
INITIAL EVALUATION FOR OPENDSA: INTERACTIVE TUTORIALS FOR DATA STRUCTURES AND
ALGORITHMS

Clifford A. Shaffer1, Eric Fouh1, Simin Hall2, Daniel Breakiron2, Mai Elshehaly2, and Ville Karavirta3

1Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
2Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA

3Department of Computer Science and Engineering, Aalto University, Helsinki, Finland
{shaffer|efouh|simin.hall|breakid}@vt.edu, ville.karavirta@aalto.fi

STUDY OBJECTIVES

We present a preliminary study to evaluate the ef-
fectiveness of OpenDSA. Study questions:

• Can students learn as well or better with inter-
active tutorials compared to traditional lecture
and textbook?

• Will students accept a class based on inter-
active tutorials rather than traditional lecture
and textbook?

• Will our client/server infrastructure ade-
quately support classroom use?

• Gather feedback from students about using
interactive tutorials in courses

OPENDSA
OpenDSA is an open source, online collection of in-
teractive tutorials combining textbook-quality con-
tent with algorithm visualizations and interactive
exercises. An OpenDSA module corresponds to one
section in a textbook or part of a class lecture. Each
has these components:

• Text and images for the exposition.
• Presentation of dynamic process (algo-

rithms) through ”slideshows”.
• Proficiency exercises where students demon-

state proficiency by showing algorithm steps
• Other interactive exercises

– Multiple Choice, T/F, short answer
– Data structure manipulation exercises
– Active equations and calculators

STUDY METHODOLOGY

Quasi-experimental design with control and treat-
ment course sections:

• Control group received standard lecture and
textbook for three weeks

• Treatment section used OpenDSA to work
through the content

• Treatment section sometimes received lecture
or group discussion

• OpenDSA activities and exercises constituted
a “homework” grade worth 5% of the total

class score
• Same test was administered to both sections

after intervention

Population and Data Collection:
• Undergraduates students: 55 in control group

and 57 in treatment group
• Pre-treatment surveys, identical for both

groups measured:
– Experience with online tools
– Perceptions of face-to-face course vs on-

line instruction
– Use of technology or e-textbook in class
– Preference for lecture type or lab setting

• Different post treatment surveys to each
group

• Observation of the treatment group
• Collected extensive interaction logs
• Interviewed three students from treatment

group

STUDY RESULTS

• No significant difference on test scores
• Almost all students had prior experience with

online courseware
• Treatment students started with a positive at-

titude about online courseware; after treat-
ment their opinion of OpenDSA was higher
than their initial attitude toward generic on-
line tutorials

• Students preferred having lecture during class
and homework using the OpenDSA modules
over working modules in class

• Students ranked OpenDSA first for learning

gains over lecture, projects, course notes, and
textbook

• Students support concept of daily OpenDSA
homework assignments

OPENDSA INFRASTRUCTURE

JavaScript AV (JSAV) Library: JSAV provides
development tools for interactive AVs and
other dynamic components of the system using
JavaScript/HTML5. JSAV features:

• Dynamic slideshows
• Layout of standard data structures and ani-

mation elements
• “Proficiency exercises” where students simu-

late the steps of an algorithm
• Pseudocode display
• Flexibility: existing functionality can be over-

riden

Frontend:

• ReStucturedtext and Sphinx for authoring
content

• HTML5, CSS and JavaScript for dynamic and
interactive pages

• Khan Academy exercise framework used for
many exercise types

Backend:

• REpresentational State Transfer (REST) de-
sign for client/server interaction: Decouples
client and server.

• Python Django framework and MySQL for
storing student responses and progress

• Flexible API to store student scores and inter-
action data

• Support for managing separate classes with
separate textbook instances

