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Abstract—Models of regulatory networks become more difficult to construct and understand as they grow in size and complexity.

Large models are usually built up from smaller models, representing subsets of reactions within the larger network. To assist modelers

in this composition process, we present a formal approach for model composition, a wizard-style program for implementing the

approach, and suggested language extensions to the Systems Biology Markup Language to support model composition. To illustrate

the features of our approach and how to use the JigCell Composition Wizard, we build up a model of the eukaryotic cell cycle “engine”

from smaller pieces.

Index Terms—Modeling, composition, fusion, flattening, SBML.

Ç

1 REGULATORY NETWORK MODELING

THE physiological properties of cells are governed by
macromolecular regulatory networks of great complex-

ity [1]. Understanding the dynamical properties of these
networks is facilitated by mathematical modeling of the
biochemical reactions [1], [2], [3], [4]. These models are often
implemented deterministically, as sets of nonlinear differ-
ential equations, or probabilistically by Gillespies’ stochastic
simulation algorithm. In either case, the modeler is faced
with the problem of specifying the reactions involved in a
large complex network of interacting species, the rate laws
describing each reaction, and numerical values for the rate
constants involved in each rate law. Building regulatory
network models is a little like putting together a complicated
jigsaw puzzle with many interlocking pieces. This complex
modeling challenge is best broken down into smaller
components that can later be joined together into a larger
whole. The Systems Biology Markup Language (SBML) [5]
was created to support the modeling of biochemical reaction
networks, but the present version (Level 2) does not support
any notion of model composition. In an earlier publication
[6], we presented an algorithm and a wizard-tool for model
“fusion,” which is an irreversible process for putting
submodels together. In this paper, we describe a reversible
process that we call model “composition.”

Throughout this paper, we illustrate the process of
model composition with the protein interaction network
controlling the cell division cycle [7]. In eukaryotes, the cell
cycle is controlled by a set of cyclin-dependent protein

kinases (CDKs) that phosporylate specific target proteins
and thereby initiate the events of DNA replication, mitosis,
and cell division. CDK activity is controlled by interactions
with a variety of regulatory proteins, including the
anaphase promoting complex (APC), which, in combination
with two auxiliary proteins (Cdc20 and Cdh1), degrades the
cyclin component of CDK, and a suite of cyclin-dependent
kinase inhibitors (CKIs), which bind to and inhibit CDKs. A
simple model of these interactions (Fig. 1) is sufficient to
reproduce (in simulation) many features of cell cycle
regulation in budding yeast [8]. This model shows how
progress through the cell cycle can be thought of as
irreversible transitions (Start and Finish) between two
stable states (G1 and S-G2-M) of the regulatory system.

Such networks are often represented as graphs where
vertices represent substrates and products (collectively
referred to as species), and labeled directed edges connect-
ing vertices represent the reactions. Chemical reactions
cause the concentrations of the chemical species ðCiÞ to
change in time according to the equation

dCi
dt
¼
XR

j¼1

bijvj; i ¼ 1; . . . ; N;

where R is the number of reactions, vj is the velocity of the
jth reaction in the network, and bij is the stoichiometric
coefficient of species i in reaction j (bij < 0 for substrates,
bij > 0 for products, bij ¼ 0 if species i takes no part in
reaction j).

The full set of rate equations is a mathematical represen-
tation of the temporal behavior of the regulatory network. A
realistic model of the budding yeast cell cycle consists of over
30 differential equations and 100 rate constants [9]. The
parameters are estimated from the cell-cycle behavior of
more than 100 mutants defective in the regulatory network.
A model of such complexity (10-100 equations) is approach-
ing the limit of what a dedicated modeler can produce and
analyze with the tools available today. Beyond this size, it
becomes difficult to code the differential equations without
error, to manage the simulation of hundreds of separate

278 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 7, NO. 2, APRIL-JUNE 2010

. R. Randhawa is with the Computational Sciences Center of Emphasis,
Pfizer Global Research & Development, 620 Memorial Drive, Cambridge,
MA 02139. E-mail: ranjit.randhawa@pfizer.com.

. C.A. Shaffer is with the Department of Computer Science, Virginia Tech,
Blacksburg, VA 24061-0106. E-mail: shaffer@cs.vt.edu.

. J.J. Tyson is with the Department of Biological Sciences, Virginia Tech,
Blacksburg, VA 24061-0106. E-mail: tyson@vt.edu.

Manuscript received 6 Nov. 2007; revised 11 Mar. 2008; accepted 2 June
2008; published online 19 June 2008.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-2007-11-0152.
Digital Object Identifier no. 10.1109/TCBB.2008.64.

1545-5963/10/$26.00 � 2010 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM



experiments, or to comprehend the significance of the
results. To adequately describe fundamental physiological
processes (such as the control of cell division) in mammalian
cells will require models with 100-1,000 equations. Efforts
such as the DARPA BioSPICE initiative [10] and the DOE
Genomes to Life project [11] aspire to support models at least
one order of magnitude larger than are currently used. What
sort of software support do mathematical biologists need to
build models of such complexity?

2 BUILDING LARGE NETWORKS

Over the last 20 years, molecular biologists have amassed a
great deal of information about the genes and proteins that
carry out fundamental biological processes within living
cells; processes such as growth and reproduction, movement,
signal reception and response, and programmed cell death.
The full complexity of these macromolecular regulatory
networks is too great to tackle mathematically at the present
time. Nonetheless, modelers have had success building
dynamical models of restricted parts of the network. For
example, for budding yeast cells, there have been recent
successful efforts to model the cell cycle [9], the pheromone
signaling pathway [12], the response to osmotic shock [13],
and the morphogenetic checkpoint [14]. Systems biologists
need tools now to support composition of “submodels” (like
these) into more comprehensive models of integrated
regulatory networks. Merging submodels is currently done
manually and is an error-prone process. Our work is a step to
providing computational assistance for model composition.

We assume that each of the submodels used in creating
the larger model is a validated model itself, with experi-
mental data that fixes its parameters. The main motivation
for creating a larger model is that there exists experimental
information on the interaction of the subsystems—interac-
tions that the submodels cannot account for. By composing
validated submodels, we mitigate the problem of searching
through large parameter spaces. The parameter estimation
problem is now to ensure that the composed model is

consistent with the original data used to validate the

submodels (for which we already have good initial guesses,

inherited from the submodels) and also the new data

relevant to the interactions of the subsystems (which are

governed by the new parameters describing how the

submodels fit together).
Modeling languages and tools help modelers construct

their models by providing a computational environment

that minimizes the amount of human error during the

construction step. While modelers are currently able to

construct small and medium-sized models by hand, the

process is simplified by using computational tools that

decrease the time taken to input a model and provide error-

testing services along the way. In this paper, we describe a

representation and a tool that enable modelers to create

large models by (sub)model composition.
Our prior work has identified several distinct processes

related to model composition [15]. In this paper, we briefly

describe model fusion and flattening to provide some

background for composition. Fusion and flattening have

previously been implemented, in the Fusion Wizard

application [6] and the Model Flattener algorithm, respec-

tively. The present paper focuses on the SBML extensions

needed to describe composition, and presents a prototype

tool that enables composing models together. We provide a

meaningful example of composition using Tyson and

Novak’s models from [8].
Model Fusion combines two or more models in an

irreversible manner. In fusion, the identities of the original

(sub)models being combined are lost. The result of fusion is

a model in the same language as the submodels (in our case,

standard SBML [5]), meaning that the same simulation

analysis tools can be applied. Beyond some size, fused

models will become too complex to grasp and manage as

single entities. In this case, it may be more useful to

represent large models as compositions of distinct compo-

nents. Thus, while model fusion is a useful tool for

manipulating small to mid-sized models, it does not seem

to be a viable solution in the long run.
Model Flattening converts a composed model with some

hierarchy or connections (discussed later) to one without such

connections. The result is equivalent to fusing the submodels.

The relationship information provided by the composition

process must be sufficient to allow the flattening to take place

without any further human intervention. The relationships

used to describe the interactions among the submodels are

lost, as the composed model is converted into a single large

(flat) model. Flattening a model allows us to use existing

simulation tools, which have no support for composition.
Model Composition provides a potential solution to our goal

to build models of large reaction networks. With composi-

tion, one can think of models not as monolithic entities, but

rather as collections of smaller components (submodels)

joined together. A composed model is built from two or more

submodels by describing their redundancies and interac-

tions. Composition is a reversible process, in that removing

the intermodel interaction description that holds the com-

posed model together recovers the individual submodels.
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Fig. 1. Reaction network for cell cycle control in yeast. Icons are

proteins, solid arrows are chemical reactions, and dotted arrows

represent enzymatic catalysis.



3 CONTEXT AND PRIOR WORK

The XML-based SBML [5] has become widely supported
within the network modeling community. Thus, we choose
to present concrete implementations for the various model-
ing processes through added SBML constructs that express
the necessary glue that connects submodels together. It is
not necessary that our proposals be implemented in SBML
but doing so provides clear reference implementations in
the same way as expressing an algorithm in a particular
programming language.

SBMLmerge [16] is a tool for building large models from
smaller components, but does not support model composi-
tion. Process Modeling Tool (ProMoT) [17] and E-Cell [18]
are modeling packages that use some kind of modularity.
Modules in ProMoT are logical, encapsulated groupings of
modeling elements that represent compartments which
contain reactions, species, and special signaling parts.
ProMoT provides support for modularity and hierarchical
modeling. It uses object-oriented models, composed from
modules, and has its origins in process engineering. It
provides support for importing/exporting standard SBML
(Level 2). E-Cell uses an architecture where the complete
model may be modularized through compartments. In this
sense, modules must have some physical border and are not
only logical or functional groupings but represent an object
in the physical topology of the cell.

Snoep et al. [19] showed it was possible to construct a
large model in a bottom-up manner by manually linking
together smaller modules. They demonstrated this by
combining a glycolysis pathway model with a glycoxylate
pathway model. Bulatewicz et al. [20] suggested an inter-
face for model coupling and provided a number of
solutions, from a brute force technique to using frameworks
specifically designed to support coupling. A number of
authors from domains outside systems biology find that
successful composition (or model “reuse”) requires compo-
nents that are specifically designed for the purpose [21],
[22], [23], [24], [25]. Within the context of regulatory models,
we distinguish this approach with the term “aggregation,”
which we will discuss briefly in Section 7.

Proposals have been made within the SBML community
[26], [27], [28] that describe the mechanics of composition
through additional SBML features, as we will do. However,
none of these proposals have been published in the peer-
reviewed literature, nor to our knowledge have any been
implemented. While some commercial tools might have
more or less support for various forms of composition, we
are unaware of any nonproprietary implementations for
model composition in this application domain, or any
publications describing proprietary features in commercial
applications. Model composition for pathway models
remains very much an open problem. Our work focuses
primarily on how the composition process can be achieved.
The SBML extensions we propose and put into context with
respect to the composition process elaborate on those
originally proposed in [26].

Our implementation differs from [26] in a number of
ways. The notion of <instance> structures which enabled
model reuse using XLink [29] to instantiate any number of
models to access them has been replaced by adding a new

XPointer [29] attribute to the <model> structure. In this
way, we minimize the number of additional SBML
constructs needed while still allowing for model reuse.
The appendix provides an example using SBML syntax
of two models located in different SBML documents. The
<link> structure also differs significantly from the one
proposed in [26]. Previous proposals have highlighted the
need for imposing restrictions on linkages in a composed
model without identifying these restrictions. Our imple-
mentation incorporates the notion of direct links [26] by
forcing level-by-level linkages and also checks for circular
linkages (discussed in Section 5). Restricting the linkages
does not mean that components further than a level away
cannot be linked together, it simply means that linking them
will be done indirectly and automatically (level-by-level).
Our implementation allows modelers to link components of
different types (species, compartment, or parameter) to-
gether, unlike previous proposals. For example, a modeler
can quickly and easily promote a parameter to a species in
cases where the parameter was originally only used as an
approximation before more information was discovered of
the system or pathway under investigation. Our imple-
mentation also deals with the notion of replacing or deleting
unwanted or unused components within submodels (dis-
cussed in Section 5). Finally, we add an additional attribute
to the <link> structure called a merge/replacement
attribute which specifies the linkage type (discussed in the
Appendix).

4 MODEL FUSION

Model Fusion is an iterative process to build large models
by merging two or more submodels. Unlike composition
(where submodels are referenced but not modified), fusion
irreversibly changes the submodels in the process of
combining them together. The goal of fusion is to combine
submodels into a single unified model containing the
aggregated information (without redundancies) across the
original collection.

During fusion, the modeler produces a mapping table for
the various SBML component types (compartments, spe-
cies, reactions, etc.). During processing, we must deal with
dependencies across component types. For example, we
must resolve the identities of compartments (which
represent the bounded space in which species are located)
before species, since each species stores a reference to its
containing compartment. Fortunately, the following order-
ing for the eight SBML component types has no conflicting
dependencies:

1. compartments,
2. species,
3. function definitions,
4. rules,
5. events,
6. units,
7. reactions, and
8. parameters.

In other words, by fusing the component types in this order,
we resolve all dependencies before they are encountered.
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Fusion can be implemented by “mapping tables.” Each
column in a mapping table represents a model, and each row
represents an SBML component in that model. Duplicate
names within a model are not allowed. For example, a species
name may occur only once per column. The first column in
the mapping table is reserved for the fused model. The two
actions available to the modeler during fusion are

1. define two or more SBML components to be
equivalent and

2. remove the equivalence definition between two or
more SBML components (which have previously
been incorrectly equivalent).

We have created a Fusion Wizard application that solicits
information from the user in a step-by-step process. Fusion
proceeds in two stages: setup and resolution. During setup,
the modeler is guided through various steps that initialize
the Fusion Wizard. The modeler first assigns a name to the
fused model, then selects with a file chooser the submodels
to be fused together. The next screen allows the modeler to
select a control option for the mapping tables: the user
directs the system either 1) to place components of the same
name on the same row or 2) to place each component on a
different row. The auto-fill screen attempts to minimize the
amount of work needed by the modeler by filling up the
fused column on rows where there are no naming conflicts.
However, the modeler may decide during resolution
whether to use these initial choices or to change them
(either to another choice from a predetermined list of
available components or to provide a more appropriate
name for the component by specifying a new name).

Once the environment has been initialized, the modeler
starts resolving the naming conflicts in the various sub-
models. Resolving names is vital to be able to identify
unambiguously all the distinct entities within a model and
their relationships with each other. Once the SBML
component mapping tables have been generated, the
application uses this information to automatically merge
the submodels together. The fused model is now created
from the reaction networks of the submodels.

5 MODEL COMPOSITION

We now explain in detail how to generate a hierarchy of
models that produce what we call a composed model.
Composed models can be thought of as a collage of smaller
submodels. Within the context of SBML, we add new
language features to describe the relationships among
submodels. We refer to such constructs as “glue.” The
language additions for SBML described in the appendix
allow modelers to compose models from submodels, and
include support for multiple instances of a given submodel.
The features both define the hierarchy of the submodels and
represent the interactions, relationships, links, and reactions
between the submodels.

It turns out that there are significant similarities between
model fusion and model composition, as we discovered
during the process of developing the fusion tool. The fusion
process described in Section 4 defines a series of steps taken
to merge two or more models together. This series of steps
can be viewed as an “audit trail” used in generating the

necessary mapping tables. Precisely, this same information
can be used to describe the set of instructions needed to
connect/link the submodels for composition. Thus, both
composition and fusion produce the same results. This is
ensured by the fact that fusion and composition are
equivalent processes that take the same information to
create larger models. The processing applied to both
approaches guarantees the same set of transforms are used
to create fused models on one hand, and composed-then-
flattened models on the other. As an additional check to
confirm proper implementation, we have compared the
simulation results of the fused model versus the flattened
version of the composed model. By restricting the type of
information required to generate the fused and composed
forms, we can say with some certainty that both fusion and
composition will indeed produce the same results. At a first
glance, the two models in Figs. 5 and 7 look vastly different,
however they represent two representations for the same
regulatory network (see the caption in Fig. 7 for more
details). While fusion combines submodels together in an
irreversible way, composition simply references submodel
components by defining the “glue” that holds the sub-
models together. A major difference is that in fusion, the
explicit description of relationships between entities within
submodels is lost, while composition keeps a “record” of
how models were composed/connected together. Further
details of the language features required to implement
composition within SBML are given in the Appendix.

Model composition is an iterative process, as models are
usually constructed in increments, with modelers switching
back and forth between adding components to a model and
fine tuning models through simulations. Constructing
composed models is a bottom-up process as smaller models
are first composed together to create larger models which in
turn can be used to create even more complex models, as
previously demonstrated in [19]. A composed model can be
created from a combination of flat and/or composed
models. Model composition generates a composition tree
that describes the hierarchical relations among the various
submodels. Changing the connections between submodels
in a composed model results in a different composition tree
structure. Since model composition is a combination of
constructing submodels and generating composition trees, a
tool for composition should take into consideration the
iterative nature of the process.

When using our tools, the composition process is similar
to the fusion process. The main difference is in how the
mapping tables are set up and used. Composition mapping
tables must deal with combining both composed and flat
models. The first column of a composition mapping table is
reserved for the root of the composition tree (the composed
model), followed by its children (submodels). The mapping
tables are able to identify equivalent components across the
submodels in order to determine which components to add
(and link) in the composed model. The various lists of SBML
components (species, reactions, parameters, etc) in each
submodel are treated as distinct sets, and the intersection of
these sets represents components that occur across all the
submodels. For example, only those species that occur
within all the submodels will be present in the intersection
set and therefore added to the composed model. To signify
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equivalence, links are automatically created from compo-
nents in the composed model to components in the

submodels. The composed model will also contain mode-

ler-defined components (selected during name resolution)
from its children, which will also be linked together. Adding

and linking components at each level in a composition

hierarchy ensures that a composed model will only directly
reference components at most one level below itself, but can

indirectly reference components across many levels in the

composition tree. The four actions applied to the composi-
tion mapping tables during resolution are as follows:

1. Automatically add components that occur within the
intersection (initially components with the same
name) of the immediate submodels to the composed
model only, and create links between equivalent
components from the composed model to its sub-
models.

2. Add new user-defined/selected components from
the immediate submodels to the composed model
and create links to the equivalent components in the
submodels.

3. Define two or more SBML components within the
immediate submodels to be equivalent, add them to
the composed model, and create links to the
equivalent components in the submodels.

4. Remove the link between a component in the
composed model and a component within the
submodels (which have previously been incorrectly
linked together).

The JigCell Composition Wizard (http://jigcell.biol.vt.
edu) restricts the linking mechanism to ensure components

can only be linked together level-by-level and not across

many levels. For example, suppose model X contains a
submodel Y which itself contains another submodel Z. Both

models X and Z contain the same species S. Then, X:S

cannot be linked directly to Z:S as there is more than a
single level of distance between the two models in the

composition hierarchy. In this case, the Composition

Wizard automatically adds a new species S to model Y
and creates two links, one from X:S to Y :S and the other

from Y :S to Z:S. This mechanism ensures that components

can be indirectly linked across any number of levels in a
composition hierarchy and prevents the linking of compo-

nents not defined in the namespace they are used in.

6 AN EXAMPLE

To illustrate how composition is implemented, we follow

the approach used by Tyson and Novak when building

their basic model of cell cycle control in yeast cells [8]. They

built their model in stages starting from a simple model and

then adding new pieces until they obtained a satisfactory

representation of the cell cycle control system. Their starting

model (which we will call Submodel 1) deals with the

antagonistic interactions between cyclin B-dependent ki-

nase (CycB) and a cyclin B-degrading factor (Cdh1), as

shown in Fig. 2. The next step was to create a model (which

we call Submodel 2) of the interaction between the cyclin-

dependent kinase (now called CDK) and a CKI, as shown in

Fig. 3. Finally, they built a second version of the simple

model (which we call Submodel 3) of the interaction between

“mitosis promoting factor” (MPF) and a different form of

the cyclin-degrading factor (Cdc20), as shown in Fig. 4. Note

that different names have been used here for the same CycB

in all three models (CycB, CDK, and MPF) to better

highlight implementation details of composition.
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Fig. 2. Submodel 1 wiring diagram and reaction definitions in the JigCell

ModelBuilder.

Fig. 3. Submodel 2.

Fig. 4. Submodel 3.



The three submodels can be combined using the fusion
process to create a Fused Model (Fig. 5) or composed together
to create a Composed Model (Fig. 6). Species, reactions, and
modifier effects in red are new components that have been
added after completing fusion or composition.

The Composed Model shown in Fig. 6 is only a conceptual
version, showing how the user envisions the composed
model but not how the computer represents it. The
Composed Model produced by the JigCell Composition
Wizard is better represented in Fig. 7, which contains
duplicated species, reactions, and parameters (not shown in

Fig. 6). In both figures, color is used to indicate equivalent

species that have been linked together across submodels.

Construction of the Composed Model requires multiple

rounds of both model construction (using the JigCell

ModelBuilder [31]) and composition (using the JigCell

Composition Wizard). The three steps needed to create

the Composed Model are as follows:

1. Submodels 1-3 are loaded into the Composition
Wizard, and initial mapping tables for species and
reactions are produced. From these mapping tables,
the user generates an intermediate composed model.

2. The intermediate composed model is opened in the
ModelBuilder and additional species and reactions
are added (shown in red in Fig. 7).

3. The intermediate composed model is opened in the
Composition Wizard and a second round of name
resolution occurs, producing the final mapping
tables.

The Composition Wizard resolves components based on

their names and automatically adds and links the intersec-

tion of components within the submodels to the composed

model. Each (sub)model in this example contains only one

compartment, and they are all identified as a single

compartment in the composed model in the compartment

mapping table. The compartment mapping table can also

handle models with more than one compartment. As the

CDK has been named differently in the three submodels,

the first step in the initial species mapping table is to set
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Fig. 5. Fusion of Submodels 1-3. Components in red were added after

the fusion process was completed.

Fig. 6. Conceptual representation of the composition of Submodels 1-3.
Colored species indicate equivalences across submodels. Components
in red were added to the model after the composition process was
completed.

Fig. 7. Actual representation of the composition of Submodels 1-3 by the
JigCell Composition Wizard and the JigCell ModelBuilder. Colored
species and numbered reactions (r1�r5) indicate equivalences across
submodels. For example, while there are four reactions labeled r5, only
one (reaction r5 in the top-level composed model) is “used,” the others
are linked to the top-level reaction and remain “unused.” Similarly with
species, while the model contains four green species representing CycB
only the top-level CycB is used, and the others become placeholders.
Flattening this model will produce the model in Fig. 5.



these species to be equivalent to each other by placing them
on the same row. Next, the CDK is added to the composed
model column and called CycB. This causes three links to be
automatically created: one from Composed Model.CycB to
Submodel 1.CycB, the second from Composed Model.CycB to
Submodel 2.CDK, and the third from Composed Model.CycB to
Submodel 2.MPF. In this way, all the instances of CDK are
linked together in the initial species mapping table and thus
represent the same species (Fig. 8). The next step is to create
the initial reaction mapping table in Fig. 9. The five
reactions marked r1�r5 in Fig. 7 are added and linked in
the composed model. Reactions (r1�r4) will be modified as
a result of the composition. The CycB synthesis reaction ðr5Þ
occurs in all submodels with the same rate law and is thus
linked to ensure that only one copy of the reaction will be
used during simulation/flattening. However, the reverse
reaction (CycB degradation) is not added/linked in the
composed model as it contains different rate laws (and
modifier effects) in the three submodels.

Once the first round of composition is finished, an
intermediate composed model is generated and opened in
the JigCell ModelBuilder for editing. Three additional
reactions (! SK, SK ! , and !M) are added, which
correspond to the red reactions in Fig. 7. SK refers to a
“starter kinase” and M represents cell “mass.” M increases
according to a logistic rate equation, and M is decreased by
a factor of 2 each time the cell divides. Cell division is
triggered when CycB drops below a certain threshold, as
cyclin B is degraded by Cdc20 and Cdh1 and is best
represented as an event in the model (see [8] for details).
Next, the four novel reactions in the composed model
(r1�r4) are updated to reflect their new kinetic laws. This
intermediate composed model is saved and loaded into the
Composition Wizard. The components are once again

resolved, and the final species and reaction mapping tables
are produced (Figs. 10 and 11, respectively).

These steps produce the final composed model (Fig. 7)

which must then be simulated to verify that its dynamic

properties represents the observed behavior of growing-

dividing yeast cells in expected ways. Since our current

simulators require standard SBML (Level 2) input, com-

posed models must be flattened before they can be

simulated. This flattening is done by removing the addi-
tional constructs used to describe the composition. The

JigCell flattening algorithm automates this process and

produces a single flat model that can then be sent to a

simulator. Simulating the flattened Composed Model pro-

duces the simulation output shown in Fig. 12, which closely

matches the simulation output from Tyson and Novak’s

model [8, Fig. 8].

7 FUTURE PLANS

We are currently investigating a number of different

problems in composition, such as determining the feasi-

bility of automating the fusion/composition process,

applying composition to large-scale modeling efforts, and

looking at alternative approaches to composition in order to

build larger models. As models increase in size and

complexity the approaches discussed in this paper would
greatly benefit from some form of automation. While an

automated form of fusion or composition is not in the scope

of this paper, efforts within the systems biology community

that focus on model curation and annotation of quantitative

models of biological systems, such as Minimum Informa-

tion Requested in the Annotation of biochemical Models
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Fig. 8. Initial species mapping table for the Composed Model in the

JigCell Composition Wizard.

Fig. 9. Initial reaction mapping table for the Composed Model.

Fig. 10. Final species mapping table for the Composed Model.

Fig. 11. Final reaction mapping table for the Composed Model.



(MIRIAM) [31] and BioModels [32], might someday make
this a very real possibility.

Current modeling efforts in Tyson’s Group at Virginia
Tech involve challenging issues in large-scale modeling. One
such effort is focused on the “morphogenesis checkpoint” in
budding yeast. Ciliberto et al. [14] developed a model of the
morphogenesis checkpoint that was “hooked up” to a very
primitive cell cycle engine in budding yeast. We have
successfully combined the morpho-checkpoint module with
the full cell cycle engine proposed by Chen et al. [9] and will
publish the results in the near future.

While it is appealing in the short term to build larger
models from preexisting models, we believe that ultimately
it will become necessary to build large models from
components that have been designed for the purpose of
combining them. This matches the experience of the broader
modeling community [21], [22], [23], [24], [25]. We distin-
guish this approach from model composition as described in
this paper. We define Model Aggregation as a restricted form
of composition that represents a collection of model
elements as a single entity (a “module”). A module contains
a definition of predetermined input and output ports. These
ports link to internal species and parameters. They define
the module’s interface, which provides restricted access to
the components in the module. The process of aggregation
(connecting modules via their interface ports) allows
modelers to create larger models in a controlled manner.
Our future work will explore the model aggregation process.

APPENDIX

SBML SYNTAX

The SBML features described below elaborate on those
originally proposed in [26] by providing a defined frame-
work with a proof of concept implementation to demon-
strate the feasibility of composition. To illustrate the SBML
features needed to describe model composition, consider a
large model (called Global), composed of two submodels
(A and B). Model A contains the chemical species x and
model B contains the species y. It is now possible to make a
new reaction in Global that represents x! y, by referring to x
and y in A and B, respectively. Global consists of a model

with only one reaction. The names of reactants and products
for that reaction refer to the corresponding species in the two
submodels. It should be noted that adding a new reaction (or
any new component) is not performed in the fusion or
composition tool. Instead, this action is accomplished in a
model-building environment used to create the (sub)models.

A composed model can contain one or more submodels
within its structure. A submodel contains a valid SBML
model (an SBML <model> structure), with its own name-
space, and can itself be a composed model. Since there is no
restriction on the number of submodels a model can contain,
a <model> structure is enclosed in a <listOfSubmodels>
structure. A simple example (Fig. 13) shows a composed
model (Big) and its corresponding flattened model (Flat).
Model Big contains a submodel called Little, and each
(sub)model contains a single compartment (comp1 and
comp2, respectively) and reaction (A! B and C ! D,
respectively).

Finally, different components (species, reactions, etc)
within either the submodels or the global model are
connected/accessed using <link> structures.

We adopt a naming convention to enable modelers to
uniquely identify an SBML component (e.g., species,
parameters, etc) within a model (or submodel). Our format is

<component object=“ObjectIdentifier”>

<subobject object=“SubobjectIdentifier”/>

</component>

We will also represent this same information using the
syntax ObjectIdentifier.SubobjectIdentifier. This convention
makes it possible to refer to SBML components with the
same name in different models without having to change
their names.

Models can be composed of more than one instance of a
particular submodel. This is accomplished using the
XPointer framework [29] to refer to submodels, as it defines
a reference to another location in the current document, or
an external document, using an extended pointer notation.
An instance of submodel Little (called Submodel_Little) can
be made within model Big to access submodel Little in
model Big. The <model> structure contains a new attribute:
an xref, which is represented using an XPointer string [30]
which is used for locating data within an XML document.

A <link> (enclosed in a<listOfLinks> ) links two entities
in separate submodels of a composed model. A <link>
should be able to link two <species> , <parameters> ,
<reactions> , or <compartments> to each other. Linking
components in composition can be achieved by using
mapping tables similar to those created during fusion.
Components on the same row in the mapping table will be
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Fig. 12. Simulation of the Composed Model using XPP.

Fig. 13. Composed model showing a link between two compartments in

different submodels and its corresponding flattened model.



linked together. A<link> is composed of two fields,<from>
and <to> . The <to> field references an object (the to object)
whose attribute values will be overridden by the object
referenced by the <from> field (the from object). The objects
referenced by <from> and <to> fields must be of the same
type. Only those attribute values that have been declared in
the from object will be overridden in the to object. This is
somewhat analogous in C/C++ to treating the to object as a
pointer, and the from object as its target. However, a to object
can have attribute values that are retained if no overriding
attribute value is declared in the from object. Note that if we
have two components inside a (sub)model we are still able to
link subobjects of the components using our object/subobject
naming convention. The following example shows how the
two compartments in Big and Little can be linked together
(Fig. 13). (Note that the two models occur as separate
SBML files.)

<model id=“Little”>

<listOfCompartments>

<compartment id=“comp2” size=“1”/>

</listOfCompartments>

</model>

<model id=“Big”>

<listOfCompartments>

<compartment id=“comp1” size=“1”/>

</listOfCompartments>

<listOfSubmodels>

<model id=“Submodel_Little”

xref=“#xpointer

(Little.sbml/sbml/

model[@id=%22Little%22])”/>

</listOfSubmodels>

<listOfLinks>

<link merge=“true”>

<from object=“comp1”/>

<to object=“Submodel_Little”>

<subobject object=“comp2”/>

</to>

</link>

</listOfLinks>

</model>

The above SBML code shows an example where the
submodel Little occurs within a different SBML document
(named “Little.sbml”). If the submodel Little occurred
within the same SBML document, the xref/xpointer attribute
of the <model> structure would not have a filename
prepended to it.

The <link> structure contains a merge attribute, whose
value can be either true (indicating a merge link) or false
(indicating a replacement link). To see the difference,
consider models R and T which each contain a chemical
species called S1 with different attributes. S1 in Model R
has attribute InitialSubstance ¼ 1:0. S1 in Model T has
attributes InitialSubstance ¼ 2:0 and Constant ¼ true.
Linking S1 in R to S1 in T with a merge link uses
S1’s attributes from T . S1 that have not been declared in
R:S1. The result is that S1 has attributes InitialSubstance ¼
1:0 and Constant ¼ true since it keeps its old value for

InitialSubstance and gains the definition for Constant. If S1
in R is linked to S1 in T using a replacement link (i.e., the
merge attribute is false), then only R:S1’s attributes are used.
The result will be that S1 will only have attribute
InitialSubstance ¼ 1:0 (it has not value for Constant).
Specifying the type of link for composition requires adding
a new field to the mapping table to specify the merge/
replacement attribute.

The <link> structure can link certain combinations of
differing SBML component types to each other, such as
species $ parameters and rules $ species/parameters. A
link can take a <species> structure as the from object and a
<parameter> structure as the to object, and vice versa.

The <link> structure should also be able to link together
groups of reactions, thus enabling N to N links. The syntax
for the <link> structure should allow zero or more <from>
and one or more <to> object references. A link with zero
<from> references deletes the <to> object(s). This is useful
to remove or ignore a component or a group of components
within a particular (sub)model that do not participate in the
overall composition. A link cannot contain more than one
species or compartment <from> references (otherwise, it
would be possible to split a species or compartment). Note
that a <link> to nothing is not allowed.
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