
 

 

1 

 

Abstract-- Choice of load signature or feature space is one of 

the most fundamental design choices for non-intrusive load 

monitoring or energy disaggregation problem. Electrical power 

quantities, harmonic load characteristics, canonical transient and 

steady-state waveforms are some of the typical choices of load 

signature or load signature basis for current research addressing 

appliance classification and prediction. This paper expands and 

evaluates appliance load signatures based on V-I trajectory – the 

mutual locus of instantaneous voltage and current waveforms – 

for precision and robustness of prediction in classification 

algorithms used to disaggregate residential overall energy use 

and predict constituent appliance profiles. We also demonstrate 

the use of variants of differential evolution as a novel strategy for 

selection of optimal load models in context of energy 

disaggregation. A publicly available benchmark dataset REDD is 

employed for evaluation purposes. Our experimental evaluations 

indicate that these load signatures, in conjunction with a number 

of popular classification algorithms, offer better or generally 

comparable overall precision of prediction, robustness and 

reliability against dynamic, noisy and highly similar load 

signatures with reference to electrical power quantities and 

harmonic content. Herein, wave-shape features are found to be 

an effective new basis of classification and prediction for semi-

automated energy disaggregation and monitoring. 

 
Index Terms—Load signature, feedforward neural networks, 

load monitoring, optimization, smart grids, supervised learning, 

support vector machines 

I.  INTRODUCTION 

on-Intrusive Load Monitoring (NILM) is the 

disaggregation of overall demand profile of a household 

into individual signatures of appliances switched on at a 

particular instant or within a specified time period. This 

disaggregation is carried out without using intrusive physical 

sensors on individual appliances. Aggregate demand profile 

(ADP) or instantaneous power consumption is typically 

observed via a single energy meter installed at service entry 

point of the household. Load signatures of individual 

appliances refer to metrics that characterize their operating 

state and temporal behavior. NILM is an important provision 

for diagnostic feedback in residential and commercial energy 

feedback systems (REFS and CEFS) and for long-term 
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diagnostics for settings such as microgrids and distribution 

sectors, particularly as an enabling technology for demand-

side management ([1] - [4]). This study evaluates a new kind 

of two-dimensional load signature for non-intrusive profiling 

and identification of residential appliances. Load signatures 

have been employed effectively as bases for applications in 

profiling, status monitoring and safety assurance of electrical 

loads ([2]-[3], [5]-[9]). Our design choice for load signatures 

is wave-shape features (WS) based on the mutual trajectory of 

instantaneous voltage and current waveforms. Lam and 

colleagues originally introduced these load signatures as a new 

basis for establishing and comparing load taxonomies [5]. In 

this study, in contrast, we expand and evaluate load 

characteristics in WS for precision and robustness of 

prediction in NILM as a multi-class classification problem. 

Our empirical results illustrate that precision of prediction and 

robustness against dynamic, noisy and highly similar load 

signatures in NILM with wave-shape features (WS) is better 

or generally comparable to that of traditional benchmark load 

signatures over a variety of classification algorithms. To 

evaluate our algorithms we have used a publically available 

dataset for benchmarking i.e. Reference Energy 

Disaggregation Dataset (REDD) [10].  

II.  RELATED WORK 

Contemporary research on implementation of a NILM 

system typically addresses the following design choices. 

Granularity over time of ADP:  Granularity over ADP refers 

to the rate at which the installed meter is able to observe and 

report the overall instantaneous power consumption. This 

design choice is usually associated with the distinction 

between event-based and non-event based operation. In event-

based operation, decision frequency for NILM is the 

frequency at which appliances in the household change their 

state ([3], [6]-[7]). This choice is appropriate for real-time 

diagnostic feedback in residential and commercial energy 

feedback systems and is considered for this paper. Non-event 

based NILM operates on aggregated consumption data and is 

useful for long-term or medium term diagnostics on energy 

consumption of particular households or of larger settings 

such as microgrids and distribution sectors. 

Definitions of load signatures:  As introduced earlier, the 

definitions of load signatures refer to the metrics used to 

identify operating characteristics of individual devices 

connected within the setting in question. Various existing 

implementations of NILM systems primarily differ in choice 
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of steady-state or transient, fundamental frequency or 

harmonic frequency signatures. For instance, Hart [1], Cole 

and Albicki [8] employ steady-state and transient changes of 

active real power as basis of classification. In contrast, 

Laughman et. al. [6] and Lee et. al. [7] employ harmonic 

magnitudes associated with step changes in overall load for 

establishing and comparing appliance profiles. Liang and 

colleagues [3] have demonstrated the use of raw single-cycle 

current, instantaneous power and admittance waveforms for 

the purpose. A comprehensive review of signature types 

evaluated for NILM appears in surveys by Zeifman [9] and 

Ahmad et. al. [11]. Lam et. al. [5] study typical bases for load 

taxonomies and introduce wave-shape features (WS) as a 

competitive new basis using hierarchical clustering. According 

to the study, WS characterize the shape of instantaneous 

current demand for a particular device, carry engineering 

meanings and result in larger relative differentiation between 

appliances with different operating principles. A prior 

examination of WS for NILM however, does not exist to best 

of the authors‟ knowledge and hence the subject of this paper. 

Initial acquisition of load signatures: Hart‟s canonical work 

refers to NILM‟s two distinct modes of operation, with 

different degrees of intrusiveness [1]. The first uses a one-time 

calibration period where appliance signatures are manually 

collected for supervised learning algorithms. The mode is 

referred to as „Manual-Setup‟ (MS-NILM) or semi-automated 

energy disaggregation and is considered for this paper. Hart 

[1], Liang et. al. [3] and Cole and Albicki [8] are typical 

implementations of MS-NILM. The second operational mode 

for NILM, termed „Automatic-Setup‟, uses a priori 

information about expected load characteristics and 

unsupervised machine learning algorithms to automatically 

disaggregate ADP.  Contributions by Parson et. al. [12] and 

Kim [13] are recent investigations of unsupervised energy 

disaggregation. MS-NILM is computationally convenient, 

however, the intrusive collection and labeling of signatures 

makes it tedious to set up and adapt to new appliances. 

Selection of learning and optimization algorithms: This 

refers to the parameter search and performance optimization 

of learning algorithms, for instance, artificial neural network 

or support vector method employed to learn appliance 

signatures. This choice of algorithms for disaggregation is also 

fundamentally relative to both the required response time for 

NILM system and the choice of load signatures. A wide 

variety of supervised and unsupervised learning algorithms 

([3], [8], [12]-[15]) and optimization strategies such as integer 

programming and metaheuristics ([16]-[19]) have been 

observed effective in their capacity for load profiling and 

disaggregation. This capacity is typically distinct relative to 

load conditions at the time of operation, for instance, number 

of simultaneously operating appliances, noise levels, electrical 

interference from neighboring system, etc. [3].  

Our contributions in this paper can be summarized as 

follows. 

1) We expand the set of load characteristics in WS and 

present a comprehensive empirical evaluation of WS 

as basis for profiling, and prediction of appliances in 

manual-setup, event-based non-intrusive load 

monitoring. We identify and compare (a) the capacity 

of load disaggregation and (b) its robustness against 

dynamic and highly similar load signatures. Our 

experiments also take into account ambient variation 

in load signatures due to electrical noise and 

interference typical of household ADP. 

2) We select optimal values of adjustable parameters for 

employed learning algorithms using population-based 

global search. The algorithm is based on differential 

evolution (DE) [20], which is a novel technique in 

the context of NILM.  

3) We present an overview of disaggregation capacity of 

employed learning algorithms as a function of 

aforementioned conditions, utilizing reference energy 

disaggregation dataset (REDD) [10] as benchmark 

dataset for evaluation.  

III.  DESCRIPTION OF DESIGN METHODOLOGY 

A system-level depiction of typical manual-setup NILM is 

presented in figure 1. „Manual-setup‟ refers to a one-time 

calibration period to learn the appliances signatures and store 

them in a database. Once the system learns these signatures it 

is able to identify the appliances in the system whenever a 

switching event takes place.  

There are usually two forms of signatures used in NILM 

i.e. snapshot-form signatures and delta-form signatures [21]. 

Snapshot form refers to signatures that are the aggregate 

power consumption of all appliances as observed via energy 

meter installed for NILM. On the other hand delta-form 

signatures express load behavior in brief windows of time 

containing only a single switching event rather than a large 

number of events to facilitate event-based NILM. For the 

scope of this paper only delta-form signatures are considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 
 

 

Fig. 1.  System-level depiction of manual-setup non-intrusive load 
disaggregation. Dashed trajectory refers to NILM query; solid refers to NILM 

training and optimization. 

 

A.  Pre-processing Energy Consumption Data 

Fig. 1 expresses the need for energy consumption data for 

the setting where NILM is deployed. For high frequency 

approaches to NILM such as this study, acquisition of  
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Fig. 2.  Consumption values from a subset of switching events from REDD – 

traditional power metrics (   ). Clusters identified via K-means are 

illustrated on the     plane. 

 

instantaneous voltage and current waveforms is set up, 

typically at a rate of more than 100 samples per cycle. This 

data is used to have the system learn the load signatures of 

various appliances. Wave-shape features evaluated in the 

following sections use the mutual trajectory of voltage and 

current waveforms to deduce information about electrical 

appliances, hence the high granularity. For the course of this 

study, benchmark dataset REDD [10] is used as a source of 

these raw waveforms. Detail on denominations in REDD is 

mentioned later in the study.  

Pre-processing of these raw waveforms includes separation 

of switching events, which are time instances at which a 

particular appliance in the household changes state. Fig. 1 

expresses this step as „Event Detection‟. Once those instances 

are determined, cycle-by-cycle snapshots of both voltage and 

current waveforms are extracted, otherwise known as delta-

form signatures [21]. These switching events are „unlabeled‟ 

as they have not been attributed to individual appliances. K-

means algorithm outlined as follows, groups these   

waveforms in   dimensions into   cohesive groups or 

„clusters‟ with unique appliance labels such that the within-

cluster „distance‟ is minimized [22]. The step is referred to as 

„Event-labeling‟.  

 

1)   cluster „centroids‟ µ1, µ2 … µk    
  are randomly 

initialized. Waveforms are denoted as           . 

2) Each of the M waveforms    is assigned to cluster    

where            ‖       ‖2
. 

3) New position of each centroid is calculated by 

averaging the   waveforms assigned to its 

corresponding cluster in step 2. For iteration  , 

  (   )   
 

 
∑   

 
   . 

4) Unless maximum number of iterations is reached, 

step 2 is repeated. 

 

Number of clusters   is the total number of appliances present 

in REDD database for a sufficiently large value of  , 

typically 12000 – 20000 in our evaluation. K-means algorithm 

is preferred in our evaluation for its relative efficiency 

compared to hierarchical clustering algorithms [22] employed 

by Lam et. al. [5] in their canonical introduction to WS. 

 
Fig. 3.  Harmonic content (HAR) for various appliances. 

 

 
Fig. 4.  V-I trajectories for six different appliances from REDD household # 3. 

 

B.  Standard Benchmark Load Signatures  

Signature extraction follows event-labeling in NILM 

training phase, as expressed in fig. 1. The first benchmark 

used in our evaluation is traditional power metrics (PQ) [1].  

PQ refers to real and reactive power consumption of a 

particular appliance (   ) and total odd and even harmonic 

distortion of current waveform (         ).  

The second benchmark used is harmonic content (HAR) of 

the current waveforms, determined by the spectral energy in 

contiguous segments of Fourier Transform (FT) of the current 

waveform. Fig. 2 represents the power consumption of various 

appliances from one particular household in our example 

dataset REDD on a     plane for 5000 consecutive 

switching events. Note the abundance of low-power (<200W) 

appliance signatures in close proximity. Fig. 3 illustrates HAR 

consumption values for five common household appliances 

and the differences in harmonic content thereof. 

C.  Wave-shape Features (WS) 

Lam and colleagues introduced metrics based on voltage 

and current wave-shape for establishing taxonomy of 

appliance signatures [5]. Lam‟s work refers to the mutual 

locus of instantaneous voltage and current waveform as the V-

I trajectory.  Fig. 4 illustrates the shape of V-I trajectory for 

six different appliances from one of REDD households. For  
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Fig. 5.  A graphical illustration of wave-shape metrics:  (a) V-I trajectory  (b) 
Mean curve  (c) Reference line joining points of highest and lowest I-

coordinate in the V-I plane. 

 

appliances with different working principles (for instance, 

resistive, motor-driven or power-electronic), the V-I trajectory 

exhibits unique characteristics captured by wave-shape (WS) 

features. Since operating state of a particular appliance 

corresponds to shape of instantaneous current waveform of 

that particular appliance, hierarchical clustering with WS 

results in larger separation between characteristically 

dissimilar appliances compared to PQ [5]. An extrapolation of 

this observation is to verify that WS would allow a multi-class 

classifier to generalize better to unknown examples. This 

would prove the effectiveness of WS for load disaggregation 

over a variety of off-the-shelf learning algorithms and 

benchmark load signatures.  

WS are briefly reviewed as follows; detailed explanation 

appears in [5]. 

Looping Direction: „Looping direction‟ refers to the anti-

clockwise or clockwise curvature of V-I trajectory. It 

corresponds to the sign of the phase angle difference between 

voltage and current waveforms, represented in fig. 5 by the 

direction of curvature of locus a. A clockwise curvature refers 

to an overall capacitive load behavior (current leads voltage in 

phase) while a counter-clockwise curvature refers to an overall 

inductive load characteristic (voltage leads current in phase). 

Area Enclosed: „Area Enclosed‟ refers to the area enclosed 

by the boundary of the V-I trajectory. It is proportional to the 

magnitude of phase difference between voltage and current 

waveforms. Area enclosed by line segment a in fig. 5, 

represents this metric.  

Non-linearity of Mean Curve: Mean curve of the V-I 

trajectory, represented in fig. 5 by line segment b, divides it 

into two identical halves. Degree of distortion of the mean-

curve from a straight line is indicative of the non-linearity of 

electrical behavior of a particular appliance load. An estimate 

of this metric is the area enclosed under mean curve b when 

viewed with reference to  . 

Number of Self-Intersections: Number of self-intersections 

for a V-I trajectory also corresponds to presence of higher 

order harmonics in current waveform. 

Slope of Middle Segment: A near-zero slope of middle 

segment of the mean curve b is often characteristic of power- 

 

TABLE I 
LINEAR CORRELATION COEFFICIENTS - WS AND PQ 

 

LS 
areaRL, 

Prms 
curveML, 

TeHD 
numIntersec, 

ToHD 
numIntersec, 

areaEnc 
span, 
Prms 

Coeff. 0.5096 0.6038 0.6861 -0.5215 0.96 

 

electronic loads and serves to differentiate them from other 

kinds of loads. In figure 5, tangent of the angle θ represents 

this metric. 

Area of Right and Left Segments: This refers to area 

enclosed by near-vertical segments towards the edges of the 

V-I trajectory. 

 We also propose a new shape feature of the V-I trajectory 

we refer to as span of the V-I trajectory. It represents the 

vertical distance between highest and lowest I-coordinate, 

equal to length of line segment d in fig. 5. It has a 

correspondence with fundamental active power P as it 

increases proportional to amplitude of instantaneous current. 

Its inclusion improves the precision of prediction in NILM by 

as much as 10% for employed learning algorithms over 

evaluated switching events from REDD. 

Using this shape difference we are able to differentiate 

between switching events from various appliances. Table I 

expresses linear correlation coefficients for some of the 

aforementioned WS and PQ quantities. A magnitude close to 

one expresses strong linear dependence between two variables 

while a magnitude close to zero implies minimal linear 

relationship between the two. Coefficients in table I have been 

estimated using unique combinations from a set of about fifty 

thousand switching events belonging to REDD. A strong 

linear proportionality between curvature of mean line and 

harmonic content in current waveform expressed by      is 

particularly obvious from the table. An increase in area 

enclosed by V-I trajectory is typically accompanied by a 

decrease in the number of self-intersections, illustrated by a 

negative value for respective coefficient in table I. 

D.  Disaggregation Algorithms 

Choice of learning algorithm is a function of the 

characterization of the learning problem and the load signature 

used. The inputs to each learning algorithm are a specific 

number of „training examples‟; each example is a feature 

vector representing particular load signatures coupled with 

respective appliance label, (xi, y), xi    F from previous 

„signature extraction‟ and „event labeling‟ steps in fig. 1. For 

instance, HAR training example for each switching event 

contains 77 real numbers representing spectral power for 

concurrent segments of frequency for FT of current waveform 

alongside an appliance label. These 77 real numbers are 

extracted from FT for a range of 0-4kHz.  WS contains 7 real 

numbers, PQ contains 4 real numbers in addition to appliance 

labels. These feature vectors are divided into three sets namely 

training, cross-validation and test sets. Training and cross-

validation examples are used by learning algorithm to produce 

generalizable load models subsequently used to predict labels 

for test set feature vectors. 

In our evaluation we have used four learning algorithms to 

evaluate our approach. These four algorithms represent 

popular choices of off-the-shelf learning algorithms proven 
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effective for a wide variety of classification problems across 

domains ([23]-[24]). 

First of these algorithms is a feed-forward artificial neural 

network (ANN) trained using Levenberg-Marquardt (LM) 

method. A popular non-linear learning algorithm, ANN 

topologies are detailed in [25].  

The second algorithm is a hybrid learning algorithm (ANN 

+ EA), composed of an artificial neural network coupled with 

an evolutionary algorithm (EA with momentum) block for 

local search. Once the weights and parameters   for the ANN 

part are determined by LM or any other training algorithm 

[25], the EA part conducts a local search around the final 

solution for better precision of prediction. The principle for 

„evolution‟ from    to the next „generation‟ of parameters 

      is expressed by the following equations [23]. 

 

                                    (   )                         ( ) 

 

                                                                                 ( ) 

 

In 1 and 2, momentum constant   is typically a real 

number from the range (0,1) that describes the degree of 

„presence‟ of    in the next generation     . Method to 

ascertain value of momentum constant   using stochastic 

global search is described in the next subsection. The value of 

 , a constant real number, is selected from the range (     ) 

for all generations of EA [23].  

The third algorithm evaluated for the course of this study is 

support vector method (SVM) with a Gaussian kernel 

function. Intuitively, the kernel function describes a distance 

measure that suggests weightage for various training examples 

in order to construct a hypothesis that determines the class 

label for each training instance. Self-selection of empirical 

constants associated with SVM kernel ( ,  ) is addressed in 

the next subsection. SVM theory and application to MS-NILM 

for a relatively small set of appliance feature instances is 

discussed in more relative detail by Onoda et. al. [26].  

The fourth and final algorithm is Adaptive Boost 

(AdaBoost) that uses decision stumps as weak classifiers. The 

premise of AdaBoost is to iteratively boost the prediction 

performance of the weak classifier over the training examples. 

This is accomplished by maintaining a distribution of weights 

that is updated in successive iterations so as to „concentrate‟ 

on instances that are misclassified in the previous iterations 

[26].  

Liang et. al. [3] and Onoda et. al. [26] have demonstrated 

the use of ANN, SVM and Adaptive Boost in context of 

NILM under separate system configurations. No systematic 

examination of all four with WS over benchmark datasets 

exists so far, hence these have been employed for this study. 

E.  Model Selection and Performance Optimization  

Prior to training of all the aforementioned learning 

algorithms, setup parameters (number of neurons in each 

hidden layer    in case of ANN, momentum constant   in 

case of EA, kernel parameters   and   in case of SVM) have 

to be specified. This step is typically referred to as „model 

selection‟ [28]. In the course of this study, an enhanced variant 

of differential evolution (EDE) is used to automatically search 

and select these setup parameters. Fig. 6 illustrates the model  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6.  Global search using enhanced differential evolution for model 

selection in ANN, ANN + EA and SVM. 

 

selection step from fig. 1 in detail. A specific number of 

randomly chosen setup parameters or a candidate „population‟ 

of parameters is chosen to be evaluated for prediction 

accuracy. The population is altered or „mutated‟ and a new 

population is selected by selectively combining the initial and 

altered population according to specific rules (describing the 

„fitness‟ of altered population relative to that of original 

population) so as to gradually maximize the prediction 

accuracy or minimize prediction error in the new population as 

this cycle is repeated. The term „objective function‟ refers to 

prediction error in the following passage. 

Differential Evolution (DE) is a heuristic, population-based 

global search strategy that offers more relative certainty and 

efficiency of convergence for minimization problem for non-

linear continuous space functions [20]. Following passage 

reviews the algorithm used for parameter search [29], with 

special reference to DE and EDE.  

DE prescribes an empirical constant RR (recombination 

rate) that decides the threshold for combining altered and 

original populations of parameters. Choice of this constant is a 

function of observer‟s experience and expertise. EDE is an 

enhanced variant of DE proposed in [29] whereby instead of 

an empirical recombination rate (RR), a „fitness function‟ is 

described that weighs the fitness of mutant population relative 

to fitness of original population, 
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  ( )

 
  ( )

 
 

  ( )

           ( ) 

                          

In eqs. 3 and 4, „U‟ represents the mutant population of 

training parameters, „X‟, the original population, „OF‟, the 

objective function. So, a constant RR is replaced by a dynamic 

RR that weighs how much the altered population excels the 

original population in prediction accuracy. 

A brief summary of the overall proposed strategy is 

described as follows. Fig. 6 illustrates the sequence of steps 

involved in the EDE-based global search algorithm, labeled as 

follows.  

1) Populations of system variables (number of hidden 

layer neurons in case of ANN, kernel parameters in 

case of SVM or momentum constant in EA) or 

„genes‟ for kth trainer and ith iteration,     
 ( )   

    …    are randomly initialized in the beginning, a 

total of M individuals (      …   ) and G genes 

per individual for each trainer (      …   ).  

2) Each individual in the mutant population     
 ( ) is 

determined by a linear combination of genes from 

three randomly chosen individuals in the original 

population.     

                                                    

    
 ( )       

 ( )      (    
 ( )       

 ( )) 

               
 

3) Objective function values for mutant and original 

population are determined by evaluating prediction 

error for the multi-class classifier in question (for a 

specific feature space and a specific learning 

algorithm). Fitness functions of mutant and original 

populations are determined from 1 and 2.  

4) Each gene in     
   ( ) is determined as follows: 

 

    
   ( )  {

    
 ( )                           ( ) 

    
 ( )                          ( )

 

 
5) Step 2 is repeated with     

   ( ) in place of 

    
 ( ) until one of the stopping conditions is met, 

that is, either the objective function is minimized 

beyond a specific threshold (a real number) or it stays 

constant for a specific number of consecutive 

iterations (resulting in a „validation stop‟) or the 

maximum number of iterations is reached.  

6) After one of the stopping conditions is met, the best 

out of M individuals in the population     
   ( ) – the 

one with the least value for objective function – is 

chosen to be the optimal set of setup parameters for 

learning algorithm in question. 

 

For a multi-class classifier, performance optimization of 

each class can be carried out in parallelized fashion (requiring 

N replicas of above algorithm) such that for selected values of 

k, |     
 

 
|   . An alternative choice would be to use a 

single objective function following the above rule; simplest 

instances would be for selected values of k, ∑ |     
 

 
|  or 

∑ (    
 

 
) 

 , depending on the penalty required as error 

grows and whether OF can adapt to degree of convergence of 

parameters like with the basic case of         . However, 

design of objective functions that exhibit both dynamic 

adaptation and selective minimization is outside the scope of 

this study and will be addressed in subsequent research. 

IV.  EXPERIMENTAL EVALUATION 

This section presents numerical evaluation of benchmark 

signatures and learning algorithms for precision of prediction  

of appliance labels for switching events extracted from REDD. 

We have evaluated load signatures corresponding to these 

switching events for WS, PQ, HAR using the algorithms 

reviewed earlier: artificial feed-forward neural network 

(ANN), hybrid neural network (ANN + EA), support vector 

machine (SVM) and adaptive boost (AdaBoost) for one-

dimensional decision stumps.  

Precision of prediction          , used as accuracy metric, is 

determined as the number of correctly predicted classes for 

extracted switching events in the database, weighted by the 

total number of switching events. This study assumes perfect 

recall, that is, all true switching events are detected and 

reported to learning algorithms. In our evaluations, this 

assumption is conveniently justified since REDD reports the 

instances of change in instantaneous voltage and current 

waveforms. Due to sufficient acquisition rate, effectively the 

only false positives in the event detection phase are the 

instances where the change-event is split into two, each 

registering one half of the current response representative of 

respective appliance. The redundant events need to be 

programmatically eliminated. In the case where NILM is aided 

by sensors on individual appliances, false positives in event 

detection are dependent on frequency response of the sensor, 

noise and interference from neighboring appliances. Accuracy 

metrics that account for these false positives, such as F-score 

are recommended in this case [3].  

A.  Description of Dataset and Initial Conditions 

Reference Energy Disaggregation Dataset (REDD) is a 

publicly available dataset containing detailed energy usage 

information of several homes over extended periods and in 

two granularities [20]. The low granularity data is average real 

power consumption of multiple households (both the mains 

and individual circuits) at a frequency of approximately 1Hz 

for mains and 0.33Hz for individual circuits. High granularity 

data is AC voltage and current waveform data from household 

mains acquired using commercial load monitors at a frequency 

of 16.5 kHz. 

 
TABLE II 

CIRCUIT LABELS FOR REDD HOUSEHOLD # 3 – 22 CHANNELS  

 
Cct. 

Label 
Appliance 

Cct. 

Label 
Appliance 

Cct. 

Label 
Appliance 

1, 2 mains 9 dishwasher 16 microwave 

3 unknown 10 furnace 17 lighting 

4 unknown 11 lighting 18 Smoke alarms 

5 lighting 12 unknown 19 lighting 

6 electronics 13 Washer-dryer 20 Bathroom gfi 

7 refrigerator 14 Washer-dryer 21 Kitchen outlets 

8 disposal 15 lighting 22 Kitchen outlets 
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REDD high frequency data considered for this evaluation 

contains energy usage data worth about twenty days for two 

houses. In case of house # 3, for instance, a total of 22 

channels of voltage and current waveform data are present.  

Prior to clustering the delta-form signatures, only appliances 

with       are considered. 

Subsequent to signature extraction, relative sizes of 0.45, 

0.1 and 0.45 are utilized for training, cross-validation and test 

sets in training of learning algorithms: a base case for further 

comparison in next section. EDE (typically 30 individuals, 50 

iterations) is utilized to assert the best possible training 

parameters. In our evaluation,   = 0.5 is generally a good 

choice for EDE step 2 that provides a reasonable balance 

between time required for EDE convergence and precision of 

models with suggested parameters. Subsequently, Monte 

Carlo simulations are conducted with these parameters to 

evaluate  .  

B.  Monte-Carlo Simulations 

A Monte-Carlo simulation evaluates the precision of 

employed learning algorithms a large number of times under 

an unaltered computational capacity for the duration of the 

simulation. For instance, with ANN as learning algorithm, 

Levenberg-Marquardt (LM) algorithm is invoked in every 

iteration of the simulation to search for ANN weights (using 

the number of neurons in each hidden layer from the previous 

model-selection step). The large number of simulations 

accounts for variability in precision of prediction of trained 

ANN due to random initialization of weights in LM algorithm. 

Available degrees of freedom while pre-processing the 

datasets in order to extract switching events are:  

 Relative sizes of training and test sets,  

 threshold on active appliance power consumption 

(Pmin) and purity of clustering done during pre-

processing [22] 

Unique combinations of these criteria can be modified to 

generate a unique combination of switching events from the 

dataset and a unique Monte-Carlo simulation.  

Relative sizes of training and test sets compare the 

robustness of performance for various algorithms over PQ, 

HAR and WS, particularly during early operational periods in 

an event-based NILM system where training examples are too 

few for the learning algorithm to account for all possible load 

scenarios and consequently to yield generalizable appliance 

models.   

Purity of clustering [22] during the pre-processing module 

is related to the optimal number of appliance classes selected 

in order to cluster the extracted waveforms. This optimal 

number of classes is a function of threshold on power 

consumption of appliances, Pmin, that are included in a 

particular Monte-Carlo simulation. A large number of 

appliances with values of load signatures in close proximity 

(high „similarity‟), noisy and/or highly non-sinusoidal 

conditions might lead to a larger number of anomalous 

training examples („outliers‟) that might not represent the most 

frequent operating state for the appliance in question, which 

might render the learning algorithm more susceptible to 

incorrect classification, as will be demonstrated in the next 

section. 

It is important to indicate here that these two function as 

so-called extrinsic criteria for generating unique load 

scenarios, in the sense that these are modifiable while 

retaining the original sequence of occurrence of switching 

events and do not represent intrinsic load characteristics. In 

section V, this original sequence of switching events from 

REDD is modified. A large number of unique load scenarios 

are generated using appliance profiles (feature vectors) from 

REDD. This allows us to simulate the effects of dynamic and 

noisy load signatures on capacity of classification for various 

algorithms and load signatures. Research by Liang and 

colleagues [3] presents convenient criteria for load dynamics, 

appliance similarity and electrical noise that are consulted for 

the purpose of this study. Definitions for these criteria 

intrinsic to composite load are mentioned in the next section. 

C.  Numerical Results 

Table III lists the median overall, training set and test-set 

precision of prediction for the three benchmark load signatures 

(an Intel Core i7 machine, CPU clock 3.1 GHz, 8GB of 

RAM). It is evident from the numerical figures in table III that 

wave-shape metrics (WS) outperform or generally compare 

with both PQ and HAR in precision of prediction. It is 

important to indicate here that since HAR is represented by 77 

real numbers expressing spectral power for various segments 

of the Fourier transform while WS is represented by 7 real 

numbers for metrics described in the previous section so for 

orders of magnitude less number of features, WS outperforms 

or at a minimum, offers comparable prediction accuracy with 

HAR and hence is relatively more robust for event-based 

operation. It is also evident that including EA with momentum 

alongside ANN as learning algorithm does not provide a 

substantial improvement in precision over ANN. 

                                                                                                                                                 

             TABLE III 

MEDIAN OVERALL/TEST SET/TRAINING SET PRECISION (X 100%) FOR VARIOUS 

CHOICES OF LOAD SIGNATURE FROM MONTE-CARLO SIMULATIONS  
 

LS ANN ANN + EA SVM AdaBoost 

PQ 88.5/88.3/88.8 88.8/88.6/88.9 97.2/96.9/97.5 99.3/98.8/98.8 

HAR 82.1/80.4/83.4 82.8/81.4/84.4 98.7/98.0/99.3 98.8/97.4/99.8 

WS 92.0/91.5/92.5 91.5/90.9/92.1 98.1/97.1/98.9 99.1/98.7/99.1 

 

Table IV lists the maximum, mean and median precision for 

ANN, ANN+EA, SVM and AdaBoost with PQ, HAR and WS. 

 
TABLE IV 

OVERALL MAXIMUM/MEAN/MEDIAN PRECISION (X 100%) FOR VARIOUS 

CHOICES OF LOAD SIGNATURE FROM MONTE-CARLO SIMULATIONS  

 
LS ANN ANN + EA SVM AdaBoost 

PQ 91.1/88.4/88.5 91.7/88.9/88.8 97.4/97.3/97.2 99.4/99.3/99.3 

HAR 87.1/81.1/82.1 88.0/82.3/82.8 98.8/98.7/98.7 98.9/98.8/98.8 

WS 94.3/91.4/92.0 96.2/90.8/91.5 98.3/98.1/98.1 99.2/99.1/99.1 

 

 

      
 

 

 

 

 

 

 

 

 

    Fig. 7 indicates an almost comparable resilience to 

increased proportion of test set data for PQ, HAR and WS 

with AdaBoost and ANN. Fig. 8 indicates the drop in 

precision of prediction with smaller values of Pmin, for ANN as 

learning algorithm. This generally corresponds to a large 

number of low-powered load signatures in close proximity, as 

discussed earlier. 
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Fig. 7.  Trends of precision of prediction for learning algorithms as a function 
of relative size of training, test and cross-validation sets. 

 

 
Fig. 8.  Trends of precision of prediction for learning algorithms as a function 

of minimum threshold on appliance power consumption. 

 

V.  EXTENDED SIMULATIONS 

In the next portion of our empirical study, appliance load 

profiles (feature vectors) derived from REDD are used to 

generate simulations for thousands of different load scenarios. 

Each load scenario contains a sequence of switching events for 

a defined period of time, typically ranging from a day to a 

month. These scenarios are generated by sequential 

addition/subtraction of individual signatures to/from the 

composite load. The signatures from our database contain as 

many as 40 distinct appliance signatures for different 

respective operating states. The simulation accounts for 

dynamic loading of various ubiquitous loads (particularly 

household electric motors and air conditioners) and electrical 

noise. A complete description of implemented NILM 

simulator is outside the scope of this paper and will be detailed 

in a future study. However, the relevant results of experiments 

pertaining to the degrees of freedom affecting the precision of 

prediction for various algorithms with WS are detailed. 

A.  Sensitivity towards Noise in Load Signatures 

Effect of noise is simulated by adding zero mean white 

Gaussian noise to ADP of generated load scenarios. For this 

particular set of Monte-Carlo simulations (Pmin = 50W, 100W, 

14 days, 15 switching events per hour with a normally 

distributed frequency), all employed algorithms classify more 

than 90% of training examples of load signatures for       
     . However, precision of prediction drops with decrease 

in SNR, most considerably for WS which suffers more drastic 

drop in precision compared to PQ and HAR for all employed 

algorithms. Fig. 9 and 10 illustrate the case for Adaptive Boost 

and Support Vector Method. About 20% drop in case of  

 

Fig. 9.  Precision of prediction as a function of signal-to-noise ratio for 

household ADP using Adaptive Boost as classification algorithm. 

 
Fig. 10.  Precision of prediction as a function of signal-to-noise ratio for 

household ADP using Support Vector Method as classification algorithm. 
 

 
 

Fig. 11.  Disparity in precision of prediction for various load signatures and 

classification algorithms with inclusion of load dynamics 
 

adaptive boost (with Pmin = 50W which corresponds to about 

12000 training examples) is apparent from fig. 10 (a). This 

type of response is due to drastic shape distortion of V-I 

trajectories of respective appliances for small values of SNR. 

B.  Sensitivity towards Dynamic Load Signatures 

Dynamic behavior of appliance loads is recognized as 

inherent variability of shape for instantaneous current 

waveform due to of dynamic loading. Similarity refers to the 

proximity of numerical values of load signatures.  Discrete 

Fourier transform (  (  )            ) of various single-

cycle snapshots (CW) of an appliance load is calculated using 

FFT algorithm. Range of values for    and    in the database 

expresses the degree of variability in CW for respective 

appliances. Inverse Fourier transform is used to reconstruct 

CW for appliance signatures keeping in account the updated 

   and    values weighted by LDM. A modification of the 

relationship between reconstructed and original CW proposed 

by Liang et. al. [3] is employed for this study. 
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In eq. 8,           and    (    ) refer to a uniform sampling 

function that randomly selects any one of the available    and 

   in the database for a particular appliance, in order to 

produce all possible variations of the instantaneous current 

waveform with a uniform probability in the updated CW used 

for subsequent Monte-Carlo simulations. Fig. 11 highlights the 

disparity in precision of prediction for original and adjusted 

CW, AdaBoost and PQ, WS and HAR over a large number of 

simulated load scenarios. PQ generally suffers a slightly larger 

disparity in precision compared to HAR and WS for this set of 

Monte-Carlo simulations (Pmin = 50W, 20 days, SNR = 10, 15 

switching events per hour with a normally distributed 

frequency). A larger separation between signature clusters in 

case of WS and HAR might be associated with this particular 

observation, so as to allow for a relatively robust precision of 

prediction. However, this difference in precision for WS and 

PQ diminishes for smaller values of SNR where WS suffers an 

explicit disadvantage obvious from the previous subsection. 

VI.  CONCLUSIONS AND FUTURE WORK 

As was empirically demonstrated in earlier sections, wave-

shape metrics (WS) are a competitive and robust basis of load 

classification and disaggregation and have a direct 

correspondence to operating characteristics of appliances as 

contained in current wave-shape. This affords NILM 

applications additional load characteristics for challenging 

scenarios such as multiple near-identical appliances, dynamic 

loading of electric motors etc. It therefore establishes a 

promising direction for research in unsupervised energy 

disaggregation and fault monitoring of appliances using a 

combination of different load metrics as one comprehensive 

basis. Another important research problem is the selection of 

optimal load models that achieve a balance between memory 

constraints on their training and overall precision achieved for 

NILM. Applications of metaheuristic optimization and online 

learning in NILM can potentially prove instrumental in 

selection and self-calibration of household load models which 

would improve the reliability and autonomy of diagnostic 

feedback applications based on NILM. 
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