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STUDY OBJECTIVES

We present a preliminary study to evaluate the ef-
fectiveness of OpenDSA. Study questions:

• Can students learn as well or better with inter-
active tutorials compared to traditional lecture
and textbook?

• Will students accept a class based on inter-
active tutorials rather than traditional lecture
and textbook?

• Will our client/server infrastructure ade-
quately support classroom use?

• Gather feedback from students about using
interactive tutorials in courses

OPENDSA
OpenDSA is an open source, online collection of in-
teractive tutorials combining textbook-quality con-
tent with algorithm visualizations and interactive
exercises. An OpenDSA module corresponds to one
section in a textbook or part of a class lecture. Each
has these components:

• Text and images for the exposition.
• Presentation of dynamic process (algo-

rithms) through ”slideshows”.
• Proficiency exercises where students demon-

state proficiency by showing algorithm steps
• Other interactive exercises

– Multiple Choice, T/F, short answer
– Data structure manipulation exercises
– Active equations and calculators

STUDY METHODOLOGY

Quasi-experimental design with control and treat-
ment course sections:

• Control group received standard lecture and
textbook for three weeks

• Treatment section used OpenDSA to work
through the content

• Treatment section sometimes received lecture
or group discussion

• OpenDSA activities and exercises constituted
a “homework” grade worth 5% of the total

class score
• Same test was administered to both sections

after intervention

Population and Data Collection:
• Undergraduates students: 55 in control group

and 57 in treatment group
• Pre-treatment surveys, identical for both

groups measured:
– Experience with online tools
– Perceptions of face-to-face course vs on-

line instruction
– Use of technology or e-textbook in class
– Preference for lecture type or lab setting

• Different post treatment surveys to each
group

• Observation of the treatment group
• Collected extensive interaction logs
• Interviewed three students from treatment

group

STUDY RESULTS

• No significant difference on test scores
• Almost all students had prior experience with

online courseware
• Treatment students started with a positive at-

titude about online courseware; after treat-
ment their opinion of OpenDSA was higher
than their initial attitude toward generic on-
line tutorials

• Students preferred having lecture during class
and homework using the OpenDSA modules
over working modules in class

• Students ranked OpenDSA first for learning

gains over lecture, projects, course notes, and
textbook

• Students support concept of daily OpenDSA
homework assignments

OPENDSA INFRASTRUCTURE

JavaScript AV (JSAV) Library: JSAV provides
development tools for interactive AVs and
other dynamic components of the system using
JavaScript/HTML5. JSAV features:

• Dynamic slideshows
• Layout of standard data structures and ani-

mation elements
• “Proficiency exercises” where students simu-

late the steps of an algorithm
• Pseudocode display
• Flexibility: existing functionality can be over-

riden

Frontend:

• ReStucturedtext and Sphinx for authoring
content

• HTML5, CSS and JavaScript for dynamic and
interactive pages

• Khan Academy exercise framework used for
many exercise types

Backend:

• REpresentational State Transfer (REST) de-
sign for client/server interaction: Decouples
client and server.

• Python Django framework and MySQL for
storing student responses and progress

• Flexible API to store student scores and inter-
action data

• Support for managing separate classes with
separate textbook instances


