers whenever objective function values were

needed. NOMAD, started from the modeler’s best

point s, evaluated the objective function 135,000 times

 200

 250

 300

 350

 400

 450

 0 100000 200000 300000 400000 500000 600000

f(x
)

Number of Evaluations

MADS
DIRECT

Figure 1. The objective function value at the best
point found versus the number of evaluations for
MADS and DIRECT.

over 813 iterations using 128 processors, converging at

a point for which the objective function value was 299

(this point correctly models all but ten of the mutants).

pVTDirect [8] is a parallel implementation of DI-

RECT written in Fortran 95. While the DIRECT

algorithm does not have a traditional “starting point”,

the first sample in each subdomain is always taken at

the center of the subdomain bounding box. For this

problem, the bounding box was designed so that the

modeler’s best point would be at the center and therefore

would be evaluated before any other points. pVTDirect

(with only one subdomain) ran for 473 iterations using

1024 processors and evaluated the objective function

1.5 million times, finding a point at which the objective

function value was 212 (this point correctly models all

but eight of the mutants).

Figure 1 shows the progress that each program was

able to make in minimizing the objective function.

While NOMAD was able to quickly find a better

point than the modeler’s best point, pVTDirect was

eventually able to find an even lower point. This

is expected behavior because NOMAD is designed

for local optimization and pVTDirect is designed for

global optimization, so NOMAD quickly found a nearby

local minimum and stopped, but pVTDirect explored

the parameter space and eventually found a better

minimum. In a later run, NOMAD was started from

pVTDirect’s lowest point, but NOMAD was unable to

make any further progress. After looking at Figure 1, it

is tempting to believe that pVTDirect could have been

stopped earlier (for instance, after 200,000 evaluations),

and NOMAD started at pVTDirect’s last best point

could have found a point at which the objective function

ISBN 1-56555-304-7 200 DEVS/HPC/MMS'06

 200

 210

 220

 230

 240

 250

 100000 150000 200000 250000 300000 350000

f(x
)

Number of Evaluations

DIRECT
MADS started from 245
MADS started from 233
MADS started from 232

Figure 2. The performance of NOMAD when
started from the best point at pVTDirect’s 54th,
157th, and 239th iterations. The plots are shown
as if the NOMAD runs started as soon as the
respective pVTDirect iterations completed.

value was 212 or less. To test this, NOMAD was

started at the best point at the 54th, 157th, and 239th

iterations of pVTDirect. These points correspond to the

beginning, middle, and end of the second-lowest plateau

in Figure 1. As shown in Figure 2, NOMAD started

from the middle point converged to a point at which

the objective function value was 210. However, the

NOMAD runs started at the beginning and end plateau

points converge to worse points than pVTDirect’s best

point. These four extra NOMAD runs (including the

one starting from pVTDirect’s best point) show that

an algorithm for improving intermediate results from

pVTDirect is not so clear. Future work will explore

heuristics for doing this.

ACKNOWLEDGMENTS
This work was partly supported by Defense Advanced

Research Projects Agency (DARPA) grant F30602-02-

0572.

REFERENCES

[1] N. A. Allen, C. A. Shaffer, M. T. Vass, N. Ramakrishnan,
and L. T. Watson, “Improving the development process
for eukaryotic cell cycle models with a modeling support
environment”, Simulation, 79 (2003) 674–688.

[2] N. Allen, L. Calzone, K. C. Chen, A. Ciliberto, N.
Ramakrishnan, C. A. Shaffer, J. C. Sible, J. J. Tyson, M.
Vass, L. T. Watson, and J. Zwolak, “Modeling regulatory
networks at Virginia Tech”, OMICS, 7 (2003) 285–299.

[3] N. A. Allen, K. C. Chen, J. J. Tyson, C. A. Shaffer, and
L. T. Watson, “Computer evaluation of network dynamics
models with application to cell cycle control in budding
yeast”, IEE Systems Biology, to appear.

[4] C. Audet and J. E. Dennis Jr., “Mesh adaptive direct search
algorithms for constrained optimization”, SIAM J. Optim., to
appear.

[5] K. C. Chen, L. Calzone, A. Csikasz-Nagy, F. R. Cross, B.
Novak, and J. J. Tyson, “Integrative analysis of cell cycle
control in budding yeast”, Molecular Biology of the Cell, 15
(2004), 3841–3862.

[6] I. D. Coope and C. J. Price, “Frame-based methods for
unconstrained optimization”, Journal of Optimization Theory
and Applications, 107 (2000) 261–274.

[7] J. He, L. T. Watson, N. Ramakrishnan, C. A. Shaffer, A.
Verstak, J. Jiang, K. Bae, and W. H. Tranter, “Dynamic data
structures for a direct search algorithm”, Comput. Optim.
Appl., 23 (2002) 5–25.

[8] J. He, M. Sosonkina, C. A. Shaffer, J. J. Tyson, L. T.
Watson, and J. W. Zwolak, “A hierarchical parallel scheme
for a global search algorithm”, in Proc. High Performance
Computing Symposium 2004, J. Meyer (ed.), Soc. for
Modeling and Simulation International, San Diego, CA,
May, 2004, 43–50.

[9] J. He, M. Sosonkina, C. A. Shaffer, J. J. Tyson, L. T.
Watson, and J. W. Zwolak, “A hierarchical parallel scheme
for global parameter estimation in systems biology”, in Proc.
18th Internat. Parallel & Distributed Processing Symp.,
CD-ROM, IEEE Computer Soc., Los Alamitos, CA, 2004, 9
pages.

[10] J. He, M. Sosonkina, L. T. Watson, A. Verstak, and J.
W. Zwolak, “Data-distributed parallelism with dynamic task
allocation for a global search algorithm”, in Proc. High
Performance Computing Symposium 2005, M. Parashar and
L. Watson (eds.), Soc. for Modeling and Simulation
Internat., San Diego, CA, 2005, 164–172.

[11] D. R. Jones, C. D. Perttunen, and B. E. Stuckman,
“Lipschitzian optimization without the Lipschitz constant”,
J. Optim. Theory Appl., vol. 79, no. 1, (1993) 157–181.

[12] L. T. Watson and C. A. Baker, “A fully-distributed parallel
global search algorithm”, Engineering Computations, vol.
18, no. 1/2, 514–549.

DEVS/HPC/MMS'06 201 ISBN 1-56555-304-7

	TITLE PAGE
	PROCEEDINGS LIST
	HPCS Table of Contents
	ACROBAT HELP
	Deterministic Global Parameter Estimation for a Budding Yeast Model
	Keywords
	Abstract|
	1. INTRODUCTION
	2. PHENOTYPES
	2.1 Rules of Viability
	3. DISCONTINUOUS MINIMIZATION
	4. ALGORITHMS
	4.1. DIRECT
	4.2. MADS

	5. RESULTS
	ACKNOWLEDGMENTS
	REFERENCES

