
PROJECT SUMMARY

Overview:
Online educational systems, and the large-scale data streams that they generate, have the potential to
transform education as well as our scientific understanding of learning. Computer Science Education
(CSE) researchers are increasingly making use of large collections of data generated by the click streams
coming from eTextbooks, interactive programming environments, and other smart content.  However,
CSE research faces barriers that slow progress: 1) Collection of computer science learning process and
outcome data generated by one system is not compatible with that from other systems. 2) Computer
science problem solving and learning (e.g., open-ended coding solutions to complex problems) is quite
different from the type of data (e.g., discrete answers to questions or verbal responses) that current
educational data mining focuses on.
  We propose efforts to build community and capacity among CSE researchers, data scientists, and
learning scientists toward reducing these barriers and facilitating the full potential of data-intensive
research on learning and improving computer science education.  We bring together CSE tool build
communities with learning science and technology researchers toward a software infrastructure that
supports scaled and sustainable data-intensive research in CSE that contributes to basic science of human
learning of complex problem solving. We propose a set of community-building and infrastructure
capacity-building support whose ultimate goal is to develop and disseminate infrastructure that facilitates
three aspects of CSE research: (1) development and broader re-use of innovative learning content that is
instrumented for rich data collection, (2) formats and tools for analysis of learner data, and (3) best
practices to make large collections of learner data and associated analytics available to researchers in
CSE, data science, or learning science. To achieve these goals, we propose to engage a large community
of researchers to define, develop, and use critical elements of this infrastructure toward address specific
data-intensive research questions. We will host workshops, meetings, and online forums leveraging
existing communities and building new capacities toward significant research outcomes and lasting
infrastructure support.

Intellectual Merit:
Our project is the first attempt to design an infrastructure that can support various kinds of research in
CSE domain as a one-stop-shop, and is the first to focus on full-cycle educational research infrastructure
in any domain. If successful, CSE tool developers and educators will be become more productive at
creating and integrating advanced technologies and novel analytics. Learning researchers will have better
tools for analyzing the huge amounts of learner data that modern digital education software produces.
Data scientists will have rich new datasets in which to explore new machine learning and statistical
techniques. 
   Collectively, these efforts can reduce barriers to educational innovation and support scientific
discoveries about the nature of complex learning and how best to enhance it.  We will support scientific
investigations through community meetings and mini-grants to others addressing questions such as: What
is the optimal ratio of solution examples and problem-solving practice? How do computational thinking
skills emerge? In what quanta are programming skills acquired? Can automated tutoring of programming
be effective at scale in enhancing student learning?).

Broader Impacts:
This proposal represents the first step toward building a community of practice that will broadly impact
both computer science education and research on it. We aspire to have direct impact on enhancing
scientific productivity of at least 20 computer science education researchers and at least 10 learning
science researchers even at this early stage of the proposed work on the research infrastructure. Their
discoveries and technological innovations will in turn help tens of thousands of students in the
strategically important field of computer science. Many of the innovations proposed can directly impact
learning in any discipline. Educational software will more quickly be developed in the future, that more
easily generates meaningful learner data, which in turn can be more easily analyzed.



1 Motivation and goals

Computer Science was an early adopter of computing technology to support and advance the
educational process.1 For many years, Computer Science Education (CSE) researchers lead the
application of computers in education by pioneering new approaches and tools such as the use
of hypertext, eTextbooks, animation, and automatic assessment of student answers to problems.
But progress in this field faces friction that must be overcome for each new advance. To further
understanding of the pedagogical effectiveness of new tools, Computer Science researchers and
educators need to collect and analyze larger volumes of educational data on a finer grain level. To
make the best use of these tools requires both their interoperability and the integration of their
data streams in ways that currently do not occur.

On one hand, state-of-the art learning content (that we refer to as smart content) is interac-
tive. This opens an opportunity to collect larger volume of fine-grained educational data. On the
other hand, there is no widely used infrastructure to support sufficient interoperability of smart
content or the collection of student data. Without proper infrastructure that supports content
and data interoperability, each CSE research team has to encapsulate its novel smart content in
a self-contained system. Each group pays the overhead of supplying core required subsystems of
identifying users, storing scoring and log data, and exposing this information to instructors. In
essence, each such tool is building a mini-LMS. We can cite dozens of modern CSE systems and
environments, each one usually offering one kind of content that supports one aspect of CSE: a
collection of animated algorithms, an application for automatic assessment of programming assign-
ments, a practice system offering one kind of programming problems, to name a few. While each
tool might look like a success, the current situation creates obstacles for the progress of research
on both human learning and educational technology.

Most important in the context of this proposal, it is hard for learning scientists and computer
science education researchers to collect and analyze student learning data needed to advance their
knowledge on how students learn and how learning is affected by different learning tools and
pedagogical approaches. For each aspect of the educational process we can name smart content
solutions that support this aspect. But encapsulating this content in isolated systems prevents both
the collection of data and a sufficient level of dissemination and impact that is critical for getting a
sufficient volume of data. It is impratical for instructors to install, explain, and use several different
systems in any one course. But using one tool that can log student behavior only for that tool
leaves the rest of the student learning process invisible to researchers. When more than one tool is
used, the collected data are hard to integrate. It is also hard for CSE researchers to gain access to
meaningful experimental data on novel educational tools beyond their own classes. So they need to
achieve considerable scale and course coverage to gain measurable results. Small tools, even highly
innovative, have fewer opportunities to be broadly used and evaluated. With the lack of collected
data, it is hard to understand the process of learning, learn from experience, and introduce more
efficient tools and technologies based on this understanding. Since educational data are important
for advancing research in several areas from learning technology to educational data mining to
learning sciences, the lack of data hinders research progress in these fields.

The ACM ITiCSE working group on the use of smart content in CSE [4] considered this situation

1ACM Special Interest Group on Computer Science Education is one of the early SIGs. The SIGCSE Bulletin
was established in 1968. The annual SIGCSE conference started in 1970, publishing numerous papers on technical
innovations for CSE.

1



and argued that the problems could be resolved by introducing a software infrastructure that can
support scaled and sustainable data-intensive research in CSE. The working group stressed required
aspects such as re-usability of smart content and fine-grained centralized collection of student data.
An infrastructure for data collection and data-intensive research in CSE is important, however, well
beyond the community of Computer Science educators. Learning science researchers need these
data to gain research insights into the needs of CS learners, discover learning science principles
relevant to improving CSE, develop advanced technologies that address student needs and leverage
learning science principles, and test those advanced technologies in real classes and make valid
inferences about what works.

Our project attempts to realized and extend the vision of the Working Group by considering
the needs and prospects of both the CSE and Learning Science communities. Engaging researchers
from both fields, we are designing an infrastructure that can support both traditional technology-
focused CSE research as well as human-focused learning science research in the area of CSE. We
envision a scientific infrastructure for CSE research that facilitates a wide variety of researchers
and instructors in exploring research questions of scientific and practical interest. The following is
a sampling of such questions that our vision could help researchers address.

1. How do we broaden participation? Sub-questions include:

(a) What causes lack of participation among underrepresented populations in CS?

(b) How do factors like experience, motivation, and pedagogy affect participation?

2. How do we automatically assess coding problems to provide more feedback?

3. How does automated feedback affect the learning process?

4. What are the quanta of programming and other computer science knowledge ac-
quisition and knowledge transfer (often referred to as concepts, skills, or knowl-
edge components)?

5. How do students learn fundamental computational thinking concepts like state,
algorithmic process, representation, and abstraction?

6. How do students develop the management skills needed to successfully complete
medium and large programming assignments?

2 Towards an Infrastructure for Data-Intensive Research in CSE

For the past decade, course materials have increasingly moved online, often organized within learn-
ing management systems (LMS). Course pedagogy has been augmented by various interactive
services, such as discussion forums, chats, and wikis, which might also be integrated into the LMS,
to provide communication and collaboration among learners, and between learners and teachers.
A more powerful breed of online resources, that we refer to as Smart Learning Content (SLC),
has emerged during the past 10+ years. SLC goes well past prior approaches, to provide a higher
level of interactivity and engagement. It includes feedback adapted to the learner, such as learner-
controlled animation, dynamic visualization, and learner-led simulation. The interactivity of SLC
is important from the perspectives of both CSE and Learning Science communities. Studies in
several domains demonstrate that interactive support for active student learning results in signif-
icant improvements in student learning [32, 33, 38, 44]. Studies of SLC in CSE also confirm high
educational effectiveness for these novel learning technologies. As a bonus, the richer interaction
log data produced by learners while interacting with SLC enables learning scientists to understand
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student learning and cognition on a much finer-grain level than it was possible with traditional
learning content.

Examples of SLC within the CSE domain include program visualization and simulation tools [52],
algorithm animations [50], programming problems [5], automatic assessment services for program-
ming exercises [12], intelligent tutoring systems [49], and various forms of personalization and
navigation support tools [20]. To support data collection, personalization, and sophisticated forms
of feedback, SLC is most often offered through small content-focused systems that authenticate
the user, models the learner, aggregates data, reports to the instructor, and supports some form
of learning analytics. As mentioned above, the encapsulation of SLC within small-scale systems
requires both a lot of duplication of effort and reduced ability to share the data collected.

There have been past attempts to address problem related to reuse of SLC, and problems with
collecting large volumes of educational data produced by SLC. In particular, research-oriented in-
frastructures such as KnowledgeTree [3], MEDEA [54], and APeLS [7] were proposed for integrating
multiple kinds of SLC into LMS-like systems while supporting data collection, learner modeling,
and personalization. The LTI standard from IMS [9] has emerged as a mechanism to support SLC
integration into LMS. While this standard does not resolve the critical problem of representations
for learner data, it does provide a communication channel that can be used to develop more ad-
vanced infrastructures for smart content integration within CSE. An example of a system that takes
advantage of this interoperability is OpenDSA—a framework for developing electronic textbooks
that can include SLC [14].

The problem of centralized learner data collection was originally addressed in the field of user
modeling and intelligent tutoring systems by introducing user modeling servers such as Personis [28]
and CUMULATE![58]. These servers offered a standard protocol that can be used by any learning
tool to report rich data about its interaction with each student to the centralized store. Since
the key goal of the student modeling servers was to maintain an up-to-date runtime model of
every user for the purpose of personalization, this work paid specific attention to deriving student
knowledge from data and offering efficient access to student models. Later, the emergence of
learning analytics and educational data mining emphasized the importance of centralized data
collections well beyond its original use in personalized learning. It led to several new proposals for
data collection standards, such as MOOCdb [55] or DataShop server [29]. Two important emerging
standards are the Experience API [35] developed by ADL, and Caliper [8] from IMS.

Archival data collection solves only a part of the needs. It is also important to provide support
to the research community in the form of affordances to analyze the data. A notable project for
collecting learner data and building analytics around it is Carnegie Mellons LearnSphere project,
which is currently support by an NSF Cyberinfrastructure grant (CISE-ACI-1443068, 2015-
2020, $5M). LearnSphere is creating data infrastructure building blocks to integrate the sharing
and use of educational data and learning analytic methods. It has facilitated discoveries indicat-
ing a six times bigger relationship to learning outcomes from online active doing with feedback
than from reading online text or watching online videos [32, 33]. LearnSphere integrates across a
number of existing data repositories, including educational technology clickstream data (in CMU’s
DataShop), massively open online course data (in MIT’s MOOCdb and Stanford’s DataStage), and
student writing and discourse data (in CMU’s DiscourseDB). This integration is fueling a wide va-
riety of research on learning science and technology [49, 2, 25, 31, 37, 57]. LearnSphere’s DataShop
[29] stands as the world’s largest open repository for educational technology data, with over 1300
educational technology datasets supporting over 125 data mining or secondary data analysis stud-
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ies. This project will leverage the integrated analytic infrastructure that LearnSphere provides
toward extending it for analytics specialized for computer science education. We have begun to
make progress in this direction in that LearnSphere’s DataShop currently contains seven computer
science education datasets including about 3.2 million data points contributed by 10,700 students.
While this data can be downloaded, there are only a few available analytic methods that are directly
relevant and the ones that are (e.g., learning curve analytics) require much special purpose pro-
cessing, for example, to transform program solution submissions into incremental graded solution
steps (cf. [48]). We propose to engage the Computer Science Education community in developing
new analytics that are specific to questions of their interest.

Every relevant piece of work we have discussed above when taken individually serves its pur-
pose well. However, despite the recognized need, there is no software infrastructure that brings
individual pieces and parts of the process together providing a “one-stop shop” to radically in-
crease opportunities for open experimentation and data analytics for CSE researchers and learning
scientists. This proposal suggests a set of community-building, design, and research steps that
are necessary to enable future development and broader use of a infrastructure for data-intensive
research in CSE. To achieve this goal, we propose to bring together leaning scientists, learning
technologists, and CSE practitioners in defining, designing, and demonstrating proof-of-concept for
critical elements of this infrastructure. We believe that the results of our work can significantly
advance research progress in the fields of CSE and Learning Science.

3 Research Questions in CS Education and Learning

We now present a brief analysis of the research community that we want to support, and then
discuss a range of research questions that can be facilitated by the proposed infrastructure. As
mentioned previously, the problems related to teaching and learning CS topics are the focus of both
the community of CSE researchers and the community of Learning Science researchers (see Fig-
ure 1). The first community focuses on developing and evaluating efficient pedagogical approaches
and learning tools for CSE. The interests of this community are represented by ACM SIGCSE with
its conferences (SIGCSE, ITiCSE, ICER), providing space to share and discuss research results.
The Learning Science community has chiefly focused on studying and modeling human learning
and developing and evaluating advanced techniques and technologies to enhance learning. This
group includes a wide range of researchers from psychologists and cognitive scientists to computer
scientists and other technologists. Their interests are represented by several societies and corre-
sponding conferences such as Cognitive Science, International Conference of the Learning Sciences,
Artificial Intelligence in Education, Educational Data Mining, Learning Analytics and Knowledge.
Within this large community, our project targets researchers who focus on Computer Science as
a learning domain. Many Learning Science researchers are also interested to apply the knowledge
of human learning to developing better technology and pedagogy, thus exploring topics that are of
interest to both the CSE and LS communities. Following the community interests reviewed above,
research questions in CSE and learning could be classified into questions focused on developing
efficient pedagogical approaches and tools, questions focused on understanding how humans learn
computer science topics, and questions that integrate the understanding of human learning with
improving the efficiency of education.

A typical research question from the CSE group is whether a specific technology-based peda-
gogical approach or a novel tool positively impacts one of the target educational parameters such as
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Figure 1: Research Communities engaged in collection and analysis of educational data in Computer
Science Education. We will build capacity in overlapping communities of researchers (educators,
data scientists, learning scientists) by tapping into and linking across the conference communities
(SIGCSE, L@S, EDM, etc.) in which they participate.

improving learning gains, increasing student engagement and retention, or broadening participation.
For example, Naps et al. [42] investigated whether adding prediction steps to algorithm visualization
increases student engagement and understanding. Hsiao et al. [21] examined how a social compar-
ison interface affects student problem solving performance and motivation. OpenDSA [13, 14]
studied the impact of visualization and interactive algorithms simulation exercises on improving
learning. While the majority of this research is focused on a single novel educational tool in isola-
tion, some studies supported by early infrastructures were able to examine how students learn while
working with multiple tools. For example, Hosseini et al. [18] evaluated the comparative impact of
two kinds of interactive program examples used in parallel in a Python programming course.

Research questions in the Learning Sciences community focus on deeper issues related to knowl-
edge, learning, and cognition. In this research, CSE is frequently considered as an interesting and
challenging context to answer research questions that could enhance our understanding of human
learning well beyond Computer Science. For example, Koedinger and colleagues [34, 30] have
worked on data-driven improvement for conceptualization of a knowledge quanta model used in
a mastery learning environment such as an intelligent tutor. A semi-automated search algorithm
has been shown to significantly improve the accuracy of modeling student knowledge acquisition
across several domains, including mathematics, statistics, languages, but not computer science.
As another example of a Learning Science question that pertains to the use of computer-assisted
educational technology at scale, Ritter and colleagues [47] show that middle-school and high-school
teachers higher rate of skipping ahead in a Carnegie Learnings Cognitive Tutor has a tangible
negative effect on student performance later in the school year.

Research questions at the crossroads of Learning Sciences and CSE attempt to bridge the gap
between the two fields. Frequently these questions focus on assessing how different learning tools
based on current understanding of human learning affect student learning process and its outcomes.
Answering these research questions can lead to both creating better learning tools and processes
and improvement of our understanding of human learning. For example, Trafton and Reiser [53]
attempted to find which combination of problems and worked-out examples is most efficient for
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learning programming. They designed several combinations of these, driven by two competing
theories on how students learn from examples, and compared them in a classroom study. The results
of the study not only helped to find the most efficient approach to use examples in programming
classes, but also provided supporting evidence for the competing theories.

While the sample research questions examined above are considerably different, in all cases
the ability to answer them requires the ability to organize classroom or lab studies that engage
students in working with different educational tools, to collect learning data, and to extensively
analyze these data. Our goal is to radically improve all components of this process. This will
make it easier to answer existing research questions while also opening the way to a new generation
of research questions that require a richer variety of learning content, extensive fine-grained data
collection, and more advanced data analysis. By lowering the threshold to conducting state-of-the-
art research on CSE and providing a broader access to learning data, it will engage a much wider
research community and speed up progress in this area of research.

4 The Target Software Infrastructure and its Components

The ultimate target of our work is to engage a broad research community in discussing, designing,
and prototyping an infrastructure that facilitates a broad range of research on Computer Science
Education and human learning. We seek to support all aspects of the research process—from
planning and organizing research studies with a rich variety of educational tools to data collection
and analysis. As a starting point for our infrastructure work we will use the proposal presented
by an ITiCSE Working Group that examined the problems of adoption of SLC [4]. That working
group included 13 CSE researchers (including two project PIs and several external collaborators)
pursuing a broad variety of research approaches in the field. Through a community-based process
we will refine the proposed infrastructure based on the analysis of stakeholders’ needs, existing
solutions and best practices, while also reaching agreement on several data representation and
archiving standards that were not discussed by at ITiCSE.

The infrastructure is based on three best practices in the field: interoperability of SLC, data
standards, and broader access to research data. The Working Group proposed to support these
functionalities by organizing the infrastructure into three layers: the delivery layer, the application
layer, and the data layer (Figure 2). The delivery layer is formed by various student-facing SLC
clients. The application layer is composed of multiple SLC servers that deliver various kinds of SLC,
and receive back performance and click stream data. The data layer hosts all kinds of Learning
Record Storage systems that collect and store information about students’ work.

Interoperability of SLC is supported by the separation of delivery platforms and SLC servers,
which breaks the currently predominant encapsulation of SLC in stand-alone systems. By deliv-
ery platforms, we mean learning management systems (LMS), MOOC platforms, or other course
delivery mechanisms. To increase the reusability of SLC, it should not be encapsulated in a single
stand-alone system, but being hosted on independent SLC servers and repositories. The separation
of SLC servers from delivery platforms should be based on a standard communication interface.

Data standards facilitate the collection of data about learners’ interactions with SLC. Smart
content typically engages users in interactive work and can produce a rich interaction trace. This
trace is critical to collect for both research and practical needs, but LMS have do not store it. At
the moment, these rich traces are typically either not collected or are encapsulated in standalone
formats and analysis tools. To address data collection problems, the infrastructure introduces
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Figure 2: A three-tier infrastructure for flexible reuse of SLCs and data collection.

independent learning record store (LRS) systems. The idea of an independent component for
collecting user data has been already explored in the field of adaptive educational systems (where
it is known as student model or user model servers) [28, 58]. It has also been advocated by DoD
Advanced Distributed Learning lab (ADL) as a part of their new Total Learning Architecture [36].
LRS systems support a standard data reporting protocol to collect data (i.e., xAPI) as well as
standard data access protocol. In our model, the SLC servers that communicate directly with the
client will then be responsible for delivering the learning records in the agreed-upon formats.

Broader access to research data ensures the ability of the broader research community
to access and analyze the data. This increases the value of the collected data by supporting
research data analysis and educational data-mining well beyond what the original tool developers
had envisioned or could achieve on their own. The data access and analysis component of the
target infrastructure will integrate and expand LearnSphere. LearnSphere has a basic learning
data analytics and data visualization toolset that has been actively used by researchers in the
past (e.g., [1, 56, 2, 25, 31, 37, 48, 49, 57]) and will be generalized or expanded to address the
needs of CSE researchers. For example, LearnSphere provides customizable analytical methods for
predicting student performance and learning outcomes from behaviors in online activities within
a course [33]. These methods could be adapted to address questions of broadening participation
and what student and instructional factors yield greater course completion and better acquisition
and retention of computer science knowledge and thinking skills. An important contribution of
LearnSphere is the ability to examine learning on the level of elementary knowledge components
(KC). While there has been progress in applying existing KC-level learning analytics to computer
science data [22, 48] there are many open challenges and opportunities in applying advanced learning
analytics to computer science. LearnSphere provides a set of empirical methods for evaluating these
knowledge component hypotheses.

The CMU team is actively building an analytic extension to LearnSphere, called Workflows.
Workflows offer a collection of data import, processing, and data mining components. We will build
LearnSphere Workflow components specifically focusing on analyzing CSE learning data. These
components could include automated code parsers for multiple languages to extract programming
constructs, fitting predictive models of student learning for varying granularity of knowledge quanta
vocabularies, etc. We will also use the LearnSphere analytic workflow authoring tool to build out
methods that can provide automated support for grading and tagging programming solutions and
other open-ended solutions (e.g., problem or proof solutions in a machine learning class).
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LearnSphere has already been used for storing learning data coming from CS courses, and
for supporting scientific investigations of CS learning ([48]). Building upon the experience of the
LearnSphere team, we plan to use its capabilities for long-term storage and management of the
data and analytic methods this project generates.

5 The Community of Practice

Building a community of practice centered on the target research infrastructure is the principle goals
of our proposal. The community of practice is vital for the adequate design of the infrastructure
as well as for its broader support and sustainability beyond the design and development stages.

We plan to start building a community of practice by engaging collaborators into the design,
prototyping, and piloting the components of the infrastructure. We have identified the first cohort of
collaborators among those who already have solid experience in topics that are critical for designing
the infrastructure. Many of these prospective collaborators were contacted on the stage of proposal
preparation and expressed their interest to collaborate in attached letters. We expect that more
collaborators will join the effort over the course of the project.

We will use several approaches for community engagement: working groups focused on specific
issues (such as data collection and representation for a specific category of smart CSE content),
focused working meetings, extended project meetings, open workshops, and direct support through
min-grants. We expect that much planning and design work will be done by working groups, with
proof of concept provided by tool builders supported through the mini-grants, and then the design-
prototype cycle reviewed and evaluated during a “reflection” phase involving both focused and
extended meetings. As progress is achieved on specific aspects of the infrastructure, we will focus
on publicizing it through open workshops, standing conferences in the CSE and LS communities,
and other dissemination channels. To support both sides of community building, we request funding
for mini-grants and workshops, as described below. The end result will be an active Community
of Practice centered around various aspects of the infrastructure such as data collections, reusable
smart content, and a data analysis framework.

5.1 Mini-grants for engaging partners and collaborators

A primary component of our community building effort will be proactive outreach to various mem-
bers of the CSE and LS communities who have a track record of developing SLC tools, data
collection, and data analysis of CSE data. We already have letters of support from a number of
such potential collaborators. Our budget proposal includes a pool of money that will be redis-
tributed in small amounts to such collaborators, that we term mini-grants. The requirement is
that they use some component of the infrastructure in some way, with our active support, and give
us feedback on the experience. Examples include modifications to their tools to interoperate with
existing tools that support the infrastructure, changes to their interaction data formats to conform
to existing data analysis toolkits within the infrastructure, use and testing of such data analysis
tools, or use of databases from third parties—as provided in the infrastructure—for CSE research.
These mini-grant recipients will then play key roles in the working groups described in the next
section.

Our budget allows us to provide consulting money to such collaborators, typically at the rate
of $2000 per semester. The OpenDSA project has successfully used this model to improve the level
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of evaluation and feedback provided by key adopters. While the amount of money received by any
such collaborator is small compared to standard research grants, for many faculty, especially at
smaller colleges, just that little incentive is enough to overcome the hurdle of getting started on
such a collaboration.

As we generate broader collections of student analytics data, the possibilities of discovery re-
search while mining the data improves. As an example of the type of work that large databases
make possible, consider the work of Shaffer and Edwards. For many years, they had been collect-
ing data that proved a correlation between starting early on larger programming projects and high
scores. Edwards was finally able to demonstrate [11] a causal relationship through a retrospective
analysis of Web-CAT submission data. Retrospective in that the data had not been collected as
part of a deliberate effort to answer this question, but rather that the question was answered by
examining an existing data set collected as a natural part of using some CSE tool. In particular, it
was determined that students who sometimes perform well and sometimes do not tended to work
early on those projects where they performed well, and did not tend to work early on those where
they did not perform well. This is just one illustration of the type of mining for relationships that
could be possible if we can collect and make available to researchers the wealth of data coming
from SLC components.

One special partner for our effort will be Ensemble, the NSDL portal for Computer Science
Education [51]. Two of us (Brusilovsky and Shaffer) were part of the original Ensemble team or
provide significant contributions to site. We will work with Boots Cassell, PI for Ensemble. Vari-
ous collaborations include using Ensemble for community communications; providing information
through Ensemble about various SLC tools, tutorials, and infrastructure that others can use; and
generally using Ensemble as the distribution portal for information about the infrastructure effort.

5.2 Working Group and Workshops

Working groups and workshops will serve as broader community engagement mechanisms on dif-
ferent stages of the project. The working groups will have a task to design and possibly prototype
corresponding components of the infrastructure. On the earlier stage of the project, we convene
several working groups to discuss interoperability details, data collection formats, data analysis
approaches. For example, a number of systems exist that auto-grade small programming exercises.
In general, these systems work by providing a problem statement, starting code for the student, a
collection of test cases, a model answer (that provides the solutions to the test cases), and “wrap-
per” code that embeds the student’s answer to make an executable program. It would be useful to
the community to have a standard representation for such programming exercises, so that they can
be shared in various ways. Our collaborator support fund would be used to identify volunteers to
lead working group, perhaps in conjunction with a national conference such as SIGCSE, to make
progress on defining standards that the community can use. Individual working groups will com-
municate through online or in-person focused meetings. We also expect that all working groups
will meet together annually at the joint project meeting to discuss the progress, coordinate work,
and plan next stages of design. Funding to support working group members to attend the annual
meeting is requested.

Once the project reaches its early dissemination stage, we will focus on workshops and similar
dissemination forms. We will organize annual open workshops in conjunction with major CSE and
learning analytics conferences like ACM SIGCSE and Educational Data Mining. We will leverage
these to engage at least 25 new CSE researchers and at least 10 new learning science and data
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analytic researchers each year with the project. We will actively advertise the work done on this
project among the members of all engaged communities. All PIs have extensive experience in
organizing workshops at key conferences. In addition, the LearnSphere team at Carnegie Mellon
has more than a decade of experience developing a community of practice focused on a component
key to this proposal learning analytics tools for educational researchers. The team organized
an annual LearnLab Summer School. One of the tracks of the school is specifically dedicated to
investigations of learning data Educational Data Mining. As part of that track, school participants
are trained to use LearnSpheres predictive learning modeling capabilities and data visualizations.
Educational Data Mining community feedback to LearnSphere Workflows was recently solicited at
a dedicated workshop titled “Educational Data Analysis Using LearnSphere” in conjunction with
the 9th International Conference on Educational Data Mining in 2016. A bridge between this
project to the Learning Sciences researchers will serve as one of the pillars of building an overall
CSE community of practice and would attract more learning scientists to look at the student data
coming out of CS courses be it as a result of this project or otherwise.

6 Project Outcomes and Evaluation

The overarching goal for this project is to advance the progress of CSE research through building
the community of CSE tool builders and data analysts. As such, metrics to evaluate the success of
our project are focused on what changes we can make in the broader CSE research community to
bring them on board. We seek objective measures of community involvement related to each of our
primary foci: interoperability of SLC and LMS such that data can be collected, formats for data
in key sub-communities, support for tools and methods of analysis of student analytics data, and
use of analytics databases by researchers other than the ones who created them originally.

At one level, the success of our community engagement efforts can be measured by some simple
metrics, such as the number of SLC tools that can provide data in the proper formats, number
of data sets produced, number of cases where researchers use data from other groups for their
analysis, number of participants in our focused working groups, and number of participants in our
larger meetings. More qualitatively but of deeper importance, we can try to count the following
occurances.

• Number of SLC tools from outside collaborators that become inter-operable.

• Number of collected and contributed datasets.

• Number of users and contributors to the data analysis tools.

• Number of research studies and results enabled by our support for interoperability and data
analysis tools.

The ultimate evidence of impact to be produced by the target infrastructure will be the num-
ber and quality of “success cases” that can be achieved during the grant period and also in the
sustainable character of the community such that many more such success cases will follow. For
us, a success case has the following features.

1. A research question is pursued (involving collaborators not in the research groups of the
Co-PIs) that is distinctly facilitated by our work.

2. Prior to our intervention, there is one or more barriers to addressing this question because of
lack of infrastructure and the necessary standards.

3. Efforts of this project demonstrably removes that barrier.

10



4. The collaborating researcher successfully addresses the research question using our infrastruc-
ture or analysis tools, and produces novel scientific results.

Following are specific examples of how our infrastructure will facilitate innovative data instensive
research and scientific discovery by CSE and Learning Science researchers. The examples given
involve researchers who have supplied letters of collaboration.

Success case example from Norman Bier.
1. Research question. To what extent does instruction in Computational Thinking result in

learning of broad computational thinking concepts, or does such thinking primarily emerge
from the practice of skills like programming and algorithm development?

2. Barriers. a) It is difficult to share high quality online assessments, assignments, and activities
among CS educators. b) Most such online activities do not generate log data with sufficient
semantic tags that can be used to identify underlying concept or skill demands and whether
or not student performance indicates they are meeting those demands. c) We lack of access
to data on follow-up courses.

3. Barriers removed. Greater community support, interoperability, and sharing of data gen-
eration and analysis methods will yield sharing of high-quality, online activities that are
instrumented for quality data collection. LearnSphere will facilitate sharing of analytics that
integrate across different kinds of learning process data as well as different kinds of shorterm
and longterm outcome data.

4. Research outcome. Data intensive research will produce scientific discoveries on the nature
and transferability of computational thinking skills and insights for improving CS Education.

Success case example from Lauri Malmi.
1. Research question. What is the impact of different kind of worked-out programming examples

(such as annotated examples and animated examples) on student ability to solve various
programming problems.

2. Barriers. No existing systems provide several kinds of programming examples and problems
for CSE. As a result, little futher progress on this topic has been made since the classic work
of Trafton and Reiser [53].

3. Barriers removed. Community support and better system and data interoperability will aid
the integration of smart content from activity servers providing code examples (such as worked
out code examples via NavEx [6]) with one serving programming problems (such as program-
ming problems supported by the system CloudCoder developed by our collaborators Spacco
and Hovermeyer [45]). Both will be instrumented for data collection, including facilitating
controlled experimentation of different ratios and orderings of examples and problems.

4. Research outcome. Data intensive research will help produce scientific output (including
publications) that reveals which kind of examples provide stronger impact on student ability
to sevre programming probles. Potentially, the impact of examples could depend on the user
current level of knowledge (that could be more reliably estimated with a more complete trace
of student activities), with novice learners having larger need to work with examples in order
to succeed in problem solving. Also, the impact of work with examples on problem solving
could depend of specific example-problem pairs with specific type of examples providing best
support for specific kind of problems.
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7 Work Organization and Project Schedule

The project work will be organized around two sides of the target infrastructure, data collection
and data usage. The data collection components should support the ability to broadly integrate
various types of SLC while enabling it to generate detailed educational data in standard formats
that are archived for later use. The data usage components should support storage, archiving, and
various types of analysis of the collected data by different research communities.

To advance the work on designing data collection and representation components of the infras-
tructure, we will organize several working groups focused on different types of educational data
collected by SLC tools and on research questions that can be addressed with analysis of this data.
The groups will include representatives from CS Education, Data Science, and Learning Sciences
and will represent the interests of both data generators and data analyzers. Examples of such work-
ing groups include (1) program snapshots collected by different tools that support students working
on programming problems, either a larger scale such as Web-CAT [12], or at smaller scale such as
CloudCoder [45], (2) example exploration traces collected by SLC tools that support student work
with algorithm or program visualizations, and (3) problem-solving traces such as those collected by
tools for Parson code-construction problems [17]. These types of data have emerged as an impor-
tant source of data-driven research in both CSE and Learning Science communities. For example,
program snapshots have been used for examining individual differences between students [19] and
for building intelligent support for problem solving [43, 48, 49]. Each working group meeting will
include representatives from tool developers and CSE researchers who have past experience with
this type of data as well as data analysts and learning scientists interested in this type of data.
Taken together, our research team and our external collaborators who already provided support
letters include several key players in the area of program snapshots (Edwards, Spacco, Petersen,
Howemeyer, Hellas, Rivers, Yudelson), examples (Malmi, Hosseini, Shaffer, Yudelson, Brusilovsky,
Naps), and problems (Ihantola, Barnes, Hsiao, Brusilovsky, Kumar).

The working groups will focus on discussing, designing and providing proof-of-concept for com-
munications, data collection, and data as well as research questions and analytic goals for the
specified types of content. The designs and prototypes will be piloted by developers of existing
SLC tools; they will produce samples of educational data for further consideration. The results
of the pilots will be discussed at the joint working meetings that will bring together researchers
from the CSE and Learning Science communities, and builders of SLC tools. This meeting will
run annually in early Spring in association with the ACM SIGCSE conference. Pilot data and
group discussions will serve as an input for the next design cycle. Over the course of the project
we expect to run three iterations of the design-pilot cycle, with Spring focused on design, Summer
focused on demonstrating proof-of-concept, and Fall focused on reflecting on lessons learned from
the previous stages. The final design proposals will be prepared and distributed at the end of the
last design round in Spring and Summer 2020, with a final summary meeting to examine lessons
learned during the entire project in Summer 2020.

The CMU group will support researchers and educators in the working groups to formulate
research questions to pursue through data analytics and especially to design and develop analytic
strategies to address such questions toward novel scientific discovery. We will leverage the many
resources available through LearnSphere and especially support the community in using and sharing
analytic components through the web-based workflow authoring tool that LearnSphere provides.
A key to the vision is community standards for data formats of CS learning activity and outcome
data will be emergent not only from collaboration among working group members, but especially
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Figure 3: Our timeline targets data generation and data analysis milestones to be achieved by the
community during and between working group meetings three times per year.

from the pull to reuse powerful existing or emergent analytic strategies and methods.
The project is a collaboration between three core research teams and multiple external partners

who bring together critical expertise that is necessary to succeed in this challenging endeavor.
Each team will primary responsibilities with most tasks supported by more than one team. On
the discussion, design, and proof-of-concept side, the Pitt and Virginia Tech teams will focus on
smart content interoperability and data collection. This continues their existing collaboration
from the ITiCSE working group on Smart Content where Brusilovsky and Edwards served as
co-organizers. The CMU team will focus on data processing, archiving, and analysis aspects,
leveraging its extensive experienced maintaining DataShop and LearnSphere systems. The CMU
and Pitt teams will collaborate on designing data collection and storage formats. The Virginia
Tech team will focus on community building among the tool builder within the CSE community,
while Pitt and CMU will work with the data analytics and Learning Science communities.

While any given working group is likely to have five to ten participating members, a key part of
advancing the work is the mini-grants described in Section 5. Within each working group, one tool
(developed by someone not a part of the CMU, Pitt, or VT teams) will be selected to deploy proof-
of-concept for communications and dataset generation. The mini-grants will serve as seed money to
encourage active participation by the selected collaborator. The Virginia Tech team will take the
lead in working directly with the collaborating tool builders to make the necessary modifications
to the associated SLC tool to deliver data in a suitable format for use by the analysis tools. The
CMU team will take the lead in working with the collaborating data intensive researchers (some
of which overlap with CSE tool builders and some that do not) to support them in developing or
extending analytics and turning insights form analytics into both research products and educational
innovations.

A schedule of major research activities is shown in Figure 3. We plan for four general themes and
associated working groups organized around sub-communities interested in generation and analysis
of data associated with different kinds of instructional tools. In the first year, we will start two such
working groups. Since there already exists the beginnings of a community of practice organized
around program snapshots [46], this will be the first target for a working group and one or more
mini-grants for data generation and/or analysis. The working group and associated mini-grants will
enhance the generation of program snapshot data and will improve upon existing analytic progress
already achieved for program snapshots [19, 43, 48, 49]. The second working group will target
the exploration traces of various program examples as generated by use of algorithm or program
visualizations and interactive worked-out example exploration systems. These first two groups
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would have two full annual cycles of design-prototype-reflect. The third and fourth groups will start
no later than the second year. A candidate for the third group is small programming problems such
as Parsons program construction problems [17] and parameterized semantics problems [20]. The
fourth group is deliberately left to be decided later as we get feedback from the community. One
possibility is to focus on genearation and analysis of learning outcome data both in shorter time
scales, like course unit quizzes and course final exams, and in longer time scales, like subsequent
CS course performance or even job performance. We will hold meetings three times a year that will
bring together interdisciplinary researchers from Computer Science Education, Data Sciences, and
Learning Sciences with interests in either or both generating and/or analyzing computer science
data. As shown in Figure 3, some of these meetings will be associated with relevant conferences so
as to lower barriers to participation from relevant communities (e.g., SIGCSE attracts computer
science educators, EDM and LAK attract data scientists interested in learning data, AIEd and
L@S attract learning science and technology researchers).

All Co-PIs will participate in each major activity according to the general split of responsibilities
described above. The overall project coordination will be provided by Brusilovsky. See Management
and Coordination Plan for more details.

8 Intellectual Merit

Our project is the first attempt to provide a range of CSE research support functionalities as a one-
stop-shop, and is the first to focus on full-cycle educational research infrastructure in any domain.
If successful, CSE tool developers will be become more productive at creating and integrating
advanced technologies and novel analytics. Learning researchers will have better tools for analyzing
the huge amounts of learner analytics that modern digital education software produces. Researchers
without direct access to a pool of students will be able to explore data sets of learner data from
a broad range of institutions. Our success will also pave the way (and provide components) to
creating similar infrastructures in other educational domains. Collectively, these efforts can reduce
barriers to educational innovation and support scientific discoveries about the nature of complex
learning and how best to enhance it, and support scientific investigations not only by our team,
but especially by others (e.g., What is the optimal ratio of solution examples and problem-solving
practice? How do computational thinking skills emerge? In what quanta are programming skills
acquired? Can automated tutoring of programming be effective at scale in enhancing student
learning?).

9 Broader Impacts

This proposal represents the first step toward building a community of practice that will broadly
impact both research and education. We aspire to have direct impact on enhancing scientific
productivity of at least 25 computer science education researchers whose modified tools will be
used by over 100 instructors during the three year period of the grant, and many more in the years
that follow. Their discoveries and technological innovations will in turn help tens of thousands of
students in the strategically important field of computer science. Many of the innovations proposed
can directly impact learning in any discipline. Educational software will more quickly be developed
in the future, that more easily generates meaningful learner data, which in turn can be more easily
analyzed.
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10 Results from Prior NSF Support

Peter Brusilovsky is the PI for a 3-year project Open Corpus Personalized Learning (IIS-
1525186, 2015-2018, $499,758). The preliminary results are presented in [24, 23, 39]. In-
tellectual Merit This project is the first attempt to translate efficient closed-corpus adaptive
hypermedia technologies to the open-corpus context. Broader Impacts Over the course of the
project we will impact several hundred students in several courses by providing more advanced
learning support with personalized guidance. At the moment of writing, six classes with an average
of 50 students each were supported by the prototype system.

NSF TUES Phase I Project (DUE-1139861) Integrating the eTextbook: Truly Interactive
Textbooks for Computer Science Education. PIs: C.A. Shaffer, T. Simin Hall, T. Naps, R. Bara-
niuk. $200,000, 07/2012-06/2014. NSF SAVI/EAGER Award (IIS-1258571) Dynamic Digi-
tal Text: An Innovation in STEM Education, PIs: S. Puntambekar (UW-Madison), N. Narayanan
(Auburn), and C.A. Shaffer (2013). $247,933, 01/2013 12/2014. NSF IUSE (DUE-1432008)
Collaborative Research: Assessing and Expanding the Impact of OpenDSA, an Open Source, In-
teractive eTextbook for Data Structures and Algorithms. PIs: C.A. Shaffer, J.V. Ernst, T.L. Naps
(U Wisconsin-Oshkosh), S.H. Rodger (Duke U), $998,402, 01/01/201512/31/2017. Intellectual
Merit These awards support the OpenDSA project, and active collaborations involving Virginia
Tech, and Aalto University (Helsinki), Duke University, and U Wisconsin at both Madison and
Oskhosh, among others. Related publications include [10, 15, 14, 13, 16, 26, 27]. Broader Im-
pacts include dissemination of Algorithm Visualizations, interactive problems, and eTextbooks to
thousands of CS students.

NSF TUES Type II Award (DUE-1245589), CodePractice: Developing Coding Skills Us-
ing Social and Adaptive Drill-and-Practice Exercises, $321,090 (07/01/13-06/30/17), PIs: Stephen
Edwards and Manuel Prez-Quiones. Intellectual merit This project is developing and evaluating
a new drill-and-practice system for code writing questions that allows students and instructors to
write their own questions, includes rich data analysis of the performance of both questions and
students, that provides social features for students to get help when they are stuck, and that pro-
vides adaptive suggestions for what to practice next. Broader impacts The system is currently
in the evaluation phase, and is seeing use by over 1,000 students in multiple courses. The project
has developed a community of 18 universities eager to serve as external adopters, and developed
a collection of over one thousand code writing and multiple choice questions for use by students
during practice and by instructors for homework assignments. The project has produced one Ph.D
graduate and two MS theses [40, 41], and is expected to produce an additional thesis and multiple
conference papers as the project evaluation completes.

Koedingers prior NSF support as PI includes LearnSphere (CISE-ACI-1443068, 2015-
2020, $5M). Intellectual Merit LearnSphere is creating data infrastructure building blocks to
integrate the sharing and use of educational data and learning analytic methods. It has facilitated
discoveries indicating six times bigger relationship to learning outcomes from online active doing
with feedback than from reading online text or watching online videos [32, 33]. Other related
publications include [2, 25, 31, 37, 57, 48, 49]. Broader Impact LearnSphere’s DataShop stands
as the world’s largest open repository for educational technology data. DataShop contains nearly
1300 educational technology datasets and has supported over 125 data mining or secondary data
analysis studies. Directly relevant to this project, LearnSphere’s DataShop already contains 7
computer science education datasets including about 3.2 million data points contributed by 10,700
students.
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