
Toward a Better Alignment Between the Research
and Practice of Code Search Engines

Yin Liu
Faculty of Information Technology
Beijing University of Technology

Beijing 100124, China
yinliu@bjut.edu.cn

Shuangyi Li
Software Innovations Lab

Dept. of Computer Science, Virginia Tech
Blacksburg, Virginia 24060, USA

amnos@vt.edu

Eli Tilevich
Software Innovations Lab

Dept. of Computer Science, Virginia Tech
Blacksburg, Virginia 24060, USA

tilevich@cs.vt.edu

Abstract—When studying the research literature, one comes
to the impression of code search engines as an essential software
development tool that developers use regularly to accomplish
their daily tasks. Driven by this impression, researchers primarily
focus on improving the performance of code search. Nevertheless,
as we argue in this paper, this impression is mostly unfounded. As
a result, developers and researchers hold dissimilar perspectives
on what code search engines are and their most important
characteristics, with developers’ perspectives and the state of
the art often diverging widely.

This paper aims at reconciling these divergent perspectives
by drawing a comprehensive picture of code search engines, as
reflected in developers’ experiences and perspectives as well as
the state of the art. To that end, we first survey more than 100
software developers to ascertain their usages of and preferences
for code search engines. We then review the state of the art on
this topic by analyzing academic papers, industry releases, and
open-source projects. Finally, we juxtapose the results of our two
investigations to synthesize a call-for-action for researchers and
industry practitioners to better meet the demands of software
developers when it comes to searching for code. Our findings
can be used to better align the state of the art and practice of
code search engines, leading to wider adoption and more effective
use of this powerful software development tool.

Index Terms—code search engines, user survey, domain anal-
ysis

I. INTRODUCTION

Most people find the concept of programming
obvious, but the doing impossible.
——————————Alan Perlis (1922–1990)

The realities of the modern software development market-
place require software to be built quickly and reliably. Hence,
it is natural to believe that, to meet both of these objectives,
developers would be eager to take advantage of any software
development tools, especially code search engines, as they
assist developers in finding code snippets that can be either
reused in a project or easily adapted for the project’s needs.
Based on this understanding, code search engines have become
an important focus area of numerous academic research and
industry projects, whose outcomes include various code search
engine prototypes [2], [7], [10], [12], [15], [17]–[20], [22],
[23], [25], [28] and commercial products [4], [6], [14], [16], all
of which differ in their respective search strategies, application
scenarios, and execution performance.

However, upon a closer examination, the impression of
developers relying on code search engines in their daily tasks

turns out to be unfounded. In other words, despite their
potential to drastically improve programmer productivity, code
search engines still have not become an integral part of the
toolset of professional software development. We argue that
this situation is a result of researchers being unaware of what
developers need when it comes to searching for code.

To address this problem, this paper presents the results of
our investigation, whose goal is to draw a comprehensive
picture of code search engines from the perspectives of both
researchers and developers by answering these questions:

RQ1: How is the term code search engine currently
understood by developers and researchers? RQ2: In which
scenarios are code search engines typically used in practice?
How well does the state of the art cover these scenarios? RQ3:
Which characteristics of code search engines do developers
find essential, and which features they would like to see
introduced? How well has the state of the art code addressed
these developers’ perspectives for code search engines?

To answer these questions, we (1) surveyed more than
100 software developers who come from dissimilar technical
backgrounds, with different lengths of experience, and from
several application domains; (2) systematically analyzed a
substantial volume of major code search engines, drawing our
sources from academic papers, industry releases, and open-
source projects. In step (1), we survey developers about their
usage of and preferences for code search engines, extracting
new insights and unexpected opinions. In step (2), we first
extract common characteristics from the investigated products,
generalizing their definition and workflow. We then categorize
and compare the engines’ specific search strategies, typical
application scenarios, and execution performance.

In summary, we discovered that developers’ perspectives
and researchers’ foci tend to diverge. They happen to disagree
even on what constitutes a code search engines, with develop-
ers considering general-purpose search engines (e.g., Google)
or code repositories (e.g., GitHub) as code search engines
rather than the traditional state of the art. Although the state
of the art focuses on the most salient development scenarios,
some important cases remain unaddressed. We identified a
strong preference that is mostly neglected by the state of the
art in supporting code bases in multiple languages and input
code sizes of wider variety.

The contribution of this paper is three-fold:

(1) A survey of software developers’ perspectives on
using code search engines: we have identified how software
developers define code search engines, how they search for
code, which properties of code search engines they find most
important, and which features they would most like to see.

(2) A study that expands the breadth and depth of
knowledge of the state of the art of code search engines:
we have studied a large representative set of code search
engines not only to extract their common characteristics, but
also to summarize their search strategies, usage scenarios, and
execution performance.

(3) A series of findings and insights that bridge the gap
between the state of the art of code search and developers’
perspectives: we have analyzed both the knowledge gained
from the study and the survey, identifying the mismatches
between them and how they can be bridged.

II. SURVEY OF DEVELOPERS’ PERSPECTIVES

In this section, we describe the survey we conducted to
understand the perspectives of software developers on code
search engines.

A. Survey Methodology

1. Challenges & Solutions. As we strove to draw a com-
prehensive picture of how software developers perceive code
search engines, we faced the following challenges:

Challenge-1: how to obtain a representative population of
developers to survey? We conducted this survey with the goal
of revealing the common perspectives of software developers
when it comes to their experiences with code search engines.
Hence, we had to ensure that our survey takers come from
diverse coding backgrounds and possess dissimilar levels of
programming expertise. However, without explicitly selecting
participants, an online survey may generate a large volume of
useless information.

Solution: we created an invited survey sent to hundreds
of developers, including employees of several renowned IT
companies (i.e., to cover senior developers) as well as CS stu-
dents, both undergraduate and graduate (i.e., to cover novices
and intermediate). Since these participants come from diverse
backgrounds, have different lengths of coding experience, and
use dissimilar primary programming languages, we believe
the population of developers that participated in our survey
is representative to a large extent.

Challenge-2: how to ascertain what comes to the mind
of developers when they encounter the term “a code search
engine”? As explained in § I, one of our research questions is
whether researchers and developers mean the same thing when
referring to “a code search engine.” We could have asked the
surveyed developers to define “a code search engine.” How-
ever, this strategy would be ineffective for those developers
who understand code search engines only vaguely or are even
unaware of their existence.

Solution: we are inspired by the Theory of Natural Lan-
guage Construction posited by Ludwig Wittgenstein. That is,
“the meaning of a word is its use in the language [30].”

Put differently, a word is not only defined by its textual
representation but also by the set of usages of this word in
the language. Similarly, “a code search engine” can also be
defined by its usage in developers’ daily activities. Thus, in
our survey questions, we use the term “a code search engine”
without defining it and ask participants to describe their typical
scenarios of using a code search engine. Then, we examine the
described scenarios to understand what developers mean by “a
code search engine.”

2. Data collection. We invited about 1500 developers to
take the survey, and about 114 of them accepted our invitation.
The survey takers came from two main groups: IT companies
and CS students, while three channels served as venues for
disseminating the invitation: mailing lists for companies and
students (about 1400 people), company managers requesting
their subordinates to participate (the number of subordinates is
unknown); and direct contacts with company employees who
were personal acquaintances (about 100 developers). Note that,
due to our survey being anonymous, the response rates of
participants are hard to ascertain. Based on the participant-
reported lengths of coding experience, only 6.14% of them
had 0-2 years experience, 22.81% more than 10 years, 38.60%
5-10 years, and 32.46% 2-5 years. Based on these responses,
we inferred that the majority of the survey takers must have
been employed by technology companies, so their coding
experience was substantially more extensive than that of a
typical CS student.

TABLE I: Survey questions.
Q1 - How long have you been writing code?
Q2 - What is your primary programming language?
Q3 - Do you use a code search engine in your programming pursuits?
Q3-1 - If yes, then which one?
Q3-2 - If no, why not?
Q4 - Which of the following scenarios best describes
how you typically use a code search engine
For Q5-Q8, How much do you agree with the following statement:
Q5 - when using a code search engine,
how fast it returns its results is the most important criteria
Q6 - Only a highly accurate search engine would be helpful
in my software development activities
Q7 - It is important for a search engine
to support multiple programming languages
Q8 - It is important for a search engine to
be able to work with input of all sizes
(from extra short code snippets to large program portions)

3. Survey questions and their purpose. Table I shows eight
questions we sent out for our survey takers. The rationale
behind this survey design is as follows:

Q1 and Q2 collect a developer’s technical background and
programming expertise. Specifically, for Q1, we provide four
options for the length (i.e., “l”) of a developer’s programming
experience: 0 to 2 (i.e., 0 < l ≤ 2), 2 to 5 (i.e., 2 < l ≤ 5),
5 to 10 (i.e., 5 < l ≤ 10), and more than 10 years (i.e.,
l > 10). For Q2, we provide seven options, six for popular
programming languages and one for user-customized input.
We select these six languages based on their typical application
domains and developers: Python for AI developers, JavaScript
for Web developers, C/C++ for system developers, Scratch
for CS education developers and programming novices, and
Java for the rest of the developers (because of its enormous
application domain). Mandatory for all participants, these two

2

questions make it possible to reveal the information if the
surveyed developers are representative.

Q3 and Q4 collect a developer’s practices of using code
search engines. Specifically, for Q3, we investigate if code
search engines are widely used in a developer’s programming
pursuits (Q3), and which engines are they used (Q3-1). For
those developers who claim not to use any code search
engine, we aim at understanding why they find search engines
unnecessary (Q3-2). For Q3, we provided three predefined
reasons and 1 option for customized input. The predefined
reasons include: “I am unaware of search engine existence;”
“The ones that I tried were not returning useful results;” “I
am too busy to learn how to use a search engine.” For Q3-1
and Q3-2, we provided customized input only.

For Q4, our target is to unveil scenarios of using code search
engines from the end user’s perspective. Hence, we ask our
survey takers to specify how they typically use a code search
engine or select from four pre-defined scenarios: “I have a
piece of code that I don’t know how to use or am experiencing
problems with, so I’d like to search for usage examples;” “I
want to implement a certain functionality but do not know how,
so I’d like to search for code that matches my needs;” “I use
code search engines for both of the two scenarios above;” “I
never use code search engines in my programming practices.”

Q5 to Q8 collect a developer’s preferences for code search
engines. By analyzing the research literature, we found that
prior works usually focus on improving code search engines’
performance in terms of execution time and accuracy. In
addition, obtaining an acceptable performance with a small
amount of input and supporting different languages are also
popular research directions for code search engines. Hence,
we designed four survey questions that focus specifically on
these four characteristics of code search engines (i.e., execu-
tion speed, accuracy, multi-language support, and input size.)
Specifically, Q5 surveys a developer’s opinion on code search
engines’ execution speed, Q6 on accuracy, Q7 on supporting
multiple programming languages, and Q8 on input size. For
each question, the given five agreement levels “strongly dis-
agree,” “disagree,” “neutral,” “agree,”and “strongly agree.”

B. Survey Results and Findings

Recall that the survey collected 114 responses, which con-
tained information about developers’ technical background,
usage of, and preferences for code search engines. Note that
some survey takers may have chosen not to answer all eight
questions. Hence, for each question, the response may be <=
114. We discuss our survey results in turn next.
1. Technical background: Q1 and Q2 received 114 valid
responses, whose analysis revealed that indeed the survey
takers came from a wide spectrum of technical back-
grounds. For the length of programming experience, 22.81%
of our participants have more than 10 years, 38.60% 5-10
years, 32.46% 2-5 years, and 6.14% 0-2 years. For their
primary programming language, Python is the most popular
language, with 34.21% of our participants, 20.18% for Java,
5.26% for JavaScript, 19.30% for C, 10.53% for C++, 0 for

Scratch, and 12% for other languages (i.e., C#, MATLAB,
GO, GOlang, Smalltalk, Rust, and Scala.)
2. Usage of code search engines: We obtained 113 responses
for Q3. Our results and findings are discussed as follows:

Results of Q3: To our surprise, a considerable amount of
participants (44.25%) do NOT use code search engines in their
programming practices.

Results of Q3-2: When asked as to why they do not use
code search engines, 60% of them pointed out that they were
unaware of code search engine existence, 8% complained that
the engines fail to return useful results, 2% explained that
their business prevented them from learning how to use a code
search engine, 4% said they exclusively use Google or Github
to search for code, and 20% did not provide a reason.

Finding-1 Code search engines are neither widely
known nor used: 44.25% of surveyed developers
claimed NOT to use code search engines at all. More-
over, 60% of them did NOT even know that search
engines existed.

Results of Q3-1: More interestingly, among the participants
who do use code search engines (55.75%), 15.87% of them
selected Google1, 31.75% Github, 20.63% Stack Overflow,
12.70% OpenGrok/Grok, 11.11% for others (e.g., Gerrit,
Eclipse, Intellij), and 19.04% left unspecified.

Finding-2 When it comes to searching for code,
developers use a variety of tools rather than spe-
cialized code search engines: although claiming to
“to use code search engines,” the survey takers ended
up using general-purpose search engines (i.e., Google),
code repositories (i.e., GitHub), IDEs (e.g., Eclipse),
Q&A websites (i.e., Stack Overflow), rather than spe-
cialized code search engines (i.e., OpenGrok/Grok).

Results of Q4: We obtained 90 responses for Q4, and
learned that 10% participants use code search engines because
they experience problems with a code snippet or do not
know how to use it; 23.33% because they want to find code
that matches their needs to implement a certain functionality;
36.67% select both of these two reasons, 27.78% say they
never use code search engines. Besides that, 2.22% (two
participants) specify two other scenarios: one said they use
engines during the code review process to understand the
implementation of methods that need to be reviewed, and the
other said they use engines just for checking where things are.

Finding-3 Code search engines can be tailored for
these usage scenarios: (a) having an unfamiliar code
snippet whose usage is unclear or problematic, (b)
needing to implement an unfamiliar functionality, (c)

1There are some overlaps: someone may input both Google and Github.

3

understanding the implementation for code review, and
(d) locating the file that contains a given code snippet.
Among them, (a) and (b) are common scenarios (70%,
10%+23.33%+36.67%), (c) and (d) are corner cases
(2.22%, 1.11% for each.)

Q5 Speed

Q6 Accuracy

Q7 Multi-Lang

Q8 Input Size

0 25 50 75 100

Category

Percentage

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Fig. 1: Agreement Levels of Q5-Q8

3. Preferences for properties of a code search engine:
Figure 1 shows the agreement levels of Q5-Q8, for which we
obtained 91 responses for Q5 and 90 responses for Q6,7,8,
respectively. Most of the participants agree or strongly agree
that execution speed (58.24% of our participants), accuracy
(65.56%), multiple programming languages support (86.67%),
and input of all sizes (62.22%) are crucial criteria for code
search engines. In contrast, few participants disagree or
strongly disagree with these statements: 25.27% for execution
speed, 17.78% for accuracy, 5.55% for multi-language support,
and 15.55% for input sizes. Among these four criteria, multi-
language support is the most important (86.67% of participants
agree or strongly agree, only 5.55% disagree or strongly
disagree) and execution speed the least (58.24% agree or
strongly agree, 25.27% disagree or strongly disagree.)

Finding-4 The participants found all four charac-
teristics of code search engines important (more
than a half of participants agree/strongly agree), with
the support for multiple languages being the most
important (86.67% of participants agree/strongly
agree).

C. Threats to Validity

The internal validity is threatened by the different response
rate for each question. That is, except for the mandatory
questions (i.e., Q1 and Q2), participants could pick and choose
which questions they wanted to answer (e.g., answer Q4
but skip Q3). Hence, our findings for these questions may
have been derived from the responses whose number is fewer
than the total number of participants (i.e., 114). The relative
independence of our survey questions might have mitigated
this validity threat.

The external validity is threatened by the number of sur-
veyed software developers. We obtained about 100 responses

in total. Although we sent out thousands of surveys, the
number of responses is not particularly large. Fortunately,
these responses cover participants with various technical back-
grounds, which can mitigate this validity threat. It is worth
mentioning that our survey remains available online, continu-
ously obtaining new responses, which we plan to use in our
future research endeavors.

III. CODE SEARCH ENGINES IN THE WILD

This section discusses the study we conducted to understand
the characteristics of code search engines.

A. Study Methodology

1. Challenges & Solutions. To understand the state of the
art of code search engines, we had to overcome the following
challenges:

Challenge-1: how to determine which keywords can be used
to retrieve the relevant work? The meaning of the term “code
search engine” is somewhat vague, as the research community
thus far as not agreed upon a standard definition. In this study,
one of our goals is to explore how the research community
uses the term “code search engine.” Hence, when searching the
literature, we avoided the usage of the keywords that pertain
to any particular code search engines. Also, general-purpose
search engines (e.g., Google), code repositories (e.g., GitHub),
Q& A website (e.g., StackOverflow) can be used to search for
source code as well. At this time, our intent was not to decide
whether or not exclude these general tools from our study.

Solution: In essence, a code search engine is a tool that
searches in computer source code. Therefore, to identify the
relevant literature, we used simple search keywords, such as
“code search,” “code detection,” “code matching,” and “code
search engine.” With this specific focus, the results of our
study can help counteract some preconceived but overly broad
definitions of code search engines.

Challenge-2: how to obtain a manageable yet representative
sampling of related work? Parameterized with the aforemen-
tioned keywords, literature searches return a massive volume
of related work. In an ideal world, we would include all the
returned results into our analysis dataset. However, our aim is
to study the state of the art both as described in the literature
and by interacting with their reproduction packages as end-
users to truly understand the operation and inner workings of
the studied engines. Hence, digging into all the related work,
setting up and running their released solutions would lead to
burdensome workloads.

Solution: We follow a strategy that we call “look back and
taxonomize.” That is, not only do we focus our analysis on the
latest research papers, but we also “look back” to understand
how these latest examples developed from the historical per-
spective. To that end, we also analyze some older but classic
papers. By reproducing the historical development of code
search engines, our goal is to deepen our understanding of
how researchers have improved on the state of the art over
time. Further, we create a taxonomy of different code search
engines by including only the typical and classical ones for

4

each type. This strategy has helped us significantly reduce the
amount of rote work, without sacrificing the relevance of our
analysis’ findings.

B. Data Collection

As mentioned above, we mainly used the keywords “code
search,” “code detection,” “code matching,” and “code search
engine”, respectively, in Google scholar (for research papers)
and GitHub (for industry releases and open-source projects).

Finally, we analyzed and reported on 17 code search
engines (13 reproduction packages from research papers and
4 industry releases), with two different types of in/outputs,
three distinct search strategies, and two typical usage sce-
narios. Moreover, to understand these engines’ functionality
and implementation, we interacted with them as end-users and
analyzed their inner workings.
C. Taxonomy

We classify the considered code search engines based on
their usage scenarios, input/output formats, and search strate-
gies, as discussed next.
1. Usage Scenarios. As described in the studied works, the
following scenarios exemplify the typical usage scenarios of
code search engines:

Type I: Developers have an existing piece of code, but are
unsure how to use or are experiencing problems with the code.
The ability to consult some usage examples could remediate
the situation.

Type II: Developers want to implement a certain function-
ality, but are unsure how. So they would like to search for
suitable code matches. Notice that developers might not have
a clear idea of what code to search for.
2. Type of Inputs and Outputs.

(1) Code-to-code Engines take source code as input and
return a set of matched code fragments. Typically, a code-to-
code search engine would be applied to Type I scenario, with
its exact or close matches of the given input code. As a specific
example, consider a novice developer needing to learn how to
use the numpy function numpy.vectorize() in a programming
assignment. A code-to-code engine will allow the novice to
paste the “numpy.vectorize()” string into the search box, with
the engine returning a set of occurrences of that function in
other projects/repositories.

(2) Natural language-to-code Engines make it possible to
discover code based on textual description, thus accommodat-
ing those use cases in which the programmer is unaware what
code they need for a particular programming task. Typically,
a natural language-to-code search engine would be applied to
Type II scenario, with its input format in which developers
describe the desired functionality in natural language, with
the engine returning the code snippets that best match the
description. As a specific example, consider an introductory
CS student who is assigned to implement a Python project
that needs to detect faces. Unfortunately, the student is quite
clueless and not even sure what would be a reasonable starting
point for implementing this project. A Natural language-to-
code engine would make it possible to type in phrases like

“how to face detection in python” into the search box, with the
engine returning a set of sample face detection code snippets
implemented in Python.
3. Search Strategies. In summary, code search engines lever-
age these major search strategies:

(1) Information Retrieval (IR) Strategies distill the important
information from the user input. Before any search can take
place, these strategies ensure that the given input provides
informative key points that can be effectively searched for in
a codebase. These strategies often reformulate or expand the
given input with the goal of making the subsequent search
process more accurate and effective.

(2) Natural Language Processing-based strategies work
with the semantic information of a given text or code snippet.
They extract and model information based on its lexical and
semantic meanings. Theses strategies work well for searches
that involve natural language input.

(3) Deep Learning Strategies make use of deep learning
models, such as Recurrent Neural Network (RNN), Con-
volutional Neural Network (CNN), etc. Deep learning has
been applied successfully to extract code features from large
codebases. In particular, deep learning strategies excel at
automatically capturing relevant code snippets in scenarios
that involve vague input or the need to generalize output for
unanticipated options. We will expand the discussion of these
search strategies in the following sections.
D. History of Code Search Engines
1. Code Search Engine vs. Code Clone. Although it would be
hard to pinpoint the exact origin of code search engines, this
research topic is inextricably linked to that of detecting code
clones. The related work retrieved given the aforementioned
keywords contains numerous studies of code clones and source
code similarity detection. Indeed, the scope of “code search
engines” overlaps with that of “detecting code clone:”

(1) Both code search engines (especially the code-to-code
engines) and code clone detectors focus on detecting code
similarity. However, unlike code clone techniques, code search
engines also cover the scenarios of “natural language to code.”

(2) The purpose of a code search engine is searching for
code, while that of a code clone detector is searching for code
cloned from others. At any rate, both of them search code to
accomplish their objectives.

(3) Some approaches employed by code search engines
and code clone detectors can be used interchangeably. For
example, code clone detection approaches can be applied to
a code search engine to search for similar code snippets.
Also, some approaches in code search engines are adapted
for detecting code clones.
2. Development of Code Search Engines To capture the
development of code search engines, we summarized our
surveyed code search engines as based on their techniques and
publish/release date. We excluded those engines that lacked
clear setting up and usage instructions, so we ended up with
17 engines. Although a relatively small sample size, it is
representative of the main developments (we discuss it as an
external validity threat in § III-H.)

5

IR

2000 2010 20201990

DL
NCS,
CODEnn

NQE,
UNIF

COSEA

Dup, Datrix CCFinder, Sourcerer

SourcererCC,
Aroma

Yogo

NLP
SNIFF

Portfolio,
Exemplar

CodeHow,
Query Expansion

Fig. 2: Historical Development of Code Search Engines
As is shown in Figure 2, not surprisingly, the oldest tech-

nique for searching for similar code was string-based IR, intro-
duced before 2000. However, after 2005, NLP and DL-based
works started emerging to assist in code search. In the last
five years, DL-based techniques tended to become prevalent,
but IR-based approaches were still developing. For example,
the latest IR-based approach, Yogo, applied a programming
analysis approach to search for code. In the future, we believe
that NLP and DL will become increasingly widespread, while
program analysis will continue to be combined with the IR,
NLP, and DL-based approaches.

E. Standard Workflow

We found that a typical code search engine is structured
around three major components: (1) user, (2) search data
warehousing, and (3) search machinery. Figure 3 shows the
general process followed by major code search engines in our
study. We will explain each of the components in turn.

(1) User Component: represents engine users and how they
interact with the search engine. Users provide search input,
which typically comes in the form of either code snippets
or natural language. The engine first converts the provided
input into search directives. The conversion process involves
parsing the input strings and extracting their semantics. Search
input can be mapped into complex semantic graphs for use by
various machine learning approaches, increasingly common in
modern engines.

(2) Search Data Warehousing Component: represents
transforming raw codebase(s) into searchable artifacts, de-
scribed by relevant metadata. In essence, the search process
maps the received user input to the parts of the data matching
it. To that end, search engines need the ability to access and
iterate through massive amounts of data quickly, so the original
codebase(s) need to be preprocessed and summarized if a
search engine is to provide a responsive user experience.

(3) Search Machinery Component: performs the actual
searching operations. It is parameterized by the user and
data warehousing components to form the search queries and
execute them to return the expected search results. To provide a
more meaningful user experience, modern search code engines
often also provide additional filtering.

Standard Searching Process:
The operation of a modern code search engine involves the

following 6 processes:
1) Convert source code into easily searchable metadata.
2) Transform user input into search directives.

Fig. 3: General Process of Code Search Engines
3) Parameterize the searching machinery with the metadata

and search directives, as described above.
4) Find the code snippets that most closely match the input

parameters.
5) Filter the found snippets to present more relevant results

to the user.
6) Display the final search results to the user.
Typically, process 2 to 5 are performed interactively, while

process 1 can be performed as a pre-processing procedure.

F. Summary & Comparison of Code Search Engines

Based on the three different search strategies, we summarize
and compare with the studied code search engines as follows:
1. Information Retrieval (IR) Code Search

IR engines work best for Type I usage scenario and employ
one of the following four code retrieval strategies: string-
based, token-based, tree-based, and semantics-based. We
describe these strategies in turn next, while Table II shows a
summary of existing works.

String-based strategies treat the source code as a series of
string arrays and consider two code fragments similar if all (or
part of) their string sequences match ([4] in TableII). However,
due to this strategy’s computational cost and inflexibility, it has
become less popular recently.

Token-based strategies treat the source code as a sequence
of tokens, and detect source code similarity via matching
duplicated token sequences (or subsequences). Token-based
systems are easy to deploy for different programming lan-
guages, but they could potentially be more computationally
expensive than the text-based methods, as a single line of code
typically contains multiple tokens. CCFinder [12] is an earlier
token-based systems for detecting code similarities (and code
clones); it applies optimization techniques (e.g., aligning token
sequence, concatenating tokens) to increase search efficiency
and scalability for larger codebases. SourcererCC [25], another

6

TABLE II: Summary of IR-related works.
: YES; : Partially YES (have the link to source code, but it is inaccessible); : NO

Related work Techniques Accuracy Execution speed
Multi-language

support? Input size Open source?

Dup [4] text-based matching, exact match,
parameterized match / 1.1M LOC / 7.2 min min 15 LOC

CCFinder [12] token-based representation,
transformation rules

23% more clones compared
to line-by-line method 2600k LOC / 250 sec min 50 tokens,

min 12 token types

SourcererCC [25] Bag-of-tokens, sub-block overlap
filtering, partial index 91% precision, 100% recall 1M LOC / 90 sec;

100M LOC / 1d 12h 54m 5s min 6 LOC

Sourcerer [2] Relational model, text-based ranking,
Lucene, structure-based search

67% recall for top 10 results,
74% recall for top 20 results / 2-3 words queries

Datrix [18] tree-based representation, AST,
Intermediate Representation Language (IRL) / 992256 LOC / 15 min ∼50k LOC for

case studies tested

Aroma [16]
Structural code search, similarity score,
parse tree, static scoping, light-weight

search

retrieved the original method
as top-rank for 99.1% of
contiguous and 98.3% of
non-contiguous queries

1.3s median response time,
95% queries complete in 4s

min 3 tokens,
less than 20 LOC

Yogo [22]
Program Expression Graph, equality

saturation, equivalence graph,
DeMorgan’s law

All found matches are correct
in the selected codebases / 2-3 wordds queries

TABLE III: Summary of NLP-related works.
: YES; : Partially YES (have the link to source code, but it is inaccessible); : NO

Related work Techniques Accuracy Execution speed
Multi-language

support? Input size Open source?

Portfolio [20]
Keyword matching, identifier

splitting, PageRank, random surfer, TF-IDF,
Spreading Activation Network (SAN)

76% precision / 1-2 sentences,
roughly 10-20 words

CodeHow [17] Extended Boolean Model, text similarity,
text normalization, stop word, removal 79.4% precision / single short sentence,

2-11 words

Exemplar [19]
Program analysis, query overlap,

S3 architecture 45% mean precision /
sequence of

keywords, exact
length unspecified

SNIFF [7] Free-form query search,
bag-of-words

88% correct top
ranked result

40% faster than
Prospector and Google

Code Search

sequence of
keywords, exact

length unspecified

Query Expansion [15] Query expansion, identifier expansion

66 %, 83%, 74% min,
max, mean precision;
56% 76%, 67% min,

max, mean recall

/
sentence-long
query, exact

length unspecified

token-based code clone detector, enables fast searching of
large codebases via its bag-of-tokens strategy.

Although token-based approaches usually exhibit lower ex-
ecution speed due to their high computational cost, combining
the bag-of-tokens approach with SourcererCC’s sub-block
overlap filtering [25] enables token-based strategies to reach
high accuracy and execution speed.

Tree-based strategies treat the source code as a tree,
especially, the abstract syntax tree (AST) and detect code
matches by comparing subtrees. Sourcerer [2] represents the
source code with its entities table and the entity relations table
to increase query efficiency. Similar to the token-based strate-
gies, one can easily deploy tree-based strategies for multiple
languages: Datrix [18] translates a source code’s AST into
an Intermediate Representation Language (IRL) for multiple
languages support. Alternatively, Aroma’s simplified parse tree
can be used uniformly across various programming languages
[16]. Tree-based approaches show outstanding performance for
all types of code clones; approximate searches with inexact
matches show the best performance.

Semantics-based strategies find semantically similar code
rather than lexically similar one. To that end, Komondoor

and Horwitz [13] introduced the program dependence graphs
(PDGs) [8] and program slicing [29], and YOGO [22] applied
program expression graph (PEG). All these program graphs
represent a program’s semantics to some extent. However, due
to their high computational costs, semantics-based strategies
are generally considered inapplicable to large codebases.
2. Natural Language Processing-based Engines

Unlike IR strategies, NLP strategies work particularly well
for Type II usage scenario. To match the user input and
the searched codebase, NLP-based engines usually model
source code’s structure and semantics. Table III summarizes
representative NLP-based engines.

NLP applied to topic models. Based on statistics, topic
models help unlabeled documents’ indexation, search, cluster,
and structuration [27]. Hence, NLP-based engines can leverage
these topic models on searching source code: Exemplar [19]
used Vector Space Model (VSM) model, a kind of topic
model, to help search, select, and synthesize (S3) during
the code search. Portfolio incorporated a variation of VSM
to enhance its preprocessing [20]. CodeHow combined the
standard Boolean model and VSM to improve accuracy [17].

NLP with lexical database. Besides the topic models,

7

TABLE IV: Summary of DL-related works.
: YES; : Partially YES (have the link to source code, but it is inaccessible); : NO

Related work Techniques Accuracy Execution speed
Multi-language

support? Input size Open source?

NCS [23] distributional
hypothesis, FastText, FAISS, TF-IDF

68.9% accuracy for top 1 result;
94.6% accuracy within top 9 results / 1 short sentence,

under 20 words

NQE [14] query expansion, attention,
parts-of-speach (POS), beam search

0.284 MRR for query length 1;
0.543 MRR for query length 2 / 1-3 words

UNIF [6] bag-of-words based
network, attention 60.8% precision for top 1 result

1:11.72 time inference for code;
1:103.83 time inference for query,

compared to CODEnn

1 short sentence,
under 20 words

CODEnn [10] sequence-based network,
code embedding, description embedding

46% accuracy for top 1;
76% accuracy for top 5;
86% accuracy for top 10

/ under 15 words

COSEA [28] CNN, attentive pooling model 65.7% precision for top 1 result / average 9 words

NLP-based code search engines can use a lexical database
to help search for code. Query expansion [15] extended user
input terms through a lexical database of English words (i.e.,
WordNet [21]), which can help match similar code. SNIFF
[7] used a free-form query search to generate a set of small,
highly relevant, and reusable code snippets to increase the
performance and reliability of searching code.

In general, NLP-based engines are similar to IR-based
engines, with an extra NLP layer enabling better matching to
extract crucial information. Easier to implement, NLP-based
engines show high accuracy results.
3. Applying Deep Learning to Search Code

Increasingly common as building blocks of code search
engines, deep learning techniques work particularly well for
Type II usage scenarios. Table IV summarizes representative
deep learning engines.

In general, training on source code requires a vector as the
input. Hence, DL-based code search engines need to convert
the source code into a series of vectors, i.e., code embedding.
Finally, DL-based engines search code by comparing similar-
ities across the converted vectors. In fact, DL-based engines’
core process is their code embedding process.

Specifically, NCS [23] combined a code embedding model
(FastText [5]) with a similarity search algorithm (FAISS [11])
to improve search accuracy. NQE [14] used Recurrent Neural
Network (RNN) to compute the output’s probability distribu-
tion and adopted a beam search and an attention mechanism
to maximize search accuracy. CODEnn [10] embedded both
the source code and their corresponding natural language
description into a vector space, which can further improve
the accuracy but decrease training speed, and lead to semantic
inaccuracy when the natural language description is inaccurate
[6], [28]. To improve the training speed, UNIF used a bag-of-
words-based network that can significantly lower complexity
[6], and COSEA introduced the layer-wise attention to the
convolutional neural network (CNN) that can enhance the
convergence speed [28].

As compared with IR and NLP-based engines, DL-based
engines show better performance as they match input by
accurately modeling query dependencies. However, the quality
and quantity of training data for DL models can greatly
impact the search results of DL-based engines [26]. Existing
DL-based engines often train their models on a self-cloned

code corpus obtained from open-source code repositories like
GitHub, but the quality of their obtained training datasets
remains hard to evaluate systematically. We observed that
some models that claim to have higher performance in theory
fail to demonstrate a significant performance bump in reality,
while the high accuracy of engines like NCS can be explained
by their combining of a good conceptual foundation and high
quality training data.
G. Discussion and Findings

Based on the coverage of the code search engines in above
Sections, we next discuss our findings.

Finding-5 Need More Performance Metrics: We no-
tice that some aspects of engine performance have not
been covered adequately. With a universal focus on ac-
curacy, execution speed has become de-emphasized
in recent years. Execution speed had been the most
crucial evaluation metric for IR-based engines, but
the evaluations of many recent NLP and DL-based
engines never considered it. Input length, ranging
from small (a few words) to large (multiple lines of
code/sentences), can also affect an engine’s search per-
formance. Out of all the engines we studied, only NQE
[14] tested its performance specifically against small
inputs, and no other engines tested against different
ranges of input length. Multi-Language support is
also neglected—less than 30% of our studied engines
provided such support.

Finding-6 Studying State-of-the-Art Code Search
Engines is Hard: Many of them are either outdated
or unavailable. We tested over 30 open-source engines,
but only 5 of them would actually execute without
errors (Aroma [16], SourcererCC [25], Yogo [22],
CCFinder [12], CODEnn [10]), and 2 of them (Aroma
and Yogo) would return any search results. The reasons
that prevented the engines under test from executing
included outdated package environments, evolving li-
braries, and operating system differences. The engines
that executed but would not return results had missing
or incomplete codebases to search.

8

TABLE V: Comparison between developer’s perspectives and existing code search engines
Usage Scenarios Importance in daily work Preferences for properties

Developers’
perspectives

(a) having an code snippet with unclear/problematic usage;
(b) needing to implement an unfamiliar functionality;
(c) understanding the implementation for code review ;
(d) locating a given code snippet (c and d are corner cases.)

neither widely known nor used;
use other tools

1st: Multi-lang support;
2nd: Accuracy;
3rd: Input size;
4th: Exec. speed

Existing code
search engines

Have an existing piece of code:
(a) being unsure how to use
(b) experiencing problems with the code.
Have no existing code:
(c)trying to implement a certain functionality, but are unsure how.

motivate the research:
programmers heavily rely on it.

Focus on: Accuracy;
De-emphasized: Exec. speed;
Neglect:
Multi-lang support, Input size

H. Threats to Validity

The internal validity is threatened by our experimental
environment. In Tables II, III, and IV, we collected the
accuracy, execution speed, and input size of different code
search engines. However, these measurement results come
from dissimilar experimental environments. That is, our sur-
veyed code engines were evaluated on different code bases,
test cases, experimental machines, etc. This threat could have
been mitigated if our surveyed code engines run without errors.
However, as mentioned above, most of them proved hard to
deploy and operate, the root cause of this threat.

The external validity is threatened by the number of sur-
veyed code search engines. In this paper, we summarized and
compared 17 code search engines, a representative sample but
not sufficiently large to draw definitive conclusions. To ensure
further progress, we plan to open-source our experimental data
collection, thus allowing other researchers to expand on it.

IV. COMPARING APPLES AND ORANGES

Based on the results and findings presented in § II and § III,
developers’ perspectives and the state of the art exhibit both
commonalities and distinctions, which we discuss in turn next.

A. Commonalities

As shown in Column “Usage Scenarios” (Table V), devel-
opers expect the same usage scenarios as the existing code
search engines provide. Hence, we extract our definition of
code search engines from these scenarios.
1. Clarifications: Based on the usage scenarios, we differen-
tiate code search engines from other related tools as follows:

(a) We do not consider general-purpose search engines as
code search engines. Based on their usage scenarios, the goal
of a code search engine is searching code, rather than all
possible resources on the web, as is the case of general-
purpose search engines (e.g., Google).

(b) We do not consider code repositories as code search
engines. Code repositories provide source control and man-
agement services; they might provide simple search facilities,
but it is not their raison d’être. In contrast, a code search engine
is specifically designed to search any collection of codebases.

(c) We do not consider Question & Answer forums as code
search engines. A developers can post a question on a Q &
A forum (e.g., stack overflow), with some other developers
answering that question, with the answer preserved for future
referencing. In contrast, a code search engine interactively
returns a set of code snippets given a search input, without
a human actor behind the process.

2. Definition: Consider a code repository R and user search
input I; R contains a finite set of codebases (each includes the
source code, metadata, config files, etc.); I can be either code
snippets or natural language tokens. E, a code search engine,
processes and transforms R and I to make them searchable
and matchable, respectively, and then outputs the results as a
set of code snippets S. Thus, E matches I to S ⊂ R.

B. Distinctions
As shown in Table V, developers and researchers (i.e.,

designers of existing code search engines) tend hold different
opinions on how important code search engines are in the
performance of daily development tasks and which properties
developers prioritize, as we discuss in turn next.

1. Code search engines have not yet become a standard
software development tool: Despite the claims made in the
research literature about being motivated by the significance
of code search engines role in the development process and
day-to-day programming activities, a considerable amount of
surveyed developers never used or were even unaware of code
search engines (Findings 1,2). Even worse, among the survey
takers who claim to use “code search engines”, the majority
end up using general-purpose engines, code repositories, and
Q&A websites rather than “real” code search engines.

The possible reasons of this phenomenon could be: (a)
existing tools (e.g., general-purpose search engines, code
repositories, and Q&A websites) perform largely the same role
as code search engines. So developers are not compelled to
spend time on learning how to use a new tool. (b) existing code
search engines are unavailable (Finding-6) or return useless
results (Results of Q3-2 in § II-B).

2. Researchers often leave unaddressed what developers
find important in the functioning of code search engines:
Although accuracy is ranked highly in both developers’ per-
spectives and the state of the art, existing engines tend to
under-emphasize the support for multiple languages (ranked
first by developers) and input size (ranked higher than execu-
tion speed by developers).

This phenomenon implies that researchers may be unaware
of what their end-users (i.e., developers) expect from code
search engines. Our findings suggest that researchers may
benefit from focusing more on multi-language support and
input size as a way to better meet developer expectations.

V. RELATED WORK
As depicted in Table VI, several prior research efforts have

also studied state-of-the-art code search engines and what
developers expect when searching for code. Garcia et al.

9

summarized a series of usage requirements from the research
literature that describes existing code search engines [9].
Sadowski et al. surveyed developers to understand how they
search for code and which search patterns they deploy [24]. By
analyzing frequency/difficulty when it comes to searching for
code online, Xia et al. studied developers’ behaviors of web
code search [31]. By tracking an online code search engine’s
logs, Bajracharya et al. mined the search topics used by
developers [1], [3]. Despite uncovering numerous interesting
insights, these prior works have not specifically focused on
systematically studying existing code search engines in terms
of their common characteristics and unique functionalities.
Furthermore, to the best of our knowledge, no prior user
studies have set the goal of identifying the perspectives of
software developers with respect to their current usage patterns
of and future preferences for code search engines (Table VI).

TABLE VI: Summary of related surveys.
: Fully Covered; :Partially Covered; : NOT Covered

Related
Survey Classify? User

Perspective? Requirements? Comparison?

Garcia et al. [9]
Sadowski et al. [24]

Xia et al. [31]
Bajracharya et al. [1], [3]

This Paper

VI. CONCLUSION

In this paper, we conducted (1) a study of state-of-the-art
code search engines and (2) a developer survey of more than
a 100 developers. We found that a considerable percentage
of developers never use code search engines and are even
unaware of their existence. We hope that the results of this
research will help developers to benefit from using search
engines in their professional practices, and researchers to
uncover future directions that would have the most potential
for practical impact.

ACKNOWLEDGEMENTS
The authors thank the anonymous reviewers, whose insight-

ful comments helped improve this paper. This research is
supported by NSF Grants #1717065 and #2232565 and Cisco
Research Grant CG# 1367161.

REFERENCES

[1] S. Bajracharya and C. Lopes, “Mining search topics from a code search
engine usage log,” in 2009 6th IEEE International Working Conference
on Mining Software Repositories. IEEE, 2009, pp. 111–120.

[2] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: a search engine for open source code supporting
structure-based search,” in Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and
applications, 2006, pp. 681–682.

[3] S. K. Bajracharya and C. V. Lopes, “Analyzing and mining a code search
engine usage log,” Empirical Software Engineering, vol. 17, no. 4, 2012.

[4] B. S. Baker, “On finding duplication and near-duplication in large soft-
ware systems,” in Proceedings of 2nd Working Conference on Reverse
Engineering. IEEE, 1995, pp. 86–95.

[5] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[6] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 964–974.

[7] S. Chatterjee, S. Juvekar, and K. Sen, “Sniff: A search engine for java
using free-form queries,” in International Conference on Fundamental
Approaches to Software Engineering. Springer, 2009, pp. 385–400.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[9] V. C. Garcia, E. S. de Almeida, L. B. Lisboa, A. C. Martins, S. R.
Meira, D. Lucrédio, and R. P. d. M. Fortes, “Toward a code search
engine based on the state-of-art and practice,” in 2006 13th Asia Pacific
Software Engineering Conference (APSEC’06). IEEE, 2006, pp. 61–70.

[10] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 933–944.

[11] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Transactions on Big Data, 2019.

[12] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE transactions on software engineering, vol. 28, no. 7, 2002.

[13] R. Komondoor and S. Horwitz, “Using slicing to identify duplication
in source code,” in International static analysis symposium. Springer,
2001, pp. 40–56.

[14] J. Liu, S. Kim, V. Murali, S. Chaudhuri, and S. Chandra, “Neural
query expansion for code search,” in Proceedings of the 3rd acm
sigplan international workshop on machine learning and programming
languages, 2019, pp. 29–37.

[15] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion
via wordnet for effective code search,” in 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 2015, pp. 545–549.

[16] S. Luan, D. Yang, C. Barnaby, K. Sen, and S. Chandra, “Aroma: Code
recommendation via structural code search,” Proceedings of the ACM
on Programming Languages, vol. 3, no. OOPSLA, pp. 1–28, 2019.

[17] F. Lv, H. Zhang, J.-g. Lou, S. Wang, D. Zhang, and J. Zhao, “Codehow:
Effective code search based on api understanding and extended boolean
model (e),” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2015, pp. 260–270.

[18] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic
detection of function clones in a software system using metrics.” in icsm,
vol. 96, 1996, p. 244.

[19] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie,
“Exemplar: A source code search engine for finding highly relevant
applications,” IEEE Transactions on Software Engineering, vol. 38,
no. 5, pp. 1069–1087, 2011.

[20] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Proceedings
of the 33rd International Conference on Software Engineering, 2011.

[21] G. A. Miller, WordNet:An electronic lexical database. MIT press, 1998.
[22] V. Premtoon, J. Koppel, and A. Solar-Lezama, “Semantic code search

via equational reasoning,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2020, pp. 1066–1082.

[23] S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, and S. Chandra, “Retrieval
on source code: a neural code search,” in Proceedings of the 2nd
ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages, 2018, pp. 31–41.

[24] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search for
code: a case study,” in Proceedings of the 2015 10th joint meeting on
foundations of software engineering, 2015, pp. 191–201.

[25] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Proceedings
of the 38th International Conference on Software Engineering, 2016,
pp. 1157–1168.

[26] Z. Sun, L. Li, Y. Liu, and X. Du, “On the importance of building
high-quality training datasets for neural code search,” arXiv preprint
arXiv:2202.06649, 2022.

[27] S. W. Thomas, “Mining software repositories using topic models,” in
Proceedings of the 33rd International Conference on Software Engi-
neering, 2011, pp. 1138–1139.

[28] H. Wang, J. Zhang, Y. Xia, J. Bian, C. Zhang, and T.-Y. Liu, “Cosea:
Convolutional code search with layer-wise attention,” arXiv preprint
arXiv:2010.09520, 2020.

[29] M. Weiser, “Program slicing,” IEEE Transactions on software engineer-
ing, no. 4, pp. 352–357, 1984.

[30] L. Wittgenstein, Philosophical investigations. John Wiley&Sons, 2009.
[31] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing, “What

do developers search for on the web?” Empirical Software Engineering,
vol. 22, no. 6, pp. 3149–3185, 2017.

10

