
DEFECT DETECTION ON HARDWOOD LOGS USING LASER SCANNING

Liya Thomas
PhD Student

Department of Computer Science

Lamine Mili
Professor

Department of Electrical and Computer Engineering
Virginia Tech

Blacksburg, VA 24061

Edward Thomas
Research Computer Scientist

USDA Forest Service, Northeastern Research Station
241 Mercer Springs Rd.

Princeton WV 24740

and

Clifford A. Shaffer1

Associate Professor
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061

(Received August 2005)

ABSTRACT

To improve the sawyer’s ability to process hardwood logs and stems, and thereby generate a higher
valued product, automated detection methods of external defects have been developed and successfully
tested on a large collection of real log samples. Since external defects provide hints about internal log
characteristics, the location, type, and severity of external defects are the primary indicators of overall
hardwood log quality and value. Using a high-resolution laser log scanner supplied by Perceptron, 162 red
oak and yellow-poplar logs were scanned and digitally photographed. By means of 2-D circles fitted using
a robust estimation method, a residual image is extracted from the laser scan data. Other robust fitting
methods, such as ellipse and cylinder fitting, also are examined and their performance is evaluated. Our
investigation reveals that the residuals, which are defined as the radial distances between the data points
and the fitted curves or surfaces, provide valuable information about defects exhibiting height differen-
tiation from the log surface. In other words, the log “skins” in the residual images show most bark texture
features and surface characteristics of the original log or stem. Based on the contour levels estimated from
a residual image, the developed methods allow us to detect most severe defects using a combination of
simple shape definition rules with the height map. Less significant, yet severe defects are pinpointed using
a shape profile.

Keywords: Computer vision, defect detection, robust estimation method, scanning log laser.

INTRODUCTION

Over the last few decades a broad variety of
scanning technologies have emerged for wood
processing. Several scanning and optimization
systems are on the market that aid in the sawing
of logs into lumber. Among them are defect de-
tection and classification systems for logs and
stems. Defect detection on hardwood trees and
logs is categorized into internal and external de-
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this research, and Perceptron, Inc. for lending their laser
scanning equipment for log data collection.

Wood and Fiber Science, 38(4), 2006, pp. 682 – 695
© 2006 by the Society of Wood Science and Technology



tection. Internal detection determines defects in-
side logs, while external detection identifies de-
fects on a log’s surface. Currently, most avail-
able scanning systems are external methods that
use a laser-line scanner to collect rough log pro-
file information. These systems were typically
developed for softwood (i.e., pine, spruce, fir)
log processing and for gathering information
about external log characteristics such as diam-
eter, taper, curvature, and length (Samson 1993).
Once log shape data are obtained, a previously
generated cutting pattern or template is selected
that best fits the log. Optimization systems then
use this profile information to better position the
log on the carriage with respect to the saw and to
improve the sawyer’s decision-making ability.
Adding external defect information to the opti-
mization process is a natural extension of current
technology.

While the various internal defect inspection
methods proposed in the literature are based on
X-ray/CT (Computer Tomography), X-ray to-
mosynthesis, MRI (magnetic resonance imag-
ing), microwave scanning, ultrasound, and en-
hanced pattern recognition of regular X-ray im-
ages (Guddanti and Chang 1998; Schmoldt
1996; Wagner et al. 1989; Zhu et al. 1991), no
commercial installation of these methods is
known to exist at this time. Using CT data, com-
puter vision algorithms such as the feed-forward
artificial neural-network classifier (ANN) devel-
oped by Li et al. (1996), are able to accurately
locate and describe internal log defects. Under
certain conditions, CT or MRI systems provide
the CT scanning device (Bhandarkar et al.
1999). In addition, it is expected that the expense
of X-ray/CT systems would prevent their instal-
lation in many sawmills—particularly small- to
medium-sized mills. Further, it would be easier
and less expensive to install and maintain an
external laser scanning system than an X-ray/CT
system, based on the complexity of the latter
system. External laser scanning systems have
the potential to significantly improve the volume
and value of boards produced and avoid the
drawbacks of X-ray/CT and similar systems.

Traditionally, before a hardwood log is sawn,
an assessment of its quality is performed, typi-

cally via a mill operator’s visual inspection. This
inspection process is quite subjective since it
depends entirely on the operator’s judgment and
abilities. The presence and location of defects
decrease log quality and value. In fact, the dif-
ference between high and low quality logs is
determined by defect type, frequency, size, and
location. While log defects are classified as ex-
ternal or internal defects, they are strongly re-
lated to each other since external defects typi-
cally stem from internal ones lying beneath
them, down to the wood pith. Consequently, the
former may be considered as external indicators
of the latter. They consist of bumps, splits, holes,
and circular distortions in the bark pattern.
Bumps usually indicate overgrown knots,
branches, or wounds. Some bumps have a cavity
or hole in the middle, indicating that the over-
grown material has turned rotten. Circular dis-
tortions, or rings around a central flattened area,
indicate a branch that was overgrown many
years or decades ago. Surface defects progress
from a pruned branch, naturally or purposefully
pruned during management, to an overgrown
knot characterized by a significant bump, then to
a rotten knot or a distortion defect, depending on
the circumstances.

Studies have demonstrated that the use of ex-
ternal or internal defect data improves cutting
strategies that optimize log recovery or yield,
i.e., preserving the largest possible area of clear
wood on a board face. The value of lumber that
can be recovered depends on the presence and
location of defects. This is especially true for
hardwood logs. Softwoods are sawn to fixed
stock dimensional sizes, e.g., 2 in. thick × 4 in.
wide × n ft long (2×4s), 2 in. thick × 6 in. wide
× n ft long (2×6s), etc. Normally little attention
is paid to the placement of defects inside or on
the log surface in softwood processing. How-
ever, in the production of hardwood lumber,
boards are sawn to fixed thicknesses and random
widths. The presence and placement of defects
on the boards are of particular concern as they
impact board quality and value. Therefore, much
attention is given to the presence of log surface
defects during processing. The use of a scanning
system to detect log surface defects would im-
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prove decision-making when the log is sawn into
boards. This can be accomplished with a simple
video system that displays the log to be pro-
cessed along with its defects. The time needed to
visually inspect logs would be minimized and
enables the sawyer to detect defects that other-
wise might be overlooked.

It is difficult to accurately and quickly detect
and measure defects by either mechanical or
manual methods ( Tian and Murphy 1997).
However, the potential value and yield gains as-
sociated with accurate automated defect detec-
tion are significant. In Steele et al.’s study
(1994), 12 red oak logs were collected and di-
vided into two groups that were as closely
matched as possible with respect to log size and
quality. Logs from one of the groups were sliced
into 0.25-in. thick disks and the location and size
of all defects were recorded. The data from the
slices were assembled to create virtual logs
showing all exterior and interior defects. The
logs from one group were sawn to the best of a
sawyer’s ability to produce the highest valued
lumber possible. The logs in the other group
were sawn by computer using the available de-
fect information. The logs sawn using the defect
information averaged 11.21% higher value than
those sawn manually without defect informa-
tion.

Our research is focused on developing a cost-
effective and reliable method of locating exter-
nal defects on log surfaces (Thomas et al. 2004).
To accomplish this, we employed a commer-
cially available TriCam scanning system with
four laser units (Perceptron 1999). This scanner
generated high-resolution profile images of the
log surface in three dimensions. The developed
method consists of the following steps. First, the
three-dimensional log surface image is pro-
cessed to determine the location of the most se-
vere defects, which include overgrown knots,
rotten knots, holes/gouges, and removed
branches. These types of defects usually are as-
sociated with a significant surface rise or depres-
sion depending on the defect type. The image is
processed using a robust statistical approach to
fit a series of circles to the log data. By analyz-
ing the radial distances, defects characterized by

a height change from the surrounding log area
can be located. Another process is to locate de-
fects that are severe but not as easily identified
as the former. This is achieved through the ex-
amination of log surface data and the pattern
matching of data segments to a predetermined
defect profile.

In this paper we first describe the method we
used for scanning logs. Then we present robust
curve-fitting procedures for estimating log
shape, a preliminary step for our defect detection
method. We then generate a 2-D residual image
from the curve-fitting process. Next we charac-
terize and catalog the features of severe external
defects on hardwood logs, which is used as input
to the defect detector. In the final section, we
present conclusions and plans for future work.

Description of the laser log scanning systems
being used

A portable, demonstration laser log scanner
by Perceptron, Inc. was used to collect the log
surface data (Perceptron 1999). The scanner
comprises four laser-line generator/camera units
stationed at 90-degree intervals around the log’s
circumference. The scanner utilizes triangula-
tion to determine locations of log surface points
covered by the laser-line. The log stands still
while the carriage holding the four scanning
units moves on rails along the log’s length. The
logs are maintained in position by supports at
4-ft intervals.

The log scanner scans a 16-ft-long log at low
resolution in less than 10 s and is designed to
collect gross profile information. At low resolu-
tion a scan line around the circumference of the
log is taken every 4.0 in. To achieve higher reso-
lution, the speed at which the scanner moves
along the log was slowed to approximately 15 ft
per min. The slow scanning speed is a result of
slowing the motors that move the scanning ap-
paratus along the log. This is the only means
available for us to increase the density of scan
lines. A more elegant, but unavailable, solution
would be to reprogram the system to take more
frequent scan lines. At this speed a laser-line
measurement is recorded approximately every
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0.78 in. (Fig. 1). A transducer records the lineal
position of the scanner accurate to 0.01 in. The
data set shown in Fig. 1 consists of 1,290 three-
dimensional Cartesian coordinates in a single
plane. We refer to such a data set as a “cross-
section.” Depending on the circumference of the
log at any specific location, the number of points
in each cross-section varies. However, on aver-
age the distance between points in each cross-
section is 0.04 in. When a sequence of cross-
sections is assembled, a three-dimensional map
of the log surface is obtained (Fig. 2). An addi-
tional computer program has been developed us-
ing OpenGL to render realistic views of the
scanned log surfaces (Fig. 3). This program is
especially useful for visually examining the logs
and comparing detected defects with both the
visible and manually recorded defect locations.

A combination of 162 northern red oak (Quer-
cus rubra) and yellow-poplar (Tulipifera liri-
odendron) logs were scanned. These are two of
the more common and important commercial
species in the eastern United States. The sample
of logs scanned is obtained directly from the
forest and from local sawmills. In general, the
logs from the forest are in better condition than

those from sawmills. Because of less handling,
the forest logs show less damage and have fewer
and smaller areas of missing bark than the mill
logs.

FIG. 1. A data cross-section representing the circumfer-
ence of a log on a 2-D plane.

FIG. 2. Three-dimensional projection of the laser-
scanned log data.

FIG. 3. OpenGL rendered image of the log data pre-
sented in Fig. 2.
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A robust defect detection method based on
range data provided by a laser scanner

Severe external defects that correspond to
rises or depressions on the log surface can be
observed from the three-dimensional log surface
image. This suggests that one way to determine
their location is to extract the height change on
the log surface from its 3-D image. To do so, we
apply a series of circle fittings to log cross-
section data sets to obtain ground zero reference
levels of the log surface. Because the range laser
data sets may include either missing data or ir-
relevant deviant data points, we develop a new,
robust estimator to estimate in a reliable manner
the centers and the radii of the fitted circles.
Radial distances between the latter and the log
data points are thus indicative of the local height
changes. Defects characterized by significant (in
a statistical sense) surface rises or depressions
are then located using appropriate statistical
methods that are described next.

Circle fitting and outlier suppression

To convert the 3-D log surface data to 2-D
images for processing, a reference surface must
be imposed on the log data from the scanner.
Since logs are natural objects that are approxi-
mately circular or elliptical along the cross-
sections, we decided to experiment with fitting
circles and ellipses to the log data, which all
together form a reference surface, or virtual log,
needed for defect detection. It turns out that de-
fects that correspond to rises or depressions on
the log surface can be detected using contour
levels estimated from the orthogonal distances
between the virtual log surface and any point of
the cross-section.

Fitting quadratic curves (i.e., circles, ellipses)
to 2-D data points is a nonlinear regression prob-
lem (Gander et al. 1994). Classic least-squares
fitting methods fail in our case because the laser
log cross-section data contain either missing
data and/or large deviant data points, termed
outliers in the statistical literature. These data
characteristics are caused by both the logs and
the scanning system. As depicted in Fig. 4, the

laser data sets include deviant data generated by
dangling loose bark, duplicate and/or missing
data caused by scanner calibration errors, un-
wanted data from the supporting structure under
the log, and missing data due to the blockage of
the log by the supporting structure. In robust
statistics, outliers are defined as data points that
strongly deviate from the pattern formed by the
majority of the measurements. To overcome the
non-robustness of the least-square fitting, we re-
sort to the theories and methods of robust statis-
tics (Hampel et al. 1986). The nonlinear form of
the circle equation prompts us to develop a new,
robust estimation method that is an outgrowth of
the one proposed by Mili et al. (1996).

Our nonlinear regression circle-fitting estima-
tor is a generalized M-Estimator termed GM-
Estimator for short (Thomas et al. 2004). As
shown in Fig. 5, it filters out not only the errors
in the measurements, but also the errors in the
circle model that is applied to a given cross-
section data set. For example, for a log sample
with 120 cross-sections, an equal number of
circles are fitted, forming a virtual log for the
residual extraction as depicted in Fig. 2. Unlike
the method described in Mili et al. (1996), our
estimator minimizes an objective function that
makes use of a weight function that levels off for
large-scaled radial distance between the associ-
ated data point and the fitted circle; it does this
at every step of the iterative algorithm that
solves the estimator. The robust measure of the
scale of these distances is performed by means
of projection statistics (Mili et al. 1996; Rous-
seeuw and Van Zomerman 1991) while the
minimum of the objective function is found
through the iteratively re-weighted least-squares
algorithm (Mili et al. 1996). For detailed infor-
mation regarding our robust circle-fitting GM-
Estimator, refer to Thomas et al. (2003).

To check that our nonlinear circle-fitting GM-
Estimator is robust against outliers, we derive its
influence function, which is a measure of the
estimator’s sensitivity to data contamination
(Hampel et al. 1986). If this function increases
without bounds as a data point is moved farther
and farther away from its true value, the estima-
tor is said to be non-robust; otherwise it is said
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to be robust. It can be shown that the influence
function of our estimator can be decomposed as
the product of two terms, one reflecting the in-
fluence of the model (i.e., the circle equation)
and another reflecting the influence of the radial
distances (i.e., the measurement errors). It can be
shown that both terms are bounded, making our

estimator robust against extreme outliers (Thom-
as et. al. 2004).

We tested the robustness of our estimator on
real log data samples. It is found that the result-
ing fitted circles vary little among neighboring
cross-sections, which yields a smooth fitting
over the entire data of one log. Figure 5 displays

FIG. 4. Various formations of outliers present in cross-section data from laser scanning: a: loose bark flakes in lower
left corner. b: outliers in form of scanning support structure and missing data due to structure. c: outliers and shape of log
at one end where the log was cut diagonally instead of squarely. d: a good log data cross section containing no outliers.
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a circle that was fitted to a cross-section with a
non-negligible fraction of outliers and missing
data. Outliers identified by this method are plot-
ted in bold. The smoothness of the fitting is fur-
ther reinforced by smoothing the parameters us-
ing a box filter (Haralick and Shapiro 1992).
Note that approximately 3% of the points are
labeled as outliers, and hence suppressed from
the data set (Thomas et. al. 2004).

Robust ellipse and cylinder fitting

We also experimented with a linear ellipse-
fitting GM-Estimator that incorporates the het-
eroscedastic errors in variables model (Leedan
and Meer 2000). The advantage of ellipse-fitting
is that it provides better results in certain situa-
tions, for example when the cross-sections are
predominately elliptical rather than circular in
nature. However, the ellipse model involves five
parameters (two for the center point, two radii,
and the orientation angle of the ellipse), as op-
posed to three for the circle (the center point x
and y values, and the radius). In addition, the
estimation of radial distances between the mea-
surements and the ellipses requires the use of an
iterative algorithm. All these difficulties make
ellipse-fitting a less attractive option.

At the cost of greater model and computa-
tional complexity, we may choose to fit instead
a cylinder or a conic to the entire set of log data
at once. This fit provides a uniform surface of
reference for generating the residual data. In
general, such an approach does not work well as
log shapes are not strictly cylindrical or conic.
Furthermore, our sequence of circle fittings may
be regarded as the fitting of a generalized cyl-
inder (Marr and Nishihara 1975) in a discrete
sense.

Generating the residual gray-level image

The next step is converting the three-dimen-
sional laser-scanned Cartesian coordinates into a
two-dimensional, 256 gray-level image (Fig. 6).
In this process, the log surface is unrolled onto a
2-D coordinate space. In essence, this process
creates a “skin” of the log surface representing
the pattern of the log’s bark along with the
bumps and bulges associated with most defects.
Using the adjusted, fitted circle to each cross-
section, we calculate the radial distances be-
tween circle and log surface points, typically
ranging from -0.5 to 0.5 in. The radial distances
are scaled to range from 0 to 255 and mapped to
gray-levels to create a 2-D image. Originally the
log data are not in a grid format, so they are
processed and interpolated linearly to fill any
gaps between data points. The x3 value in the
3-D data is the coordinate in the third dimension
or the z-axis value, which is the position along
the log’s length. It is mapped to the 2-D image
as the y value, given by a row number. The x
value of the image, given by a column number,
is calculated by scaling the angle of a cross-
section’s point from the center of the fitted
circle.

If the desired image is to be 750 pixels wide,
the scaling factor would be 750/(2�). On aver-
age, the size of an unrolled log output image is
about 2 MB (megabytes), or 1,400×1,600 pixels
at 1 byte per pixel. To save space and future
processing time, the resolution of the output
gray-level image from log-data unrolling is re-
duced. The Gaussian pyramid algorithm (Hara-
lick and Shapiro 1992) is applied and a 5×5 win-

FIG. 5. Circle-fitting to a cross-section that contains a
portion of the log support.
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dow is used to smooth and sub-sample the im-
age. The image is reduced to 25% of the original
size, i.e., roughly 500 KB/image. This speeds
additional analyses of the image with little or no
loss of data of interest.

External defect characteristics

The residual images provide a solid founda-
tion for detecting and classifying external log
defects. Robust clustering and pattern recogni-
tion methodologies were employed for this pur-

pose. An important part of a clustering and clas-
sification system is its training using sufficient,
typical samples having unique object features.
Once the system is well trained, it can identify
an object and classify its type at a desirable clas-
sification rate. In our case, the objects are exter-
nal log defects. Thus, we study about 200 me-
dium to severe defect samples of red oak and
yellow-poplar. Our goal is to better define and
characterize external defect types of hardwood
species from the conventional forest industry
perspective; to extract features unique to each
defect type; and to categorize external defect
types discernible using the 3-D laser data. Loose
bark on the log surface is not a defect. However,
it tends to introduce outliers in our 3-D log data.
Thus a sample collection of loose bark is studied
as well. Table 1 lists three of the defect types
that we studied.

The features examined include width along
the log cross-section, length along the log
length, the surface rise, and the surface depres-
sion. Each defect is measured manually and pho-
tographed using a high-resolution Nikon CCD
digital camera. The sample measurements are
analyzed for each defect type. Log curvature and
slope along both the width and length directions
are approximated. Statistics for each defect type
including the average, median, first- and third-
quartiles also are determined. We intend to use
these data to help in modeling the features of
each defect type that set it apart from others in
the n-dimensional feature space, so that defects
can be classified using a robust clustering and
classification tool. Figure 7 displays photo-
graphs of two defects, while Table 2 lists their
sample measurements and calculated feature
values. The left two photographs are the side-
and top- view of an overgrown knot on a red-oak
log, respectively, and the right ones, a sound
knot on a yellow-poplar.

Table 3 presents our study results from the
defect samples. For example, the median width
of overgrown knots is 5.5 in., smaller than that
of sound knots, 6.5 in. Meanwhile, the median
length of overgrown knots is 6.5 in., also smaller
than that of sound knots, which amounts to 9.5
in. Thus we conclude that, in general, overgrown

FIG. 6. Radial residuals generated by the log-unrolling
processing presented as a gray-level image. Light pixels
represent protrusions from the log surface, and dark pixels
represent depressions. This log is approximately 9 feet in
length with a diameter of 21 inches. The Z dimension is
along the log’s length. The � dimension is around the cir-
cumference of the log.
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knots are smaller than sound knots in terms of
defect area size.

Traditionally by forest industry convention, if
a sawn knot is not rotten, then it is referred to as
a sound knot. On the other hand, if an overgrown
knot or a sawn knot is rotten, then it is grouped
into a third type, known as unsound knot. The
laser-scanned data do not provide sufficient in-
formation to distinguish defects that are rotten or
otherwise; thus our algorithm will not be able to
classify them as well. For defect classification
using laser data, we propose to regroup these
three defect types, overgrown knots, sound
knots, and unsound knots, into two new types
which we call knobs and sawn knots. Knobs
comprise all overgrown knots, regardless of
whether they have decay; similarly, sawn knots
include both sound and rotten ones. As is done
for the defect types according to forest industry
convention, we obtain statistics of the defect
samples under the two corresponding new pro-
posed categories.

Simulation results and discussion

To accommodate the countless possible defect
sizes, heights, shapes, types, etc. in the 3-D log
data, we developed an expert system to imple-
ment the defect detection task. The current ver-
sion of our system uses the contour image gen-
erated from the radial distances, which provides
a map of defect height change against the sur-
rounding bark. Also used are the measured 3-D
log data. Expert knowledge and expertise are
applied in a stepwise fashion to rule out areas as
potential defects, including areas in sizes smaller

than a given threshold, nested in other curves, or
long and narrow (determined by the “actual”
width-to-length ratio, referred to as w/l for
short). By “actual” we refer to the width-to-
length ratio acquired through the calculation of
the statistical medium of the widths of the area
enclosed in the selected contour curve. The data
resolution (0.8 in. per cross-section) and the na-
ture of external defect shapes restrict search
scope in the algorithm.

The algorithm attempts to find the most ob-
vious defects based on their external character-
istics, such as protrusion on surface, certain
width-length ratio, and area size. These defects
have a relatively significant high change on the
surface (�0.5 in.), and/or a relatively significant
size (�3 in. in diameter). We refer to such de-
fects as “expected to be detected,” while the
other defects, less significant in size, are termed
“unexpected to be detected” as illustrated in
Table 4. Using the gray-level image shown ear-
lier in Fig. 6, the algorithm generates a contour
plot as depicted in Fig. 8, and determines the
rectangles enclosing areas with a contour curve
at the highest level. Then some areas are se-
lected if they are big enough or with a significant
height. In Fig. 8 four out of the nine surface
defects are found using this method. Figure 8
also shows a manually recorded map of the de-
fects on the same log. The defect types detected
by our method in the map include SKC’s (sound
knot clusters), SK’s (sound knots), and OK’s
(overgrown knots). Minor defects we did not
expect to be detected include AK’s (adventitious
knots), AKC’s (adventitious knot clusters), LD’s

TABLE 1. The code, name, indicator, and definition of three external defect types.

Defect code Defect name
Surface
rise (in.) Indicator Definition

OK Overgrown knot 1.5 An abrupt surface rise, usually more
than 0.5 inch, and texture change 2
to 8 inches in diameter.

A knot just below the bark
surface.

SK Sound Knot 1.0 Same as OK but characterized by a
flat-sawn top.

Location where a branch was
sawn from the log.

UK/RK Unsound/Rotten knot 1.0 Often has a surface rise with a
depression or hole in the middle,
usually greater than 0.5 inches.

An overgrown knot or sound
knot with a portion rotten.
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(light distortions), and MD’s (medium distor-
tions).

Further, our algorithm includes a statistical
expert system to examine the area surrounding a

selected small region for relatively straight line
segments. If the coverage of straight line seg-
ments is sufficient, the defect area is adjusted to
cover the entire defect surface, rather than just a

FIG. 7. Photographs of two external hardwood log defects. Left, overgrown knot (OK) on red oak; Right, sawn knot
(SK) on yellow-poplar.

TABLE 2. Measurements and feature approximation of the defects in Fig. 8.

Specie Type #
Width
(in.)

Length
(in.)

Surface
rise (in.)

Curvature
along w.

Curvature
along l.

Slope (°)
along w.

Slope (°)
along l.

ROAK OK 250 7.5 9.5 2.5 0.36 0.22 48 58
YP SK 281 6.5 10 2 0.38 0.16 52 66

TABLE 3. Statistics of the measurements and feature approximations for three defect types. Each entry consists of the
first-quartile, median, and the third-quartile of the sample measurements.

Measurement
Defect types

Overgrown knot Sound knot Unsound knot

Width (in.) 4.5–5.5–6.5 5.5–6.5~7.5 1.0–1.5–1.5
Length (in.) 5.50–6.50–7.50 6.60–9.50–12.40 6.30–7.50–9.50
Surface rise (in.) 1.00–1.50–1.50 0.60–1.00–1.50 0.90–1.00–1.50
Surface depression (in.) – 0.80–1.00–1.50 0.90–1.00–1.50
Curvature along width 0.25–0.33–0.40 0.11–0.16–0.33 0.19–0.22–0.28
Curvature along length 0.17–0.22–0.28 0.06–0.09–0.16 0.13–0.16–0.19
Slope along width 55–64–69 61–71–74 64–69–73
Slope along length 63–66–69 73–77–81 68–73–76
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corner. The algorithm examines angle changes
between the lines connecting log data points
along cross-section at certain intervals. If the
changes are small enough (� 25°), the corre-

sponding segments are recorded as nearly
straight. Then the coverage of the “straight” seg-
ments is determined. If there are a sufficient
number of straight segments, this area is identi-

TABLE 4. Statistics of the simulation of our defect detection system.

Defect type

# of Defects to be

detected
Expected Unexpected Grand Total

FalseTotal Detected Total Detected Total Detected

Knobs 32 27 34 6 66 33
Sawn knots 19 19 19 2 38 21
Others 8 1 50 3 58 4

All types 59 47 103 11 162 58 14

FIG. 8. Left: Contour plot of a log surface with the four most obvious defect areas marked with crossed rectangles
labeled in the descending order of area size. Right: Defect diagram illustrating the “ground truth.” Note that only five small
and/or flat defects were not detected. Both plots were automatically generated by our Matlab programs.
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fied as a flattop, which is likely a sawn top,
either sound (not rotten), or unsound (rotten).
Wrap-around areas refer to areas whose left bor-
der starts at the right side of the contour plot
(∼2� radians), and right one ends at the left side
(∼0 radians). To deal with these areas, all the
corresponding data identified by their x, y, and z
coordinates along with the borders of the areas
are rearranged via calculation, rotation, and ar-
ray shifting, so that the areas to be examined are
centered at � radians. The previously wrapped-
around areas can then be examined like other
areas.

Log-surface defects come in many types,
sizes, and shapes: knots, bumps or bulges, cir-
cular distortions, surface rise, and splits, to name
a few. Knots include overgrown, adventitious,
sound, or unsound (rotten). Distortions can be
heavy, medium, or light. Knots can occur in
clusters of various numbers and sizes. Approxi-
mately 60% of the severe defect types, including
overgrown knots, rotten knots, bumps, sawn-off
or removed branches, splits, and holes, have a
height change, either a protrusion or a depres-
sion, of at least 0.5 in. when compared to the
neighboring bark area. Other defects do not
change much in terms of height. Some defects
are easily identified by color or height charac-
teristics. Others are not obvious except for their
breaking of the natural bark pattern, i.e., a
change in bark texture. In log processing, some
types of defects are considered severe, such as
knots and heavy distortions, while others are not
as serious. Based on these observations, the data
are processed such that log areas unlikely to con-
tain defects can be ignored and removed from
the foreground region.

Many severe defects are associated with a lo-
calized height change: a height analysis of the
residual image provides information about the
presence of such severe defects. A substantial,
localized, and abrupt surface rise or depression
greater than 1.0 in. is almost always a defect.
The reason we chose 3 in. as the threshold for
defect diameter is that the log-data resolution—
0.8 in. per cross-section—is not high enough to
well capture defects whose diameters are smaller
than that. Since the pixel values in the gray-level

image represent radial distances between the fit-
ted circle and the log surface, the analysis is
straightforward. In the contour plot image, it is
possible to discern the areas containing likely
defects based on height information alone.

Area-removal rules comprise: areas smaller
than a given threshold are mainly tiny frag-
ments; areas enclosed in curves nested in other
curves are removed, as there will only be up to
one defect in the same location; those being long
and narrow are normal bark areas; areas that are
smaller than 50 in.2 and are too close to the
selected large ones. Some areas are removed for
further consideration if they contain a severe
portion of missing data. Although not illustrated
in Fig. 8, certain defects, in particular the sawn
ones, are often detected partially in the contour.
This is because they are relatively low-lying and
flat, and often only a small portion of a sawn
knot, e.g. a relatively high-raised corner, is en-
closed in the highest contour. The algorithm ad-
justs the boundaries of this type of identified
areas. Areas may include elevated yet non-
defective log surface. Typically they are covered
with tree bark, thus associated with distinctive
bark patterns. Finally, due to the lack of “de-
pressed” defect samples in the log data, at this
stage of development our system does not detect
such defect types.

Table 3 presents statistics for the simulations
of our defect detection system. Fifteen log
samples were randomly chosen containing 162
surface defects in total. The detection system
does not classify the type of defects, e.g., over-
grown knots, unsound knots, sawn knots, etc.
Instead, the classification is done manually
through our examination of the detection results
including the contour plots, the defect diagrams
(ground truth), gray images, and the colored log
photos. The last row of the table, excluding the
value in the last column, displays the sums of the
data in each column. The program made a total
of 72 predictions of defects. It correctly identi-
fied 47 of 59 “expected” defects, 11 of 103 “un-
expected” ones, and incorrectly predicted 14 lo-
cations as defects. Note that as a future research
work, a method that makes use of the gray-level
information provided by the residual image will
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be developed to further enhance the defect de-
tection tests of the “unexpected” category.

CONCLUSIONS AND FUTURE WORK

This paper describes our approach for detect-
ing surface defects in hardwood logs. Because of
the presence of extreme outliers and missing
data in the laser log data set, robust estimation
techniques are well suited to this application.
The developed programs can process an entire
log-data sample by transforming the original log
data set, which may contain a large number of
missing and/or severe deviant data, into a
sharper and cleaner image. The quality of the
resulting gray-level image lays a solid founda-
tion for the remaining defect-detection process.
It is found that contour levels derived from the
residuals make it possible to detect and further
narrow down the potential defect areas. For de-
fects that lie within the bark layer, the pixel in-
formation of the gray-level image needs to be
utilized; this calls for further research and de-
velopment.

When a single cylinder is fitted to the entire
log data, the number of parameters to be esti-
mated is the fewest as compared to fitting a se-
quence of circles and ellipses to all cross log
sections. This means that cylinder-fitting pro-
vides the fewest degrees of freedom. In addition,
the residuals are extracted against a uniform sur-
face, resulting in the smoothest image among the
three. In contrast, the circle-fitting approach in-
volves far more parameters to be estimated,
which results in more degrees of freedom. How-
ever, each circle provides a better fit to each
individual cross-section, revealing more details
on log surface while residuals extracted between
neighboring cross-sections are less consistent, or
noisier, than in the cylinder case. On the other
hand, ellipse-fitting introduces the greatest num-
ber of estimated parameters and hence generates
the most detailed residual image. By the same
token, residuals from neighboring cross-sections
are much less consistent, or less crisp, compared
to the previous two cases.

The generation and initial processing of the
residual image is not the final step of this work.

Clearly, additional research is needed. At this
point, only log unrolling and height analyses
methods have been examined. A preliminary
study was conducted to extract features of ex-
ternal defect types from randomly chosen defect
samples. These features were used to train a ro-
bust clustering and classification system for the
defect classification. Texture analysis methods
will be investigated to detect defects without
change. To reach the final goal of locating and
classifying surface defects, we are exploring the
potential benefits of image processing, computer
vision, and pattern recognition techniques using
residual data.

Disclaimer

The use of trade, firm, or corporation names is
for the information of the reader. Such use does
not constitute an official endorsement or ap-
proval by the U.S. Department of Agriculture,
Forest Service, or the Virginia Polytechnic In-
stitute and State University of any product or
services to the exclusion of others that may be
suitable.
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