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ABSTRACT 
We describe an aircraft design problem in high dimen- 
sional space, with D typically being 10 to 30. In some 
respects this is a classic optimization problem, where 
the goal is to find the point that minimizes an objective 
function while satisfying a set of constraints. However, 
evaluating an individual point is expensive, and the high 
dimensionality makes many approaches to solving the 
problem infeasible. The difficulty of the problem means 
that aircraft designers would benefit from any insights 
that can be provided. We discuss how simple visualiza- 
tions have already proved beneficial, and then describe 
how visualization might be of further help in the future. 

KEYWORDS: Multidimensional visualization, aircraft 
design, multidisciplinary design optimization. 

INTRODUCTION T O  AN INITIAL DESIGN PROBLEM 
We describe a problem in aircraft design that should be 
of interest to the visualization community due to the 
opportunity it provides for visualization to affect the 
aircraft industry. However, the problem is especially 
difficult, and most known visualization techniques are 
of little help. 

Typically the aircraft design process is comprised of 
three distinct phases: conceptual, preliminary, and de- 
tailed design. In the conceptual design stage, major 
design parameters for the final configuration are defined 
and set. Although perturbations to the initial parameter 
values may occur in subsequent design stages, decisions 
made at this stage are important since they determine 
approximately 80% of the aircraft life cycle cost [ 111. 

The conceptual design phase models an aircraft with 
a set of values for significant parameters, relating to 
the aircraft geometry, internal structure, systems, and 
mission. Examples of such parameters include the wing 
span, sweep, and thickness; the fuel and wing weights; 
the engine thrust; and the cruise altitude and climb rate. 
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Individual initial designs can be (and are) viewed as a 
point in a multidimensional space. One design problem, 
the design of a High-speed Civil Transport (HSCT), 
uses a design space wrth as many as 29 parameters 
[2, lo]. There are two important features to be deter- 
mined for any proposed initial design point: (1) it is fea- 
sible if it satisfies a series of constraints, and (2) it has 
a value under an objective function. The goal is then to 
find the point with the smallest value under the objec- 
tive function that is feasible. In the HSCT design, take- 
off gross weight (TOGW) is chosen as the objective func- 
tion because it is a rough indicator of the aircraft life 
cycle cost. Constraints are organized into two groups: 
geometric versus aerodynamic/performance. Examples 
of geometric constraints include wing chord length lim- 
its and fuel volume limits to allow fuel storage in the 
wings. Aerodynamic constraints impose realistic perfor- 
mance and control capabilities. Examples include range 
requirements, landing angle of attack limits, and criteria 
to prevent wing and tail! runway scrape. 

These are complicated, nonlinear constraints dependent 
on aerodynamic forces and moments, stability and con- 
trol derivatives, and weight and inertia estimates. Due 
to the complexity of these evaluations, many of these 
quantities are evaluated using simplified aerodynamic 
and structural models. In contrast to traditional con- 
ceptual design practices which use only simple models, 
computational fluid dynamics (CFD) analyses have been 
implemented to calculate of the range constraint for the 
HSCT design [9]. This simplified range calculation re- 
quires two CFD analyses, per design at cruise conditions, 
giving the variation in drag with the lift and aircraft 
weight. 

In some respects, this is a classic optimization problem, 
wherein the goal is to find that point which minimizes an 
objective function while meeting a series of constraints. 
However, this particular problem is difficult to solve for 
several reasons. First, evaluating an individual point 
to determine its value under the objective function and 

expensive. A single aerasdynamic analysis using a CFD 
code can take from 1/2 hour to several hours, depending 
on the grid used and flight condition considered. Sec- 

check if it satisfies the constraints is computationally 
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ond, the high dimensionality of the problem makes it 
impractical for many approaches that are often applied 
to difficult optimization problems. For example, genetic 
algorithms work poorly for this problem, since they re- 
quire far too many function evaluations just to build 
a rich enough gene pool from which to begin the evolu- 
tion. Third, the high dimensionality makes it difficult to 
even think about the problem spatially. Most people’s 
intuitions about two and three dimensional space trans- 
fer poorly when considering behaviors in ten or more 
dimensions, or even in four dimensions. For instance, 
the true import of the 4-D Klein bottle is hard to grasp, 
and to apply in other contexts. The fact that most of 
the volume in a 29-D sphere lies very near the surface 
is exactly opposite to the situation in 2-D and 3-D. 

In practice, we can only hope to ever evaluate a small 
fraction of the points. This is not only because evaluat- 
ing a single point is expensive, but the also because the 
number of points is impossibly large. Consider evaluat- 
ing only the points that represent combinations for the 
extreme ends of the range in each parameter. In three 
dimensions, this would be equivalent to evaluating the 
eight corners of a cube. In 29 dimensions, 2’’ M 1/2 
billion point evaluations would be required. 

S 0 M E H E U RI STl C CO N S I D E RAT 10 N S 
Since any sort of complete search of the design space is 
impractical, and since traditional approaches to solving 
optimization problems have so far met with little suc- 
cess, this problem has been attacked with a number of 
ad hoc heuristics. 

One such method involves systematically reducing the 
size of the region of interest using simple and approxi- 
mate constraint evaluations to rule out some candidate 
points as infeasible [S, 61. First, simple geometric con- 
straints are applied to eliminate infeasible/unreasonable 
designs. Then constraints are evaluated using inexpen- 
sive low fidelity disciplinary models to further weed out 
grossly infeasible designs. By eliminating these infeasi- 
ble points and reducing the region of interest in which 
to look for prospective designs, computational time is 
saved and accuracy of function approximations made 
within that space is improved. 

Bayesian estimation can be used to select the next can- 
didate point for evaluation [12]. Given a set of points 
and function values at those points, one can ask (us- 
ing Bayesian statistics) where to place another point 
within some box such that the prediction variance at 
any other point within the box is minimized. This is, in 
a precise sense, the “optimal” point at which to acquire 
more information, since it will minimize the prediction 
uncertainty at any other new point. 

Another approach is to use fast approximations for the 

evaluation function. A full evaluation is first conducted 
on a candidate point, yielding an accurate assessment 
for its objective function value. Nearby points are then 
evaluated using the approximation. With the original 
value as a guide, the designer can often rely on the ap- 
proximation to give a value accurate within some error 
estimate, such as 20% of the true value. 

This brings up the issue sensitivity. In some regions of 
the design space, nearby points have similar values for 
the objective function. In other words, the “surface” is 
relatively smooth in some regions. However, there are 
other sections of the design space with a sharp gradi- 
ent in the objective function value. In other words, at 
some points, the value of the objective function is highly 
sensitive to the exact values of the parameters. This is 
significant for two reasons. First, when the gradient is 
high, approximations cannot be relied upon. Second, 
designs near such gradients are undesirable, since minor 
changes imposed later in the design cycle may result 
in significant loss of performance for the overall design. 
Thus, a designer may well prefer a design point that is 
relatively insensitive to minor changes in the parameter 
values so as to allow for some flexibility in future design 
modifications. 

At this point, it is worth noting how designers often 
work in practice to select new designs. Typically, they 
start with a region of the design space that includes 
a known, successful design. A design subspace around 
the known point is selected. Depending on the com- 
putational resources available and the judgment of the 
designer, the range of this subspace may be relatively 
small or large. The size of the subspace affects the frac- 
tion of the space that is feasible, since existing designs 
tend to be insensitive in the sense that small changes 
in any of the parameters do not lead to gross changes 
in the objective function, nor are such designs close to 
violating one or more of the constraints. 

TH E VIS U AL I Z AT1 0 N CH AL L E N G E 
Given the difficulty and practical significance of the ini- 
tial design problem, aircraft designers are searching both 
for new ways to find better design points, and for new 
insights into the nature of the problem itself. Visualiza- 
tion holds some promise of providing insights into the 
problem through the ability to provide new interpreta- 
tions on available data. Visualization might also help, 
in conjunction with some form of organization for ear- 
lier point evaluations, to allow the designer to search 
through the design space in some meaningful way. 

Thus, the challenge to the visualization community is 
to devise techniques that help aircraft designers during 
the conceptual design stage. The hope is that visual- 
ization can be used to let engineers apply their design 
expertise to the problem, and to guide the computation. 
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Unfortunately, existing techniques for visualizing multi- 
dimensional spaces [4] do not apply to this problem. 

Since the dimension of the problem is so large, any at- 
tempt to directly visualize the entire space through time 
series techniques, animation, use of color and trans- 
parency, sound, etc., cannot succeed. Of course, it may 
be of help to visualize relatively low-dimensional sec- 
tions of the design space (a simple example of this ap- 
proach is described in the next section). 

Techniques for visualizing multidimensional spaces in- 
clude parallel coordinates [7] and a scatterplot matrix. 
Both essentially allow comparisons of (arbitrary) pairs 
of variables, and do not help with recognizing spatial re- 
lationships between points in the N-dimensional space. 
Various clustering methods have been proposed that at- 
tempt to map similarities in data records from a high 
dimensional space into a two- or three-dimensional space 
[13, 11. Unfortunately, it is not clear what it means for 
design points to be “similar” aside from obvious mea- 
sures such as value under the objective function, nor 
is it clear how this approach would provide insight to 
designers. 

Iconic representations for multidimensional data in the 
form of glyphs have been widely reported. An ad hoc 
version of glyph representation appears to be of some 
value for our aircraft design problem, as described below 
(see Figure 1). 

It is interesting to compare the aircraft design problem 
described here to other problems in multidimensional 
data analysis more frequently encountered. To illus- 
trate this class of problems, consider locating a place 
to retire. You might have 10 or 20 variables to con- 
sider when evaluating possible retirement places, such 
as climate, population density, crime rate, etc. Typi- 
cally, data analysis for the retirement problem depends 
on building an objective function that attempts to as- 
sign values to each parameter on some linear scale and 
relative weights to the various parameters. 

Note some important differences in the two problems 
that affect their visualizations. In the retirement prob- 
lem, for each variable, more (or less) of most parame- 
ters is absolutely better. But, there is effectively a fixed 
number of destinations, and there may not exist a point 
A differing from B only in one variable. In the aircraft 
design problem, all points in the parameter space are 
possible for consideration. However, one cannot sim- 
ply choose the point that independently optimizes each 
parameter for two reasons. One reason is that the con- 
straints sumly an independent limitation on the values 
of various parameter combinations, so that improving 
one parameter independent of the others may violate 
some constraint. More importantly, however, is that 

Figure 1: Graphical representation derived from a multi- 
parameter aircraft design. 

there is a nonlinear relationship between the parameters 
as they affect the objective function in the the aircraft 
design problem. In particular, the objective function is 
non-monotonic with respect to individual parameters. 

EXAMPLES OF VISUALIZATION USE 
Visualization techniques have already been applied to 
the aircraft design problem in two ways. First, a point 
in multidimensional space corresponds to a rough air- 
craft design. It is of use to the designer to be able to 
see an iconic representation of the airplane shape that 
corresponds to a given point, such as illustrated by Fig- 
ure 1. The parametric representation is transferred to 
physical coordinates ancl stored in the Craidon geometry 
format [5] which serves as input to several of the analy- 
sis methods. These physical points are then formatted 
as input to a plotting package. We are currently d e  
veloping design tools that allow engineers to shift easily 
between visual representations of the design, and points 
in design space. 

The second use of visualization illustrates the power of 
even simple visualizations to provide insight to a diffi- 
cult problem. Figure 2 [!3] shows a triangular section of a 
2-dimensional slice through the multidimensional design 
space. This figure is somewhat misleading in that it is 
normally unusual to have gathered so much information 
about a particular region of the design space. The rela- 
tively large number of point evaluations were performed 
expressly to generate the image. 

The use of this 2D slice’ visualization has proved to be 
significant. The reason for developing this visualization 
was to gain some insighit into the properties of the de- 
sign space. The original motivation came from the re- 
sults of an automated optimizer applied to the problem. 
It was known that the optimizer was sensitive to initial 
conditions, in that providing one point yielded a local 
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optimum, while providing another point yielded another 
local optimum which is 2000 lb lighter. Prior to creating 
the visualization, it was not recognized that the con- 
straints break the design space into disjoint (at least in 
some hyperplanes) regions of feasible points. This in- 
sight came as a result of the visualization. 

Knowing whether to accept (or reject) what the opti- 
mizer tells us is an important issue. Optimizers can have 
trouble in high-dimensional, highly constrained prob- 
lems. Using visualization in conjunction with optimiza- 
tion can provide understanding of the optimization pro- 
cess and trade-offs involved, but it also has the potential 
to provide guidance by an experienced engineer when 
the optimizer runs into trouble (such as when the gradi- 
ent of the objective function is nearly perpendicular to 
a constraint boundary). 

A DESIGN VISUALIZATION SYSTEM 
Absent a better automated technique for solving the 
problem, aircraft designers would benefit from better vi- 
sualization tools for helping select better designs. One 
approach might be a visualization system that helps bet- 
ter manage the information available. In particular, de- 
signers over time build up a collection of information in 
the form of evaluations for specific data points. It may 
be possible to provide a design environment that has the 
following characteristics. 

Allow for visualization of the spatial relationships be- 
tween points in the database 
Provide transformations between design points and a 
graphical representation of the associated aircraft. 
Give designers a feel for objective function and con- 
straint sensitivity relative to the parameter space. 
Give designers a feel for objective function and con- 
straint sensitivity relative to the aircraft geometry. 
Give designers a feel for the topology (e.g., connect- 
edness) and size of the feasible design space. 
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Figure 2: A two-dinnensional slice through the multidimensional parameter space. The plane is defined by the two local 
optima and a third suboptimal, feasible point. The circles represent specific design points. These points are either filled 
circles (indicating that certain constraints have been violated) or open circles (indicating that all constraints are satisfied). 
The value of the objlective function is indicated by the shading. In this particular region of the design space, the objective 
function is relatively insensitive, resulting in a smooth "surface." The lines on the plot represent the boundaries of four 
constraints. The lines are actually generated from interpolating the data achieved from the point evaluations-there do 
not exist simple independent equations that can be used to  discriminate large sets of points as satisfying or violating an 
individual constraint. except as gross approximations. Other slices through the design space have been investigated by 
using a different suboptimal, feasible design point t o  define the plane. While the specific variation in objective function 
and the shape and number of constraint boundaries are different for each slice, they all reveal the disjointed structure of 
the feasible design space and other features that create problems for automated gradient based optimizers. 
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