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ABSTRACT

We describe Lhe current status of an ongoing research effort Lo develop a
geographie information system based on quadtrees. A linear quadtree encoding was
implemented using a B-tree to organize the list of leaves and allow management of trees
too large to it in core memory. Several database query functions have been imple-
mented including set operatlions, region property computations, map editing functions,
and map subset and windowing functions. A user of the system may access the data-
base via an English-like query language.
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Introduction

The quadtree representation of regions, Brst proposed by Klinger [KlinTt] ha
been the subject of intensive research over the past several years {for an overview, s
[Same84]). Numerous algorithms have been developed for constructing compact qua
tree representations, converting between them and other region representations, comput.
ing region properties from them, and computing the quadtree representations of Boolear
combirnations of regions from those of the given regions. Quadtrees have traditionally
been implemented as trees which require space for the pointers from a node to its sons
Recently, there has been a considerable amount of interest in pointer-less quadtre.
[Garg82,Abel83] termed Iinear quadirees. In this case, Lthe set of regions is treated as a
colleetion of leaf nodes. Each leal is represented by use of a locational code correspond.-

ing to a sequence of directional codes that locate the leal along a path from Lhe root of
the tree, .

In this paper we deseribe the current status of an ongoing research eflort 1o
develop a geographic information system based on quadtrees. Quadiree encodings were
construcled for area, point, and line features from maps and overlays representing =
small area of Northern California. The encoding used was a variznt of the linear quad-’
tree. A memory management system based on B-Lrees [ComeT0| was devised to organize
the resulling collection of leal nodes, allowing for the use of arbitrary sized maps within-
a restricted amount of core memory. Many database functions were implemented,
including. map editing capabilities, set operstions, and region property lunctions
Further details about this effort can be found in _:omamu_xommmw_. i

.The database used in the study was supplied by the U.S, Army Engineer Topo-
graphic Laboratory, Ft. Belvoir, VA. The area data consisted of three registered map
overlays representing landuse classes, terrain elevation contours, and Roodplain boun-
daries. The overlays were hand-digitized resulting in three arrays of size 400 by 450 pix-
els. Labels were associated with the pixels in each of the resulling regions, specifying
the particular landuse class or elevation range. The regions were subsenuently embed.
ded within a 512 by 512 grid and qusdtree encoded. The. results are shown in Figures
1-3. We also made use of a geographic survey map for this area, from which we
extracted point and. line data. The house locations were digitized for a point map (Fig-.
ure 4),- and four line maps were constructed corresponding Lo a railroad line, a power
line, a city boundary, and the road network from the area (Figures 5-8). .

The rest of this paper is organized as follows, Section 2 describes the quadtree
memory management system for storing and manipulating large quadtrees in externs)
storage. Section 3 contains an outline of the quadtree editor which enables the interac-
tive construction and updaling of maps- stored as quadirees. Seclion 4 discusses the
representations that we use for points and linear features. Section 5 gives an outline of
the Lype of aperations which ‘we currently are able to perform on our database while
Section 8 describes the query langusge which we use to interact with the databese.
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The Quadtree Memory Management System

Prior to discussing the memory management system, it is wuv._.o_u:ﬂ.n to wzom.v
review the definition of a region quadtree. Given a 2° by 2" array of pixels, a quadtree it
constructed by repeatedly subdividing the array into nsma;ﬂu. subquadrants,... until
we oblain blocks {possibly single pixels) which consist of a E.am_m <.w_=m {e.g. a eolor).
This process is represented by a tree of out degree four in which the root node
corresponds Lo the entire array, the lour sons of the root node correspond to ..r.a qua-
drants, and the terminal nodes correspond to those blocks of the array for s._:o._u :n_
further subdivision is necessary. The nodes at level k {if any) represent blocks of size 2
by 2 and are often referred to as nodes of size 2. Thus a node st level 0 corresponds tc
w.mim_m pixel in the image, while a node at level :.E ...rm reot of the p:mﬂ:hom. m,om
example, consider the region shown in Figure 9a i:nm.. is represented by .:E 2 by &
binary array in Figure §b. The resulting blocks for Figure 9b are shown in Figure 9¢
and the tree in Figure 9d.

Qur database system can be viewed as being made up of four levels. ..H.cm _oamw_.
level {henceforth known as the kernel) controls the interface wm?ﬁmw the disk m._m used
to store the quadtree data and the programs tbat are used to manipulate the images.
This level was written in the C programming laguage [Kern78|. The next level, also
written in C, conlains the programs which implement the dalabase algorithms - 24
editing, set functions, ete. This level accesses the _S:.m_ {and hence the file system’
strietly through a set of primitive functions. These functions allow the programmer of
the second level to view the quadiree as an abstract data type, without worrying aboul
the implementation details, The third level, written in LISP, allows convenient access
lo, and composition of, the database functions implemented by the second level. LISP
is well suited to the manipulation of symbolic information. It is used here to keep pnmew
of the maps known by the database and information about landuse classes or m_ma..m:o_u
levels. User defined names and data items are maintained at this level. The highes!
level is the m=m:mr-=rm query language described in section 8.

Our implementation of the kernel stems from the linear quadtree o:oo&gm
scheme used. In this scheme, each pixel is given an address derived {rom interleaving
the bits of the binary representation of the pixel coordinates, Figure 10a shows a 2° r.u
2* grid with each pixel labelled in this fashion. Figure 10b shows the block amno_:vo.w_.
tion of the region from Figure 9a, with each square of the decomposition labelled i._:
the address of its lower left pixel. The addresses in Figure 9 are shown in base four, i.e
two bits are used for each digit. These addresses ean also be viewed as a sequence o
directional codes leading from the root of the tree to the node being described.

The key feature of our encoding scheme is that a preorder traversal of the 86:.
cit tree will produce the nodes in ascending order of the addresses of the pixels at their
lawer left corner. We store only the leafl nodes of the tree, sorted in ascending order of
this address field. Any pixel contained within a node will have an address greater than
that of the leal's lower left corner, but less than that of the next node in preorder.
Therefore, given the address of any pixel and a list of leaves ordered by their addresses,
finding the leal containing that pixel reduces to searching a sorted list.
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Given the linear ordering of leal nodes and the fact that we are storing files con-
taining as many as 30,000-40,000 leaves, we decided to organize the quadtree files nsing
s B-tree structure. The kernel is primarily a collection of routines that maintain a
bufer pool in core and a B-tree in the disk file. The bufler pool need only store that
portion of the tree in core for which there is room. We expect that there will be strang
locality of reference - i.e. the leaf for which we are presently searching will very likely be
near the leal we last found. Therefore, the buffer pool is maintained on a schedule that
replaces the least recently used buffers first;

At the level of the kernel, the three types of quadtrees (for point, line, and region
data) are identical. A quadtree node deseriptor is composed of two 32-bit words. The
first word contains information on Lhe leal's position and depth ir the tree. In particu-
lar, it contains a w._, bit field which consists of the address of the Jower left corner of the
node formed by interleaving the bits of its z and y coordinates. The remaining eight
bits indicate the depth of the node in the tree. The second word contains information

about the data gmw the node represents. The contents of the second word is not used
by the kernel, |

A quadtree file is made up of four parts. First, there is the kernel’s fixed-size
header which contains information about the size of the file and the B-tree structure,
Second, there is a fixed-size black for the user's header {further deseribed in Section 3).
Typical usages of the user's header would be to keep track of whether a quadtree file is
lo be interpreted as a point quadtree or a region quadtree, the z and y coordinates ol the
lower-left-hand corner of the quadtree {with respect to some global coordinate gystem},
and the width of the quadtree in pixels. The third part is a list of comments. These
comments are either generated by database functions when 2 new map is ecrested, or are
inserted at the request of the database user. In either case, they serve to document a

map. Finally, a quadtree file contains the list of B-tree pages that contain the quadtree
nodes.

The bulk of the quadtree file is made up of the list of B-tree pages. Each page is
512 bytes long (an optimal size [or the programming language's read and write rou-
tines). We store 60 quadtree leaves in each page. The remaining space in the page con-
tains information related to the B-tree organization of the database, When a leal is

requested, the page containing it is read into the buffer pool, possibly displacing another
previously used page. .

The Quadtree Editor

The quadtree editor exists to facilitate the interactive construetion and updating
of maps stored as quadtrees. Presently, it is a separate program from the database sys-
tem, written entirely in C, with its own command language. Rather than forcing the
user to think in terms of the tree structure, the editor's tree manipulation commands
make references to logical units of the map (e.g., lines, points or polygons). The user
can perform editing operations such ag inserting a line or point, changing the value of a
specified polygon, or splitting a specified pelygon into more than one piece.
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When many changes are to be made, the user may wish to see the effects of each
step. Commands are provided to enable him to examine all or part of the map at a
selected location on a display device. This display is continuously updated as further
map manipulation commands are executed. Associated with each map's quadiree |
representation is a descriptor termed the quadiree header. There exist commands which
allow the user to modify this header. The header contains the size of the map, the tree
type (area, point, or line), the coordinate of the Jower left corner of the map in relation |’
to a global coordinate system, the rotation angle or tilt of the map from the external [
horizontal, and some information as te the type of data {i.e. topography, landuse, house)
that is being stored. A command is also provided Lo enable the user to insert textual
comments for documentation purposes.

In order for the quadiree editor to be useful, a set of map manipulating lunctions
is needed thal permits the user to create any desired map. The user of a geographic
information system such as ours views the units of his map in terms of logical units such
as “lines” or “polygons,” and not square “‘nodes.” Therefore, for region maps it is clear
that the most natural implementation is one that permits the modifying commands to
make changes to specified polygons. This means that the implementation of these com-
mands must enable modification of all the nodes which make up & polygen or gronp of
polygons without affecting nodes of neighboring polygons. We view each polygon {and
henee each node making up the polygon) as a merber of a “class”. This elass could be
an elevation range or a landuse type such as '‘wheatfields.” Class information is
recorded for each node by use of a value field that is part of the node's descriptor.

The editor is an interpretive system - i.e., the user gives a command and it is
executed, after which the system is ready to execute the next command. There is no
notion of composing functions as there is in the quadiree dalabase language. Area maps
are updated by use of the REPLACE, CHANGE, and SPLIT commands which replace
all polygons of a given value with a new value, change the value of a given pelygon, or
split a polygon into multiple polygons, respectively. Line and point maps are updated by
use of the insert and delete commands which insert or delete lines or points, respee-
tively. In order that the user may see what he is editing, there are commands that draw
all or part of the map onto a selected section of a display device, The user may also
alter the header of the map.

When the editor is invoked, the user gives the name of the file to be edited. A
temperary disk file is created on which all editing is to be done. Another file is created
to store the commands given by the user. These files help protect the user from serious
loss due to system crashes or his own errors such as mistyped or unwanted commands.
They also enable him to abort the editing session without damaging the original copy.
If the file to be edited is an old one, a copy is made in the temporary file. If a new map
is to be created, then a default header is installed and the map is initialized to be one
WHITE region.

Changes to region maps are made by use of the REPLACE, CHANGE, and
SPLIT commmands as described below. Section 4 discusses the modification of line and
point maps. The REPLACE command .is executed by traversing the entire quadiree.
Those nodes with the old (class} value have that value replaced by the new. For this
command it is not necessary to distinguish between polygons of the same class since

they are all processed in the same way.

The CHANGE command is more com licated, It i
polygon; however, other polygons of that n_Pﬁvaw also meﬂwcﬁpﬁpﬂmdw_m oiw _n_:,.
wﬁ. been parsed, a recursive function is called which actually performs the m“ﬂaﬂ:s :m..
Mw_.u :_En_.._om_ takes a node as its parameter. This node is checked to see that it rﬁwpq:.,.
ol N» :M.:. € one S.vm %wum.ﬁc. If 50, then its value is changed to the new one and
na unction i3 recursively applied to all of the node's neighbors. In this way, all nod
of a polygon will eventually be reached and only nodes in the polygon will m::é _meﬂ

values changed (since only four-neighb i i
e lor proea s y eighbors of nodes in the desired polygon are ever candi-

The SPLIT command allows the user to impose i i i i
of a designated <.w_¢m onto the map. It assumes :wm.. pm” MMMM_M”N __M_MM_MMMm E.“.m_n_f‘_q.
chain code. The intended use of the command is to split a polygon into %.”n__m ore
separate parts. One of these parts would then become s pelygon of the sa y o__. - xs
the pixels representing the arbitrary line via subsequent invoeation of th " ClAN 1
command. The pixels representing the arbitrar be part of b GE

- ¥ line would then be part of thi ;
polygon. Alternatively, the SPLIT - Part ol this new
of only a very few Ema_u. command can be used to make slight modifications

such as correcting a slightl ispl
This type of correction Id ied i R P wnmﬂ_. border of 5 polygon.
el cout so.p be applied in any other way with the available com-

The SPLIT command o i i
perates by first inserting a one pj i
] " t pixel node i
”wu&mvo:.ﬂam to the first coordinate given and then following the nw&wnow»% m”_““_.”ﬂn
nosﬂmﬁm_ m_:ww% :;.3%. As the user types the ¢ode, the code ia also inserted into :.m
nd file. Allowing the user to observe the progress of the chaincode as he is input

mentation was designed. Enabling the user to se i i
. d. e the tine disp] i i
M_os.w ﬁ._._m _.pvma detection and correction of errors, When the ewnﬂwwﬂn”urwq“ _hup::_ A__p
nom c m:mnmﬁ_m is backed up one pixel. This is accomplished by examining :_mwaaa Mﬁv.a_ﬂ_
mmand file. The last direction of the code is read to determine the coordinates of :_M

previous pixel of the chaincode znd then b
Pt e of the e en both the map and the command file are

By repeated use of the three command R ;
) . EP )
possible to a make any desired chan ¥ i b s o SPLIT

worst case the user could construct

. it is
ges S.m Fegion map. Clearly this is true sinee m.u the
az entire map from one pixel chaincodes,

womm.ﬁ and Line Representations

Quadtree representations for poi i , .
poiat and line data w 1
. ¢ ar ere also developed,
»_.Mm“o.w”n_ h_:u%., EM same kernel (described in Sectjon 2) is used for Bpu%“_p:w_ mrw__n__;
pree nowhmvouﬂw _M_hwwwﬁmﬂ. Ewaﬂ.mgzum area data in region quadirees, the S:uzm cu“ m.
. color of the region thai contains th in
\ ! or of . ) e leal, Since t i :
notion of color associated i:.w either point or line dats, other mn.,.m%_.ﬁwzwﬂm ”Hmv““n”w
. ]
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elng

the user header which was deseribed in Section 3.

i ingle word 32 bits lerg. For
uadtree node is made up of a sing .
.EHM»;_:@ wmﬁwoﬁww amm_.:_u_w a numeric value S_:or can be E»mw_ﬁ:.mw”nho M.”
Wﬂ.ﬂom\ﬂﬁﬂmﬂw a color value, or as representing a symbolic item such a3 lan

levati lasses. In this last case, further information deseribing the item might be
elevation € -
part of the database.

i ini ta points are interpreted as containing the 2
i o mo.uw mwﬂw_mwormmﬂ Mﬂﬂﬂﬂ:«wﬁmhwww%gm y coordinate (in the lower half of Sﬂ .

M .:: p M.:Emm air is always in relation to the lower left corner oq the msw%.
vord) ._,._:m noom hﬁ_w mwmw point in refation to a global coordinate system is n_aﬂz.” . Mm
Em aoo_.n_.zwpm. ; fl: Mﬁ to the coordinate of the lower left corner of the map, o_u:::wa.m
P o pﬂ,” ; mrmpaﬂ. A single word 32 bits long is mcn._nme: to aomn:vm.»wumooﬂxm
b E.m o .,_._”warm;& m:n:m the tree to a depth of twelve {i.e. a 4096 vwi:—.ﬂw !
e oﬂo_ﬁr“m :MF do not contain a data point are represented by the value .
image).

The above interpretation of the value field of s leaf a»mn-.:u..w_u WEZﬁWmLMHoH”w
consequences with respect to quadtree w_momzﬁ_w :”wp vﬂ.—::o womuuwomwswm.n o hte
i tored in a quadtree leaf. Insertion o in .
ozmhw; waﬂw Hsn%_ac“_m First, we find the leaf that contains »ma. vﬂ“; wmwﬂﬂwﬂ“ﬂl%
the Teal is. e point’ d y coordinates are entered in the -
i then the point's z and y ¢ : : A descrly
e _%M _ﬂhﬂmupwmm _mmwn is wv_w: into its four sons, the old leal’s wo_p» «w”zmu_“nﬂnmﬂm_ M_M»M
. _ i ion i ted. Deletion of a poin
i n, and insertion is re-attempted. ] int data
e wvﬁqo.?wwﬁwwmmq of finding the leaf that contains the point and p.ﬁm.ﬂ m_um_.%m—ww"o ot
m:ﬂmﬂmw.ﬂmﬂon to that of an empty leal. Next, we check to see il it s p
eals

merge the new empty leaf with its siblings.

tor..

point}. Second, if a line only passes through one edge of a leal node {i.e., it does not
join with another edge), then we subdivide the node. In the worsl case, the node may
need Lo be subdivided to the single pixel level. .

The value field of the edge quadtree leal descriptor kas four subfelds. The first
subfield (one bit) indicates errot values. The second subfield {one bit) is off if the node
is either WHITE or contains a single pixel. The bit is on if the node contains a line seg-
ment. The third subfield (two bits) for zIl non-WHITE nodes tells which son a node is
with respect to its father. By setting this field, we guarantee that the leaf will not be
automaltically merged with its brothers by the kernel's insert routine. As this feld is

not set is when the leafl contains no line segments, four emply quadranis are automali-
cally merged together.

The fourth subfield (28 bits) of the value field of the edge quadtree’s leaf descrip-
tor contains different information depending on whether or not the leaf corresponds {0 a
single pixel in the map. If the leal corresponds to a single pixel, then the fourth subfield
indicates how many lines pass through that pixel. Non-WHITE nodes of & larger region
contain exactly one line segment, and the intercepts of the line segment with the leafls
region are stored here. We have 14 bits 7o encode each of the intercepts of the line with .
the edges of the block in which it is contained, We use two bits to indicate which of the
four edges of the block the line intersects. The remnaining 12 bits indicated the distance
from a corner of the block to the intercept (the left corner for the north and south
edges, the lower corner for the east and west edges). Thus we are able to handle maps
containing blocks as large as 4096 by 4098 pixels. .

The insertion and deletion algorithms for our line re
segments will be treated as indivisible atomic units, This
roundofl errors caused by the endpoints of a line segment b
tant as our representation does not explicitly store the end
rather stores a compact form of the digitization of the Ii

presentation assume that line
avoids problems arising from
eing changed. This is impor-
points of a line segment, but
ne segment. A line segment

which originally was long might have a slightly different sl
I the entire line segment is deleted, and the desired rem

ope when part of it is deleted.

ooty

i 8] anc

i i bove is termed a PR quadtree [Same .

t data quadtiree deseribed a te . T ne

is also ﬁwmnw“wmm moqm_,..._mu_. It differs from the o:m.h_pw_ _u.oipaa:mmhumm» M“ ..M_mn”wn__awo

Ben . i PR quadtree is independen .

ink7- that the structure of the q .

_,#..n:a.m _m._m”w__.‘m,ﬂmm mmu a result of the fact that leaves are always mv_:...vw Upwm:“nm“_“

_uo_n.‘_._smm_.os ruent squares {conforming to an area quadiree @maoavoﬁ _M:_ . o
ﬂp_:oo oeﬂnm Mw:m:nm points for the point quadtree are :um.m.mﬂw. poinis themselves,

_.M“M_rum in four rectangles that are not necessarily equal in size.

When implementing line data, we decided that it would ”w amm:.w_u_m_.»oprwrwv__ﬂm“
. int trees.. This means tha
1 1 software as for area and point . .
val ._rw wwdwarhwmmza:ma to 32 bits. We developed a variant of the mmmmqacmmha_.mﬂw_
Shmeier Shne81] which can cope with these limitations. We use the term edge .H odire
m:sm_ﬁ .w nq_.,_mmmo: Non-WHITE edge nodes contain muw.op:.. one _:..m mmm.:_m% whieh
msp oq,m_mz.m_m?...o of ?m node's edges. Whea inserting a new __Mm 5.8 nrpm ﬁ»_qmm, =W_u”wu1w$
wou i i d and re-inserted as a ) .
m to this requirement are a:wlﬁ.m. ] riate.
.____m::_ :oﬂ.“ﬂ_“wwaw” cases which must be handled. First, ..5.2. two or Eo:m _EN“EOM_H.
Hanmpwmms,omE of intersection will never contain only one line segment. Spec
sect,

. . . h A )
ideration must therefore be made for single pixel nodes (in this case the EEJS,
sic 5 ]

L 3 et

e LN

ainder is then re-inserted, con-
sistency of the répresentation can be insured.

Insertion and deletion algorithms for ed
region or point quadirees. Insertion of a second

2 leaf that atready contains one line segment causes the leal to be quartered. The iafor-
mation that was in the original leaf is distributed among the new leaves, and the inser-
tion attempt is repeated. Deletjon of ltne segments is s i

information that is specific to that line segment. This means that nodes nouﬂm:_iw line

segments are given the value WIHITE and merged with their siblings if possible. Single
pixel nodes have the number of lines passing through them decremented {with the value

g2 quadtrees are analogous to those af
line segment into a region described by

becoming WIITE only if the deleted line passed through the node).




Datnbase Functions

One of the basic functions of a geographic information system is to indicate what
class or polygon contains a given point. Finding the quadtree node containing the point
is, of course, a primitive function of the kernel. For most purposes, it is sufficient to
describe a polygon simply by listing any point contained within it, and its class value.
Thus one of the basic database functions is to return a polygon deseriptor corresponding
to a given point. At times, it is necessary to be able to determine if two points which
have the same class value are indeed within the same polygon. For this situation, the
user can invoke a function which creales s polygon descriptor from a point. This funec-
tion uses a modified version of the polygon-walking function described in Section 3. It
examines all of the nodes in the polygon and determines which node has the lowest
address. The lower leflt coordinate of this node is used to deseribe the polygon. This is
an expensive algorithm and would only be used when necessary. Given a polygon
descriptor, the class can be determined directly.

The database language allows the formation of a map that corresponds to the
extraction of a set of regions from another map. This operation is triggered in the query
language (see Section 6) by the key word map, and will be referred to henceforth as the
SUBSET function. The SUBSET function builds a map which only includes the classes
and polygons specified by the user. Alternatively, the user can specily which ¢lasses and
polygons are lo be excluded. The SUBSET function has two phases - one for the class
list, and one for the polygon list. The class list phase simply traverses the input tree,
placing in the output tree any nodes whose class value is on the list. The polygon phase
performs a polygon-walking function over each polygon in the polygon list, putting
nodes from these polygons into the cutput tree. The algorithm for the complement of a
list of classes and polygons is similar.

At the present we have implemented functions that compute region properties
such as area and perimeter. In addition, we can compute a minimum enclosing rectan-
gle for a given subset of the map as well as extract a square window from the map. A
list of all the classes or polygons from a map can be generated, As an example, such a
list could be used 1o compute the ares of every polygon on the map. .

Point and line maps can also can be used in conjunction with some of these func-
tions, although they may have slightly diferent definitions. For example, there is no
notion of class or polygon. Given the coordinate values of a point, functions are pro-
vided to indicate if it lies on a data point or line of the input map. The area of a point
map is the number of points contained within it. The area of 2 line map is the length of
the lines within it. A special regionsearch function is provided, similar to the window
function, which yiclds a map .containing all of the points. within a given radius of a
given point from the input point map. The window and enclosing rectangle functions
may also be applied to peint and line maps.

We have also implemented set operations such as union and intersection. Doth
union and intersection may be applied to any two maps of the same type (i.e. both area,
line, or point}. In addition, a line or point map may be intersected with an area map,
yielding a line or point map containing those points or lines contained within the non-
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WHITE regions of the area map.

The Query Language

The query language provides an English-like keyword-based interface between
the database user and the database system. It allows & non-programming oriented user
to access the database with a more natural command language than LISP, thereby ena-
bling him to manipulate maps via the database functions, enter new maps into the sys-
tem, give names to data items and access the quadtree editor. .

The query language is embedded in the University of Maryland version of
FRANZ LISP [Fode80,Alle82]. The database system can be viewed operationally as a
query language that is interpreted by LISP as LISP lunctions which in turn invoke C
functions to actually process the maps. In other words, the algorithms of the database
are coded in C, and LISP merely serves ss a convenient front end for translating the
query language into calls to C functions. :

The query language is keyword-based. It operates by translating a query into
LISP function calls, ignoring any words not in its vocabulary. This has the advantage
that one can insert noise words and phrases (e.g., articles like “the” and “an"} to give
the command s more natural appearance. Alternatively, one can ignore uonecessary
phrases and just type the minimum to cause the appropriate commands to be executed,
This added flexibility is bought at the cost of more obscure error messages resulting
from the misspelling of 3 keyword. In order to allow the user to customize his interface.
wilh the database, there are commands that allow keywords to be changed,

Table 1 presents a brief syntax of the query language in its present form. The
Please command is used to learn aboul the system, The Use command changes the
display device usage area. The Measure command lets the user indicate whether coordi-
nates will have the referred map’s lower left corner zs origin, or use the global coordi-
nate system’s origin. The Enter command sllows the user to inform the system of pew
data files. The Display command. ensbles the display of a map og the display device, It
is also used Lo show the results of any computed function. The Let, Deacribe, and Forgel
commands manipulate names of enlities in the system - e.g., to rename items, describe
items, or to remove items from the system, respectively. Let and Forget allow the user to
name or forgel a data item {e.g. assigning & name to a polygon description) as well a3
renaming keywords of the query language. List returns a list of polygons or ¢lasses from
& map. Edit accesses the quadiree editor. Move displays a cursor at a given point on the
display device.

. One of the key fealures of the implementation of our query language is the abil-
ity to compose functions, Thus, where the Display command requires a map, this could
be either a map name, or an expression which yields a map. For example, if we want
to display the intersection of the landuse ¢lass map with the region below 100 {eet eleva-
tion, it could be done with the following command: )
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Display the intersection of land with the map formed from levell in top o1
the Grinnell
where ‘land’ is the name of the landuse map, 'top' is the name of the topography map

‘levell’ ia the elevation class from 0 to 100 feet, and ‘Grinnel!' is the name of our displa)
device. The result of this command is shown in Figure 11.

Concluding Remarks

Our experience in developing a geographic information system based on quad-
trees demonstrates that such a system is feasible. The potential advantage of using
qusdtrees, rather than conventional data structures, lies in the efliciency with which
many types of queries can be handled. In its current state, our system can handle »
wide range of queries. More capabilities will be added in the future. The system places
no restriction on the number of maps which can be placed in the database. For the
operations that we have implemented so far, we never use more than two input map:
and one output map at the same time. The map size is limited by the address space
available which is a funclion of the node size. In the current implementation, an indivi
dual map may not be larger than 4008 by 4098 pixels. Larger regions can representec
by breaking them up into smaller maps.
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Commands: _

Please {explain} <syatactic_unit> {}

_Use {the Grinnell at} <window> {}

Measure {points from the Jower left corner of} map {}
Measure {points from the} global {origin}

Enter <file_name> {into database}

Display <map> {on Grinnell}

Display <map> {on Grinnell starting from} <point> §}
Display {the} value {of} <number> {}

Let <name>> {} denote {} <object> {}

Let <name> {} rename {} <map> {}

Describe {the type of this} <pame>> {}

Forget {about the meaning of this} <key_word> {}
List {all the} classes {on} <map> {}

List {ali the} polygons {on} <map> {}

Edit {} <map> {with the database editor}

Move {to} <point> {}

Other syntactic units:

<number> = {the} area {of} <map>
{the} perimeter {of} <map>

<point> = {where x =} <number> {and y =} <number>
{the point at the} cursor

<window> = <point> {extended} <pumber> {by} <number>
{the smallest} window {for} <map>

<map> u={the} inlersection {of} <map> {with} <map>
{the} union {of} <map> {with} <map>
{the} windowing {of} <map> {with} <window>
{the} map {formed from} <cplist> {in} <map>

Fignre 1. The landuse map.

<class> u= {the} class {of} <poly>
{the} class {at} <point> {on} <map>
<poly> == {the} polygon {at} <point> {on) <map>

{the} unique polygon {at} <point> {on} <map>
<ceplist> == <= list of polygons and classes>

Table 1. The syntax of the query language. Words enclosed in enrly braces {} are noise
words and may be removed or replaced with any other non-keyword. Words enclosed in
angle brackets <> are syntactic units, and are replaced by words or phrases matching
their definition. In addition to a variable name or integer value which corresponds to
the requested syntactic unit in a command, some syntactic units have further definitions
as listed above. For example, where <number>> is requested, a number may be typed.
Alternatively, one of the two definitions given above for <mimber> may be used {with

the first definition resulting in the area of the map, the second definition resulting in the
perimeter of the map). ,

Figure 2. The topography maj




Figure 5. The railroad map,

Figure 3. The loodplain map.
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Figure 7. The city border map.

Figure B. The road map.
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{a) A 2* x 2* grid with each pixel labelled with the (base four) value obtained by

interleaving the y and z coordinates of the pixel.
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(b} The block decomposition of the image from

labelled by its address.

Figure 10. An example demonstrating the use of locational codes to address

blocks in an image represented by a quadtree,

Figure 92 with each block

Figure 11. The intersection of land with the map formed from levell in top.
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