
“Program, Enhance Thyself!” – Demand-Driven
Pattern-Oriented Program Enhancement

Eli Tilevich Godmar Back
Department of Computer Science, Virginia Tech

Blacksburg, VA 24061, USA
{tilevich, gback}@cs.vt.edu

Abstract
Program enhancement refers to adding new functionality to an
existing program. We argue that repetitive program enhancement
tasks can be expressed as patterns, and that the application of
such enhancement patterns can be automated. This paper presents
a novel approach to pattern-oriented automated enhancement of
object-oriented programs. Our approach augments the capabilities
of an aspect compiler to capture the programmer’s intent to enhance
a program. In response to the programmer referencing a piece of
functionality that is non-existent, our approach automatically syn-
thesizes aspect code to supply the required functionality transpar-
ently. To improve flexibility and facilitate reuse, the synthesis and
application of the new functionality is guided by declarative when-
then rules, concisely expressed using a rule base.

Our extensible automated program enhancement system, called
DRIVEL1, extends the AspectJ compiler with aspect generating ca-
pabilities. The generation is controlled using the DROOLS rules
engine. To validate our approach and automated tool, we have cre-
ated a collection of enhancement libraries and used DRIVEL to
apply them to the LibX Edition Builder, a large-scale, widely-used
Web application. DRIVEL automatically enhanced the LibX Edi-
tion Builder’s XML processing modules with structural navigation
capabilities and caching, eliminating the need to implement this
functionality by hand.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming — Program Synthesis, Pro-
gram Transformation; D.1.5 [Programming Techniques]: Object-
oriented Programming; D.2.13 [Software Engineering]: Reusable
Software — Reusable Libraries; D.2.7 [Distribution, Mainte-
nance,and Enhancement]; D.3.3 [Language Constructs and Fea-
tures]: Frameworks, Patterns; D.3.4 [Programming Languages]:
Processors — Compilers

General Terms Design, Experimentation, Languages

Keywords aspect-oriented programming, patterns, program en-
hancement, rules engines, meta-programming

1 DRIVEL: Demand-driven Rules-based Intelligent Value-adding
Enhancement Libraries.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD’08, March 31 – April 4, 2008, Brussels, Belgium.
Copyright c© 2008 ACM 978-1-60558-044-9/08/0003. . . $5.00

1. Introduction
Software maintenance constitutes the majority of the total software
development effort and cost [5, 39], with program enhancement be-
ing its dominant activity [42, 59]. Program enhancement is con-
cerned with adding, changing, or removing functionality to adapt
software to meet new or changed technological or business require-
ments [35] and is inherently difficult, costly, and error-prone. Soft-
ware development realities that complicate program enhancement
are both diverse and pervasive: enhancement programmers are typ-
ically not those who developed the system, enhancements are made
under time pressure to meet deadlines, the software documentation
is often sparse or missing altogether, and portions of the existing
code may carry restrictions against being changed.

This paper presents a novel approach that automates software
enhancement tasks commonly performed as part of developing
and maintaining object-oriented programs. We introduce our ap-
proach by means of a concrete software development scenario.
Consider a Java program under construction that has the following
useVisitor method:

class SomeClass {
A a;
B b;

}

void useVisitor(SomeClass o) {
o.accept(new SomeClassVisitor() {

public void visit (A a) {
System.out.println("visited A " + a);

}
...
public void visit (B b) {

System.out.println("visited B" + b);
}

});
}

The method useVisitor above takes an object of type
SomeClass as a parameter and uses it as a participant in the Visi-
tor pattern [18]. The Visitor Pattern provides a flexible approach to
extending the functionality of a program by separating its function-
ality and object structure. By providing accept methods, object
structures can pass around different Visitor objects, implement-
ing a traversal strategy. Using the Visitor pattern is as straight-
forward as providing a specific implementation of a Visitor
interface (or an abstract class) and passing it as a parameter to the
root object of a structure.

The example above assumes that class SomeClass does in-
deed have a method accept that provides the functionality re-
quired by the Visitor pattern. It also assumes that an interface or
abstract class SomeClassVisitor exists, from which anony-

mous subtypes can be derived. If this is not the case, the compiler
will report errors such as Invalid Method: accept or Invalid Type:
SomeClassVisitor, until the programmer provides a suitable imple-
mentation of the Visitor pattern.

Despite the aforementioned software engineering benefits af-
forded by employing the Visitor pattern, implementing its core
functionality may not be trivial. For one, as is usually the case when
using patterns, applying the Visitor successfully requires that cer-
tain preconditions be met. Specifically, a hierarchical object struc-
ture with a “has-a” relationship must be present, requiring the pro-
grammer to examine all classes in the program. In addition, since
this pattern encodes an object traversal strategy, each usage sce-
nario is likely to require a different strategy. Because this traver-
sal strategy is effected through a particular implementation of the
accept method, accomplishing this task requires a thorough un-
derstanding of the underlying object structure. Finally, the Visi-
tor interface that specifies the visit* methods is application-
specific. If implemented as a class or aspect library, the library
would have to be updated whenever the underlying object struc-
ture changes, which is cumbersome and error-prone, especially if
the underlying classes are generated by a code generation tool.

The novel approach described in this paper alleviates many
of the difficulties of enhancing object-oriented programs outlined
above. Our approach enables program enhancement on-demand by
augmenting an aspect compiler with sophisticated enhancement
capabilities. In the code example above, our augmented aspect
compiler intercepts the reporting of the Invalid Method and Invalid
Type errors resulting from compiling method useVisitor and
evaluates the flagged errors against a set of previously-defined,
declarative when-then rules. If the rules indicate that the Visitor
pattern is indeed desired in this part of the program, an aspect
generator synthesizes aspect-oriented code to enhance the program
as specified by the rules. In our example, a rule could indicate
that an invalid type SomeClassVisitor indicates the need for
a Visitor for SomeClass.

The aspect generator executes as part of the compiler, and thus
has access to information about the partially compiled program;
in the example, it has access to the field declarations of a and
b in the partially compiled class SomeClass. It also has ac-
cess to the compiler’s name resolution mechanism, allowing it to
disambiguate the meaning of the identifier SomeClass based
on the specific scope in which the invalid type error occurred.
The enhanced code will then be automatically recompiled, and
the programmer will be able to use the Visitor pattern exactly as
coded in the useVisitor method. To the programmer using the
enhancement-providing compiler, this process is transparent, mak-
ing it appear as though the program had been enhanced automati-
cally.

From a software engineering perspective, our approach en-
ables the separation of concerns pertaining to enhancing object-
oriented programs by distinguishing between enhancement provi-
ders, a party supplying prepackaged enhancement libraries, and
enhancement consumers, a party using the supplied enhancement
libraries as part of their software development cycle. Specifically,
our approach distinguishes between three separate enhancement
concerns: providing general enhancement libraries, defining the
logical rules for applying the libraries, and guiding the application
of enhancements in a specific software project as defined by the
rules.

This separation makes it possible for different parties to tackle
those enhancement challenges that are commensurate with their
level of programming expertise. For example, a third-party soft-
ware vendor could develop general enhancement libraries, an ex-
pert programmer could define which enhancement libraries will be
used, adapt those libraries to the software conventions used in a

given software project, and define the conditions under which they
should be applied. Finally, rank-and-file developers could simply
use the libraries as parameterized by the expert programmer. Each
party can express or refine the conditions under which enhance-
ments are applied by contributing declarative when-then rules to
a rule base. The declarative nature of the rules not only increases
flexibility and expressiveness, but also facilitates reuse.

While we believe that our automated approach can be benefi-
cial for many program enhancement scenarios, it proves particu-
larly useful for those cases when it is not desirable or perhaps even
possible to modify the source code of a program, such as in sit-
uations when the program’s code needing enhancement is part of
a third-party library or automatically generated. Because our ap-
proach employs aspects as the mechanism for adding functionality,
it does not require explicit changes to the source code of a program,
and yet retains the type-safety and compile-time checking capabil-
ities of the Java language. As a result, our approach not only facili-
tates program enhancement, but also enables it for a whole class of
programs currently deemed not easily amenable to enhancement. In
addition to facilitating the enhancement of code we cannot change,
we found that the use of aspects helped because many of the en-
hancements we consider are in fact cross-cutting concerns.

The rest of this paper is structured as follows. Section 2 in-
troduces Enhancement Patterns, a methodology for describing and
classifying common program enhancement tasks. Section 3 details
our approach to demand-driven automated enhancement and an au-
tomated tool implementing this approach. Section 4 discusses the
challenges of enhancing automatically generated code using the ex-
ample of Java XML binding code. Section 5 presents a case study
of applying our automated enhancement tool to the development
of a real-world Web application. Section 6 reviews related work.
Section 7 presents future work, and Section 8 concludes.

2. Enhancement Patterns
Before presenting the enabling concepts of our approach to au-
tomated program enhancement, we clarify the kinds of enhance-
ments that our approach aims to support. Because our ultimate ob-
jective is to enable automated program enhancement, we must ask
which types of enhancements are amenable to automation. To be
amenable to automation, a group of programming tasks should be
repetitive and easy to categorize. In that regard, the enhancements
concerned with adding arbitrary new functionality to an existing
program are likely to be non-repetitive and may defy categoriza-
tion. In other words, such enhancements are application- and case-
specific.

Thus, as a means to meet the stated objectives of automation,
our approach is concerned not with adding new arbitrary function-
ality but with common program enhancements. Furthermore, the
machinery for applying these common enhancements should be ex-
pressible as aspects in a mainstream aspect-oriented language such
as AspectJ [36]. To ensure greater flexibility, the aspects are au-
tomatically generated to better specialize them for individual en-
hancement scenarios. As concrete examples, consider enhancement
tasks such as adding a GoF [18] design pattern to an existing code
base or enforcing an implicit program invariant (e.g., all the objects
inserted into a hash table must provide consistent equals and
hashCode methods). As examples of larger-scale program en-
hancements, consider the long-standing challenges of adding pro-
gram capabilities such as persistence and distribution [56], adapt-
ing existing program code for reuse in a different software prod-
uct [3, 46], or integrating a COTS component with an in-house
software system [4, 16]. The program enhancements represented
by the examples above do occur in modern software development
on a regular basis. Furthermore, the repetitive nature of these en-

hancement tasks lends itself to their categorization and subsequent
automation by observing the following:

• Such enhancements are accomplished in common ways rather
than randomly.

• These common ways represent accumulated programming ex-
perience/wisdom in program enhancement.

• These common program enhancements are amenable to au-
tomation through programming tools.

• These enhancements cannot generally be expressed as aspect
libraries alone, but require code generation.

The above observations have led us to explore common en-
hancement strategies that programmers follow to enhance exist-
ing programs with additional functionality. To reflect the pattern-
based nature of these strategies, we call them Enhancement Pat-
terns. An enhancement pattern captures common modifications
made to an existing program to enable its operation in an addi-
tional, and usually unforeseen, context. Unlike classical GoF De-
sign Patterns [18], whose primary purpose is to guide the initial
stages of object-oriented software development (i.e., design), En-
hancement Patterns describe common ways of adding functionality
to pre-existing or partially complete programs.

Patterns in software development have been advocated as an
approach for disseminating the shared knowledge of experienced
programmers in solving common problems. The concept of En-
hancement Patterns shares the objective to capture and organize the
accumulated experience and best practices of common program en-
hancements, creating an extensive and ready-to-use catalog of En-
hancement Patterns. The benefits of cataloging Enhancement Pat-
terns include providing a valuable resource for developers in search
of an effective and elegant enhancement solution, creating a shared
vocabulary for communicating about common enhancement tasks,
and guiding the creation of automated program enhancement tools.

Example Patterns
Software developers commonly enhance programs in ways specific
to their application domain. The benefits of expressing such en-
hancements as patterns depend on their range of applicability and
ease of automation. The following catalogue of enhancement pat-
terns represents those enhancements that we have found recurring
in our own software development practices and believe to be par-
ticularly amenable to be captured as patterns.

2.1 Shapeshift
The Shapeshift pattern describes modifications to the external in-
terface of a collection of objects for use in a new context. It enables
treating a group of unrelated classes in a uniform fashion or using
them in some other fashion for which they were not originally writ-
ten. The Shapeshift enhancement patterns occurs in many flavors
and implementations.

As a concrete example, consider a group of Java classes (pos-
sibly automatically generated) that provide a textual representation
for their instances via a method called asText rather than via the
standard method toString. This precludes these classes from
being used in all the multiple standard contexts that rely on the
toString method to get a textual representation of a Java object.
Shapeshift can enhance these classes by introducing a toString
method that invokes the original asText method.

As a second example, consider linking (or binding) of properties
of Java Beans, a technique frequently used in component-based
applications. Suppose a property p1 of bean b1 should be linked
to property p2 of bean b2. Such a pattern can be implemented by
adding an instance (or aspect method) to b1 that observes property
changes on b2 and sets b1.p1 = f(b2.p2) whenever the value of

b2.p2 changes, based on some predefined function f . When coded
manually in Java, these methods clutter the code with large amounts
of cut-and-pasted code, which can be hard to maintain. In addition,
manual coding requirings anticipating all possible properties to
which an application may create bindings. Alternatively, binding
can be implemented using runtime reflection. However, runtime
reflection cannot detect misnamed or non-existing properties until
runtime, and it is significantly slower than invoking getter and setter
methods by direct method call. By applying the Shapeshift pattern
on demand, this repeated pattern can be expressed in generative
aspects, created only when used, and whose output is subject to
compile-time checking for early error detection.

As a Shapeshift example from a different domain, consider an
Inversion-of-Control container [30] that manages components of a
certain type. Specifically, the components are expected to provide
methods that the container can invoke (e.g., init, service and
destroy for Java Servlets [12]). Nevertheless, recent designs of
container-based frameworks enable the use of POJO’s (Plain Old
Java Objects) as components managed by a container to improve
flexibility and ease maintenance. Frameworks such as Spring [29]
perform shapeshift using bytecode engineering at class load time to
add the required methods to the loaded POJOs.

An implementation of the Shapeshift pattern should provide
convenient support for introducing new methods and fields to a
class. One motivation for expressing these transformations as a pat-
tern is that the added convenience of applying Shapeshift enhance-
ments eliminates the need to emulate the required functionality at
run-time (i.e., using reflection facilities) and allows for compile-
time checking.

2.2 Navigatable Structure
The Navigatable Structure pattern describes the process of enhanc-
ing an existing structure that is composed of multiple objects to
facilitate its navigation or traversal. An example was presented in
Section 1, in which client code was enhanced with a hierarchical
Visitor Design pattern. The Visitor Design pattern is widely used,
such as in compilers and other code analysis and transformation
tools. Its implementation follows a strategy that is specific to the
structure being navigated. For instance, for an object representing
an XML document, the navigation strategy may be determined by
the XML schema describing the XML document’s elements and at-
tributes, including their order and constraints on their occurrence.
Writing visitors requires a correct understanding of the pattern, and
a reasoned strategy on how to apply the pattern to the given situ-
ation. Once this strategy is identified, coding the pattern by hand
becomes time-consuming and error-prone.

Not all structures are amenable to navigation using the Vis-
itor pattern. For instance, navigation could be provided via the
Iteratable interface for a structure. Imagine being able to say

for (Apple a : fruitBasket .apples())
process(a);

to iterate over the apples in a heterogeneous set of fruits that
originally did not provide a way to do that.

Existing object structures are often enhanced with such naviga-
tion capabilities, and these enhancements tend to follow common
strategies. This observation justifies capturing and expressing these
strategies in the Navigatable Structure enhancement pattern.

2.3 Equivalence Relations, Factor Sets, and Ordering
An equivalence relation is a reflexive, symmetric, and transitive re-
lationship that creates some notion of equivalence among objects.
In Java, classes may override the inherited equals method to test
for membership in this equivalence relation. A common way to im-
plement this equivalence relation is by using a conjunction of field-
wise equivalence test for all or a subset of fields. Though com-

paratively trivial, implementing equals correctly requires careful
coding to ensure robustness and consistency with the hashCode
method, and is repetitive. The equivalence relation pattern captures
this strategy of implementing equals and hashCode.

Based on this equivalence relation, a factor set can be com-
puted. If objects are mapped to their class representatives in their
respective equivalence class, they can be compared via the ref-
erence equality operator (i.e., ==), which improves performance
and expressiveness and can reduce memory consumption. For Java
strings, the String.intern method provides a mapping of a
string to its class representative. The Factor Set enhancement pat-
tern creates an intern method for any class wishing to use it.
Like equals, implementing intern is repetitive, and subject to
subtle mistakes by non-experts (e.g., maintaining a factor set using
strong references rather than weak references is likely to result in a
memory leak).

For some applications, such as insertion into a sorted map or set,
the ability to compare two objects according to a predefined par-
tial or total order is required. In Java, this natural ordering is pro-
vided by implementing the Comparable interface and its method
compareTo. A naive, but correct implementation could simply
return the cumulative result of comparing individual fields. Alter-
natively, the implementation could be refined to include a subset
of fields, and determine the order in which fields are being com-
pared. The natural ordering of a class should be consistent with
equals, e.g. the comparator should signal equality if and only if the
equals method does so as well. An enhancement pattern provid-
ing both ordering and equivalence can guarantee such consistency.

2.4 Instant Cache
The Instant Cache pattern describes the functionality required to
cache the results of an expensive computation. For example, the
results of parsing a textual representation of an object structure may
need to be cached. If the textual representation does not change
between different requests to retrieve the object structure, then a
cached version can be returned, saving the time required to re-parse
and recreate the structure. However, if the textual representation is
updated, then the object structure has to be recreated. This scenario
exemplifies a typical case in which caching can be employed to
improve performance.

In many applications, caching follows a common template in
which a cache is implemented as a lookup table. A key is used to
look up a value, which is returned on a cache hit. On a cache miss,
the value is recreated from the key. In addition, caches should be
kept to a limited size, or use weak references. The “Instant Cache”
enhancement captures this pattern by automatically building a com-
plete cache based on a cache miss handler. Any Java method can be
labeled a cache miss handler - the enhancement pattern infers the
key from its formal parameters and its value from its return value.
It creates aspect methods that maintain the cache, allow for the in-
validation of individual or all elements, and provides convenient
accessor methods if the cached values are themselves compound
types.

2.5 Audible Model
The Audible Model pattern enhances an arbitrary object model to
be used as the Model entity of the Model-View-Controller archi-
tecture. The adjective audible refers to the added ability to “listen”
to changes in the Model’s state. As a concrete example, this pattern
can solve a common problem in GUI programming arising when a
model must notify graphical views of state changes.

Audible Model works by assigning model classes the roles of
an Observer, an Observable, or both. Observable classes
select sets of field changes and method calls that result in mutating
a part of an object’s state (i.e., field sets and mutator method

calls). All changes to the state raise notifications to the registered
Observers. Observer classes, in turn, provide the notification
events handling logic. In addition, Observer classes might also
have Observable fields for which they might need to receive
notifications.

The implementation of Audible Model exhibits many variations
and requires careful attention to detail. For instance, an Observer
may wish to filter out certain fields. In other instances, the notifica-
tion must be delayed such that Observers do not see an incon-
sistent state of an object. Finally, Audible Model may be combined
with Navigatable Structure, for instance, in order to provide hierar-
chical notifications enabling Observers to listen to state changes
in a connected object structure.

2.6 Veto
A companion pattern to the Audible Model enhancement pattern is
the Veto pattern, in which the invocation of a method or a set of
methods, or updates to instance or static fields can be disallowed in
an enforceable fashion. For example, a model can be rendered read-
only by applying Veto to all of its mutator statements or methods.

3. Demand-Driven Program Enhancement
We detail our approach to demand-driven automated enhance-
ment by illustrating the implementation of our extensible
program enhancement system, called DRIVEL, which is an
acronym for Demand-driven Rules-based Intelligent Value-adding
Enhancement Libraries.

3.1 Overview
Figure 1 shows the main steps of our approach. An enhanced As-
pectJ compiler (EAJC) integrates enhancements into the compi-
lation process by acting as a host for enhancement plugins. En-
hancement providers package enhancement libraries as .jar files,
and EAJC loads them from locations specified as command line
arguments. Typically, an enhancement library provides an imple-
mentation for a single enhancement pattern. An enhancement li-
brary jar contains aspect and Java code generators and a set of log-
ical rules. These rules express the conditions that must be fulfilled
to correctly apply an enhancement pattern contained in the library
to any code base. In addition, the users of an enhancement library
(typically lead programmers) can control the specific application of
enhancements to their code by adding additional sets of rules to the
ones supplied with the libraries. They can also customize how the
enhancements are applied.

Applying an enhancement entails generating AspectJ and Java
code files that are then added to the compilation set. Compiling
such an enhanced compilation set may trigger the application of
additional enhancements. This process is repeated until no more
enhancements can be applied. Finally, all remaining unresolved
errors are displayed to the user.

3.2 Rules Engine
The application of enhancements is controlled by a rules engine.
We use the DROOLS engine [52], a Java implementation of the
RETE algorithm [17]. The rules engine maintains a rule base (a
set of rules) and a working memory (a set of asserted facts). A
rule consists of an antecedent, expressed as a predicate in first-
order logic, and a list of consequences, triggered if the current
set of facts makes the antecedent true. Consequences may add
new facts to the working memory, retract facts from the working
memory, or modify facts. The RETE algorithm propagates these
changes through the working memory by forming and processing
a network of consequence-antecedent relationships. This process is
also referred to as truth maintenance.

Lead
Programmer

Rules
(.drl)

Input
Program
(.java)

Enhancement
Library

Code
Generator

(.class)

Rules
(.drl)

Enhancement
Library

Code
Generator

(.class)

Rules
(.drl)

Enhanced
Program
(.class)

Extended
AJC

(EAJC)

Figure 1. Enhancement Programming Model.

3.2.1 Facts.
Our implementation uses the following types of facts:

Code entity facts. As the compiler processes input source code,
all code entities are represented as facts; these include packages,
classes, methods, fields, and annotations. To facilitate the conve-
nient use of code entities in antecedent expressions, we ensure
that their properties have corresponding sets of bean-style acces-
sor methods.

Compile error facts. All errors raised during compilation are rep-
resented as facts. Examples of such errors include invalid or miss-
ing types, methods, or incompatible assignments. Error facts of-
ten contain context information inferred by the compiler, which is
used to guide the enhancement process. For example, when report-
ing a missing method error, the compiler might have the informa-
tion about the expected return type of the method. Each reported
compilation error is stored along with its occurrence scope. This
enables scope-specific identifier lookup during the application of
enhancements.

Enhancement-provided facts. We employ facts as the coordina-
tion mechanism between different enhancements, user rules, and
the host compiler. For instance, an enhancement can signal to the
host engine that a recompilation is needed by inserting the fact
“Need.Recompile” into the working memory. Enhancements can
also express dependencies on each other by inserting facts that ex-
press those dependencies. For instance, a factor set enhancement
requires an equivalence relationship; it may express it by inserting
a fact “NeedEquivalence” for a particular class. Enhancements can
also use facts to ‘remember’ whether they have been already ap-
plied to a class (e.g., a fact “HaveEnhancedWithX” may signal that
a particular enhancement X has already been applied).

DROOLS enables the expression of facts by using any Java
object. Furthermore, equality assertion (i.e., determining whether
facts are identical) is expressed by using the equalsmethod of the
objects used as facts. This design feature of DROOLS has helped to
streamline our implementation. Since DROOLS calls the equals
method on each reported compiler error message before inserting
it as a fact, we are able ensure that multiple, but identical errors

appear only once in working memory. Therefore, the corresponding
enhancement is triggered only once.

3.2.2 Rules.
When an enhancement library is loaded by the host environment,
it uses its corresponding set of rules that guide its application
into the host’s rulebase. The rules are expressed in a domain-
specific language in a when/then format. Antecedents are expressed
in MVEL (a Java-based scripting language) or Java and must not
have side-effects, whereas consequences can consist of arbitrary
MVEL or Java code.

Enhancement rules. Enhancement rules use a declarative ap-
proach to describe the assumptions under which enhancements
should be applied. In response to the assumptions holding true,
the corresponding enhancements rules “fire,” typically adding an
instance of an enhancement to the working memory. The actual ap-
plication of the enhancement, however, is delayed until later.

For instance, consider an enhancement that adds a method
public String toStringLong() to a class. This method
returns a detailed printable representation of an object such as one
containing all the object’s fields and their values. Such an en-
hancement could be triggered if the compiler encounters an in-
valid method error, whose method name value is “toStringLong.” If
this error is encountered during compilation, the toStringLong en-
hancement will create an enhancement object. Below, the variable
’m’ is bound to any encountered ’InvalidMethod’ facts meeting the
condition that the name of the missing method is “toStringLong.”
AddToStringLong(m) returns an enhancement object, and the
insert method adds it as a new fact into the working memory.

rule "Provide a toStringLong() aspect"
when

m : InvalidMethod (methodName == "toStringLong")
then

insert (Enhancements.AddToStringLong(m));
end

A second example shows how rules can be triggered even in the
absence of compile time errors using annotations. The annotation
@NaturalOrdering triggers an enhancement that adds a natu-
ral ordering to a class, allowing it to be used in java.util.*
containers without requiring the use of a comparator.

rule "Provide a natural ordering"
when

t : Clazz (annotations[’NaturalOrdering’] != null)
not (Enhancements.HaveNaturalOrdering (clazz == t))

then
insert (Enhancements.AddNaturalOrdering(t));

end

The ’not HaveNaturalOrdering’ construct prevents the application
of this rule if the class already defines a natural ordering. Applying
the enhancement will assert a “HaveNaturalOrdering” fact for the
class that is being enhanced. If the class already provides a natural
ordering via a compareTo method, a rule can add this fact as
follows:

rule "Disallow natural ordering annotation
if compareTo() is present."

salience 10
when

m : Method (name == "compareTo",
signature == "(Ljava/lang/Object;)I")

then
insert(new Enhancements.HaveNaturalOrdering (m.getClazz()));

end

The ’salience 10’ argument gives this rule higher priority than the
“Provide a natural ordering” rule, thereby ensuring that its an-

tecedent is falsified before it fires, preventing the accidental appli-
cation of the enhancement (which would result in a compile error).

Rules can be used to achieve composition of enhancement pat-
terns. For instance, the factor set enhancement depends on the
equivalence enhancement. A rule set that expresses this depen-
dency is shown below.

rule "Request factor set enhancement"
when

m : InvalidMethod (methodName == "intern",
expectedReturnType == receiverClass

)
t : Clazz (name == m.receiverClass)

then
insert (new Enhancements.NeedEquivalence(t));
insert (new Enhancements.NeedIntern(t));

end

rule "Build equivalence enhancement if equals()
is not overridden"

when
n : Enhancements.NeedEquivalence ()
not (Method (name == "equals", clazz == n.clazz))

then
insert (Enhancements.AddEquivalence(n.getClazz()));

end

rule "Provide an intern() aspect if needed and
if we have equivalence"

when
n : Enhancements.NeedIntern()
Enhancements.HaveEquivalence(clazz == n.clazz);

then
insert (Enhancements.AddIntern(n.getClazz()));

end

In this example, if the compiler encounters a call to intern in
a context in which the expected return type matches the receiver’s
type, and if no intern method is defined, the first rule will insert
a fact indicating the need for the equivalence relationship and factor
set enhancements. The second rule is triggered by the presence of
a fact indicating the need of an equivalence relationship enhance-
ment. If the class does not already define an equals method, the
equivalence enhancement fact is inserted, but the enhancement is
not applied immediately. Once DRIVEL applies this enhancement
to the given class, it will insert a fact “HaveEquivalence,” param-
eterized with the enhanced class. This fact, in turn, will make the
antecedent of the third rule true, resulting in the insertion of the
factor set enhancement.

User rules. Simply including an enhancement library does not
apply its enhancements. Instead, user rules specify which of the
enhancements to apply. The following rule, for example, applies
all available enhancements:

rule "Apply All Enhancements"
when

e : Enhancement();
then

e.apply ();
end

When fired, this rule invokes the apply method for each en-
hancement found in working memory, which includes all enhance-
ments inserted by the consequences of the detection rules provided
by all loaded enhancement packages. This simple rule works be-
cause enhancements are required to subtype Enhancement. An
excerpt of a more realistic rule is as follows:

No

Yes

Yes

No

Fire Rules

Success!

Report Errors

{Code Set}={Code Set} U
{Generated Code}

EAJC Runs

Collect Facts:
Code Entities, Annotations,

and Errors

{Code Set}

Enhancements
Applied?

Errors Left?

Clear Facts:
Code Entities,
Annotations,

Errors

Figure 2. DRIVEL Flowchart.

rule "Add Visitors"
when

e : AddVisitor(
enhanceClass matches "org\.libx\.xml\..*"

);
then

e.apply ();
end

This rule applies the visitor enhancement if the class being en-
hanced is in the org.libx.xml.* package. In this way, the
programmer can determine exactly when compile time errors, an-
notations, or other code entity facts should lead to enhancements,
and when such enhancements would be spurious, unnecessary, or
downright wrong. The programmer can also provide supplemen-
tary facts that guide or customize the application of enhancement
patterns. For example, for the factor set enhancement described in
the previous subsection, a programmer could declare that an al-
ready provided equals method is suitable for the factor set en-
hancement by inserting a HaveEquivalence(...) fact for the type in
question.

3.3 Extended Aspect Compiler
We have extended the AspectJ compiler, version 1.5.3. Our changes
are confined to two modules of the compiler: the main driver and
the error reporting facilities. The addition of code entity facts takes
place upon the completion of the code generation phase. Compile
error facts are added immediately when they are signaled, but the
display of errors to the user is suppressed.

The existing AJC implementation already allowed for repeated
activation when operating in incremental mode. We modified its
incremental mode so that the compiler consults the fact base before
each incremental activation. After each activation, we check if an
enhancement requires recompilation and trigger a new compiler
activation if so. We currently recompile all files, although this could
be optimized by allowing the enhancement to point out which files
need to be recompiled. We remove all code entity and compile error
facts between compiler activations, but keep facts that were inserted
by consequences. If no enhancement signals that recompilation is
needed, but there are still compile time errors, we switch the driver
back into a mode that reports errors immediately to the user. At this

EAJC -enhancement Visitor_EP.jar -enhancement Intern_EP.jar -rules ApplyAll.drl Class1.java Class2.java

Compilation Set

Extended AJC
(EAJC)

Intern_EP.jar

Visitor_EP.jar

Class2.java

Class1Visitor.java

Class1VisitorAdapter.java

Class1VisitorAspect.aj

InternAspect.aj

Enhancement Library #1

Class1.java

Original Source Files Generated
Source Files

Rule Base

*.drl

*.drl

ApplyAll.drl

Working Memory

fact2 fact1

Compiler errors:
InvalidMethod

(“intern”)

Annotations:
@CacheMissHandler

Class1

H
os

t

Lead Developer’s Rules Input Source Files

Class2

Enhancement Library #2

Figure 3. DRIVEL Enhancement Process.

point, the user will find the enhanced program available for further
examination. A control flow diagram of this process is shown in
Figure 2. Figure 3 shows the interaction of the components of our
system.

We have created a set of class libraries that facilitates the exten-
sion of our infrastructure. By using these libraries, an enhancement
library developer can add enhancements by simply subclassing one
of our abstract adapter classes2, providing a concrete implemen-
tation of its apply method, and adding a set of DROOLS rules
to specify the conditions under which the enhancement should be
applied. As an additional resource for creating new enhancement
libraries, we provide convenience classes that facilitate the actual
generation of the aspect and Java code.

4. Enhancing Automatically Generated XML
Data Binding Code

One of the most common approaches for automating menial pro-
gramming tasks is automatic code generation [14, 43]. A code gen-
erator takes a high level description as input and generates lower
level code. Because the input specification is simpler and shorter
than the code it generates, code generation not only saves time and
effort, but also helps avoid programming errors, thereby increasing
programmer productivity [1, 55].

Alas, the benefits of automatic code generation can diminish
rapidly if the generated code does not fully satisfy the requirements
for the task at hand [27]. For example, the generated code may not
adhere to the established in-house coding conventions large soft-
ware organizations typically follow. Generated code may miss im-
portant capabilities such as concurrency control, making it unsuit-
able for safe use in concurrent contexts [57]. Or, generated code
may not provide support for applicable design patterns. Even if it
does, the specific expression of those design patterns may be pre-
sented in an awkward or incompatible way, complicating its inte-
gration.

Refining automatically generated code by hand to meet the re-
quirements is not a viable solution: every time a code generator

2 We provide adapter classes for invalid method errors, invalid type errors,
and annotations found in the code.

is re-run (e.g., in response to a changed specification), the hand-
written changes will likely be lost and need to be re-applied, wast-
ing programming effort. Changing the source code of a code gen-
erator to customize its functionality might not be feasible either,
as the source code could be unavailable. Open-source code genera-
tors, which could be changed, are often intricate and large, making
changes to their implementation a prohibitively difficult and time-
consuming undertaking. In fact, this process could prove as expen-
sive as developing a custom, in-house code generator, negating the
time-saving benefit of using a third-party code generator. By con-
trast, our approach can enhance the capabilities of automatically
generated code without the shortcomings outlined above. Aspect-
based enhancement patterns enable the tailoring of such code with-
out explicit changes either to the generated code or to the code gen-
erator.

XML [20] has become the de facto standard for representing,
storing, and transporting persistent data on disk or in databases.
Operating on XML data requires an efficient in-memory represen-
tation. For Java, a number of XML data binding conventions de-
scribe programmatic ways to represent XML data at runtime. If
the XML document’s structure is described by a Document Type
Definition (DTD) or XML Schema description, code generators
such as Castor [11] can be used to generate a Java binding. This
binding consists of number of Java classes that represent the XML
document’s elements and attributes. The generated code has meth-
ods that support marshaling and unmarshaling of XML data, in-
memory manipulation, and validation. Generators such as Castor
significantly reduce the complexity of XML processing by ensur-
ing that the produced XML is well-formed and valid. However, if
the XML schema changes, the classes providing the Java binding
must be regenerated, which precludes manual changes to the bind-
ing code. To adapt Castor for our needs, we applied several en-
hancement patterns to the XML-related code Castor produces.

4.1 Applying Shapeshift
We implement a number of convenience methods that shift the
classes generated by the castor API into shapes which we found
easier to work with. For instance, we added a method xml-
Descriptor to each Castor class that retrieves a descriptor that
represents the underlying XML schema at runtime. Even though the

mapping from an object’s class to its descriptor instance is known
statically at code generation-time, Castor did not provide a method
to retrieve it at run time. As a second example, we added a method
toXMLString to convert an object directly into its XML repre-
sentation, a piece of functionality that requires several cumbersome
steps to implement in vanilla Castor.

4.2 Applying Navigatable Structure
Castor does not provide support for any type of Visitor pattern.
However, the hierarchical structure of an XML document often
requires traversal, typically in an order that follows the structure
defined in the XML Schema or DTD. We implemented a Castor-
specific visitor enhancement. The example below shows the code
produced by the enhancement for the DTD production shown at the
top.

/∗ DTD production:
<!ELEMENT edition (name,links,catalogs,openurl ,proxy ,

options , searchoptions ?, additionalfiles ?)>

Code generated by enhancement: ∗/

public aspect EditionVisitorAspect
{

public void org. libx .xml.Edition .accept(EditionVisitor v) {
v. visit (this);
this .getName().accept(v);
this .getLinks (). accept(v);
this .getCatalogs().accept(v);
this .getOpenurl().accept(v);
this .getProxy().accept(v);
this .getOptions().accept(v);
if (null != this .getSearchoptions())

this .getSearchoptions().accept(v);
if (null != this . getAdditionalfiles ())

this . getAdditionalfiles (). accept(v);
}
...

}

This strategy captures the declaration order of the children of
an ’edition’ element, and it captures the fact that some children
are optional, requiring a null-check. Our enhancement also handles
multi-valued elements, which are represented as vectors by Castor.
When creating the logic for the accept methods, our implemen-
tation relies on the descriptors generated by Castor. It also emits a
specific Visitor interface type and VisitorAdapter classes.
The application of the pattern is guided by castor-specific rules as
described in Sections 1 and 3.

4.3 Applying Audible Model
Castor represents XML elements as Java beans. A configuration op-
tion allows Castor to generate support for property change events
through a simple variation of the Observer design pattern. How-
ever, traditional bean support is insufficient for a number of rea-
sons: first, it does not allow an application to veto a property
change since constrained properties are not supported. Second, the
java.beans.PropertyChangeEvent does not pass a refer-
ence to the bean being changed to the listener, requiring custom lis-
tener instances for each object. Third, and most importantly, there
is no support for propagating events that would allow recursive ob-
servers to listen to any change in a given subtree.

We used aspects to generate support for a recursive, vetoable
Observer. An example of the code generated by this enhancement
is shown in Figure 4. This generated aspect intercepts field assign-
ments to the field proxy in class Edition, representing the DTD
elements ’edition’ and ’proxy’, respectively, from the DTD above.

This aspect vetoes changes if the programmer has invoked a
setReadOnly method, which this enhancement also introduces.

Because the order in which different observers will be notified
cannot be guaranteed, it is impossible to ensure that no Observer
will have seen the changes that are to be vetoed. Therefore, we
have decided to proactively prevent changes, rather than allowing
an Observer to request that changes be undone. If the change
is allowed to proceed, Observers are notified of the new value.
The implementation also passes along the object being changed,
allowing a single Observer to observe multiple objects.

To ensure that recursive Observers will continue to receive no-
tifications even when updates result in the replacement of subtrees
of the document, a helper method adds all current, recursive ob-
servers to the new proxy child. To add recursive observers, the
enhancement pattern uses a hierarchical Visitor that traverses the
document structure and adds observers to each node. To generate
the necessary code, the pattern triggers the Hierarchical Visitor en-
hancement pattern via its rule set. Finally, we note that the rule set
allows the Audible Model enhancement to be triggered indepen-
dently of the Veto enhancement, depending on which methods are
used in an actual application.

5. LibX Case Study
Many of our enhancements were driven by concrete needs in the
LibX edition builder application, whose development one of the
authors supervised. LibX [2, 40] is a browser plugin that provides
users with direct access to electronic library resources through a
toolbar, context menu, and by providing web localization facilities.
Since library resources are local to a particular user community,
the plugin is available in heavily customized editions. There are
currently over 200 editions, built by academic or public libraries in
over 6 countries. A LibX edition is represented by an XML config-
uration file. These configuration files are described by a reasonably
complex DTD with currently 29 elements and over 120 attributes,
and their grammar changes frequently as new features are added
to LibX, whose configuration the edition builder must immediately
support.

The LibX Edition Builder3 is an AJAX [19] application that
allows librarians to maintain the configuration of their library’s
edition. The LibX Edition Builder is written almost entirely in
Java, it uses the ZK [9] toolkit for communicating with a front-
end JavaScript library in the client’s browser. The application is
composed from ZK widgets, which are rendered as HTML at the
client. It uses a model/view/controller (MVC) approach [18]. The
model is composed of a hierarchy of castor-generated objects, rep-
resenting an edition’s configuration in memory. Controller classes
process client-side events and update the model accordingly. The
view is represented by ZK widgets which listen to changes in the
model. We have been applying several enhancement patterns to this
application, resulting in the generation of over 2,200 lines of (un-
commented) AspectJ code and 250 lines of Java code. This number
compares to 38,600 lines of (commented) code produced by Cas-
tor, and 8,600 lines of programmer created Java code in the core
edition builder application.

5.1 Shapeshift.
We used the convenience methods discussed in Section 4 to consult
the XML schema at runtime. For example, the schema specifies
that configuration attributes are required, whereas others are op-
tional, which influences the UI’s display and handling of these at-
tributes. For instance, telling whether a DTD attribute property was
listed as #REQUIRED or #IMPLIED became as simple as call-
ing bean.xmlDescriptor().isRequired(). We use the
enhanced toXMLString() methods when inserting XML ele-
ments into a database we keep to allow different libraries to share

3 http://libx.org/editionbuilder

/∗∗
∗ Automatically generated code by DRIVEL;
∗ Castor enhancements library .
∗/

privileged aspect EditionObserverAspect {
declare parents : org. libx .xml.Edition implements Observer.Observable;

org. libx .xml.Observer.ObserverList org.libx.xml.Edition . observer support = new org.libx.xml.Observer.ObserverList();

public void org. libx .xml.Edition .addObserver (org.libx.xml.Observer ob) {
if (ob instanceof org.libx.xml.Observer.Recursive) {

this .accept(new org.libx.xml.EditionObserverVisitor((org. libx .xml.Observer.Recursive)ob));
} else {

this . observer support.addObserver(ob);
}

}

public void org. libx .xml.Edition .removeObserver (org.libx.xml.Observer ob) { ... }

private boolean org.libx.xml.Edition . readonly;

public void org. libx .xml.Edition .setReadOnly(boolean value) {
this . readonly = value;

}

void around(Edition obj, Proxy newvalue) :
set(Proxy Edition. proxy) && target(obj) && args(newvalue)

{
if (obj. readonly) {

throw new Observer.VetoException("cannot change field ’_proxy’");
}

proceed(obj, newvalue);

obj. observer support.notify (obj, "_proxy", newvalue);
if (newvalue instanceof Observer.Observable) {

obj. observer support.propagateRecursiveObservers((Observer.Observable)newvalue);
}

}
...

}

Figure 4. Observer Aspect Generated by Audible Model Enhancement.

catalog configurations, such as for national resources like OCLC’s
WorldCat.

5.2 Audible Model.
We used the recursive observer enhancement described in Section 4
to drastically simplify the notification logic of our MVC implemen-
tation. The edition builder needs to save a configuration file to disk
whenever any of its contents change. We chose this approach to
ensure immediate persistency, even in the face of client or network
failures. It eliminates the need for a ”Save” button in the user inter-
face, because any changes the user enters are immediately saved.

Prior to using this enhancement, we used a depth-first traversal
based on runtime reflection to recursively add listeners to all nodes
in the document. This logic was error prone (for instance, blindly
adding observers to static fields resulted in memory leaks, and for-
getting to add observers when elements were replaced resulted in
lost notifications), and slow due to the use of reflection. Implement-
ing this logic in an enhancement aspect avoids the use of reflection,
and allows re-using the complicated logic in other software that
uses Castor.

5.3 Veto.
The edition builder provides a simple revision control system for
editions. If a user makes an edition ”live” (akin to a commit), its

configuration settings are frozen. We did not want to require that the
user discard the current revision’s in-memory object when making
an edition live - therefore, we used the Veto enhancement pattern.
We catch the VetoException instead and display a message to the
user. Because the Veto pattern is implemented as an aspect that
vetoes all field assignments (and does not trigger any observers),
we can be certain that read-only revisions of an edition are not
changed as a result of user action. Without the Veto pattern, we
would have to disconnect all controllers from the model, which
would have resulted in a perceptible impact on the usability of the
interface.

5.4 Navigatable Structure.
When building an edition, we need to apply a number of con-
sistency checks, beyond what can be expressed by applying con-
straints to individual elements in the schema describing the XML
document. For instance, if a librarian uses a custom search field in
a catalog that is part of the configuration file, she must have de-
fined that field as a search option, which is stored elsewhere in the
configuration file. These semantic checks involve a traversal of the
XML document and the examination of certain elements and at-
tributes. We used the Castor-specific hierarchical visitor to imple-
ment a number of consistency checks like this one, cleanly separat-
ing each concern.

5.5 Instant Cache.
The edition builder contains a search facility that allows edition
maintainers to search for and browse through different editions.
This browsing requires the retrieval of elements from those edi-
tions’ configuration files, requiring them to be parsed. In addition,
we need to examine an on-disk directory structure for the presence
of revisions. Because the search facility appears on the start page of
the edition builder application, we use the instant cache enhance-
ment to cache the results of these expensive operations. The in-
stant cache enhancement allowed us to reduce the code we have to
maintain to a single method createRecord(String id) that
maps an edition id to a cacheable edition record.

This case study demonstrates the usability of the enhancement
patterns we have created by successfully enhancing the automat-
ically generated data binding functionality used in an AJAX [19]
application. Though we have requested that recursive observers,
immutability, visitors, and various convenience methods be added
to Castor, its developers have been hesitant to do so, possibly be-
cause of a lack of development resources. Our enhancement pat-
terns allow us to express these cross-cutting concerns in a robust
and targeted fashion nevertheless.

6. Related Work
Multiple prior research efforts share our goals of facilitating pro-
gram enhancement either directly or indirectly. Our approach
builds upon prior work on using Aspect Oriented Programming
(AOP) [36, 37] to express GoF patterns [8, 10, 24, 25] and concur-
rency constructs [13] as aspects. Our approach makes it possible
to divide the task of program enhancement between different par-
ties (i.e., enhancement providers and enhancement consumers) to a
much greater extent than prior efforts. Our approach accomplishes
that by providing automated tools that enable the different parties
to deal with individual enhancement concerns effectively. The use
of generative aspects, for example, allows enhancement consumers
to enjoy the benefits of using powerful aspect-oriented machinery,
without getting into its lower-level implementation details.

The need to design systems that are easier to enhance has long
been recognized as a staple of good software engineering [6, 22,
48, 50]. Our approach treats enhancements as a separate concern,
enabling greater flexibility during both the design and implementa-
tion stages. Our work follows upon multiple prior efforts aimed at
providing automated tools [23, 47] with the goals of mitigating the
challenges of program restructuring and enhancement.

Automated program adaptation has been advocated as an ap-
proach that can facilitate program enhancement, particularly its
component-based and code-based varieties. Specific examples in-
clude component adaptation techniques with adaptable component
interfaces [26], delegation [38], binary adaptation at runtime [34],
and architectures [44, 45, 51]. We assume that the base program is
amenable to our enhancement approach and only verify this fact by
using a rule base before applying enhancements. Combining auto-
mated program adaptation techniques with our approach presents
an interesting future work direction.

Compile-time, class-based, meta-object programming systems
such as OpenJava [58] enable structural reflection, an ability to alter
the definition of data structures such as classes, methods, and fields.
Structural reflection enhances programs by generating and incor-
porating new program elements. Compared to traditional structural
reflection systems, our approach allows multiple enhancements to
be applied to the same code entity, supports flexible composition of
enhancements, and allows enhancements to be triggered using mul-
tiple types of observed facts about the code. Finally, our approach
effectively separates enhancement roles: enhancement providers

can implement enhancements even for not-yet-generated classes
whose names are unknown.

Several novel software development paradigms such as Adap-
tive Programming, Strategic Programming, and Intentional Pro-
gramming also aim at facilitating program enhancement among
their other objectives. Adaptive Programming [28, 41] enables the
expression and reasoning about object structure traversals as a
higher-level strategy, separate from the core functionality of a pro-
gram. As a specific implementation of the adaptive programming
paradigm for Java, the DJ library [49] uses a dynamic form of
the Visitor design pattern through the use of reflection. Our Nav-
igatable Structure enhancement pattern is closely related to Adap-
tive Programming, even though our motivation for adding structural
navigation abilities to an existing object structure is driven by the
needs to enhance a pre-existing program that finds itself missing ca-
pabilities due to changed operational contexts or new requirements.

Strategic Programming provides support for a combinatorial
style of traversal construction in several programming paradigms.
In object-oriented incarnation, it uses generic visitor combina-
tors, which extend the Visitor design pattern. While Strategic pro-
gramming could be applied to enhancement, its existing applica-
tions tend to focus on semantics-preserving transformations such as
refactoring and optimization. Strategic programming can be com-
bined with AOP [31], and similarly to our approach, can benefit
from being integrated with an open compiler [32].

Intentional Programming (IP) [54] enables programmers to
work at a higher level of abstraction (i.e., intentions) by represent-
ing a program as a database. This enables greater flexibility when
changing a programs, as any change can be kept consistent with the
rest of the program by following links in the database. By contrast,
our approach relies on programmer-provided enhancement libraries
and a rule base rather than a database to control the application of
enhancements.

Explicit Programming [7] allows developers to use new decla-
ration modifiers, which refer to syntax transformer classes that ex-
ploit an extension of the reflection API to generate additional code.
Our approach differs in not requiring changes to the source code,
and thus being applicable to third-party libraries and automatically
generated code.

The Arcum framework [53] follows an approach that bears sim-
ilarities with our work. It extends the refactoring paradigm to pro-
vide a mechanism for managing crosscutting design idioms. While
we share the goals of providing better tool support and greater
flexibility to maintenance programmers, our application domains
are different: Acrum focuses on refactoring, while our work on
enhancement. From the implementation perspective, the Acrum
framework uses a domain-specific language, while our approach
uses an augmented aspect compiler and a rules engine.

Model-based pointcuts [33] facilitate the evolution of aspect-
oriented programs by using a conceptual model of the base program
to define the application of pointcuts. Our approach of using first-
order logic rules to trigger enhancements bears similarity to model-
based pointcuts. We would like to explore the issues of change
impact with respect to enhancements as a future work direction.

Rule engines have previously been used for the construction
of new aspect weavers for legacy programming languages [21].
Similarly, we could extend our use of rules to base the actual
instantiation of an enhancement on rule-based patterns, rather than
implementing enhancements as libraries.

7. Future Work
While the main conceptual building blocks of our approach are in
place, the DRIVEL infrastructure is a work in progress. In our
future work, we will focus our efforts on improving the power,
expressiveness, and usability of our infrastructure.

More sophisticated static and dynamic analysis could support
more complex and more sophisticated enhancements. Our existing
enhancement infrastructure uses only a limited subset of the pro-
gram analysis functionality of the AspectJ compiler. For example,
when handling a “Missing Method” error, DRIVEL uses only the
name, receiver type, expected return type (where known), and the
scope of the missing method. Although this information is suffi-
cient to synthesize correct code for the currently supported set of
enhancement patterns, we could benefit from additional informa-
tion, such as dataflow information that indicates the intended use of
the return value of the method that is missing. Such more advanced
analyses would enable DRIVEL to apply more complex enhance-
ments.

As another example of enhancements benefiting from compile-
time analysis, consider how the existing Instant Cache enhance-
ment could be supplemented with automated cache invalidation ca-
pabilities. For instance, dataflow analysis can be used to calculate
the input dependencies of a cached object. An aspect inserted at
the pointcut of all modification join points could then trigger cache
invalidation.

On the expressiveness and usability fronts, we plan to inte-
grate DRIVEL with the Eclipse IDE [15]. We plan to integrate
DRIVEL with the existing Intellisense capabilities of the Eclipse
framework such that enhancement-provided methods are offered
via auto-completion. In addition, an intuitive GUI could provide an
interactive mode for creating user rules that guide the application
of enhancements.

Finally, we plan to create a Web repository of enhancement
patterns that will allow developers to contribute and share their own
enhancement libraries. We hope that this repository will become
a resource for software developers through which they could find
solutions to their program enhancement problems. Statistics from
the use of this repository will enable us to assess the benefits of our
approach more realistically and to receive constructive feedback
from the broader community of software developers.

8. Conclusion
We have presented a novel approach to pattern-oriented automated
enhancement of object-oriented programs. We have demonstrated
how by augmenting the capabilities of an aspect compiler, an auto-
mated tool can capture the programmer’s intent to enhance a pro-
gram. Through automatic synthesis of aspect code and the use of
declarative when-then rules, our approach enables powerful auto-
mated enhancement of real programs, improving productivity and
ensuring better quality of the resulting code base. We validated our
approach by applying our automated tool to solve the challenges
of enhancing automatically-generated code in a real-world AJAX
application. Our initial results demonstrate that rule-based, inte-
grated, automated program enhancement has the potential to be-
come a standard part of the professional programmer’s toolset.

Acknowledgments
The authors would like to thank the anonymous reviewers, whose
useful comments helped improve the presentation of the paper.
Cody Henthorne contributed to an earlier prototype of the DRIVEL
system. This research was supported by the Department of Com-
puter Science at Virginia Tech.

References
[1] BACK, G. Datascript - a specification and scripting language for

binary data. In Proceedings of the ACM Conference on Generative
Programming and Component Engineering Proceedings (GPCE
2002), published as LNCS 2487 (Pittsburgh, PA, Oct. 2002), ACM,
pp. 66–77.

[2] BAILEY, A., AND BACK, G. LibX–a Firefox extension for enhanced
library access. Library Hi Tech 24, 2 (2006), 290–304.

[3] BASILI, V., AND BOEHM, B. COTS-based systems top 10 list.
Computer 34, 5 (2001), 91–95.

[4] BOEHM, B., AND ABTS, C. COTS integration: Plug and pray?
Computer 32, 1 (1999), 135–138.

[5] BOEHM, B. W. Software Engineering Economics. Prentice Hall
PTR, Upper Saddle River, NJ, 1981.

[6] BOEHM, B. W. A spiral model of software development and
enhancement. Computer 21, 5 (1988), 61–72.

[7] BRYANT, A., CATTON, A., VOLDER, K. D., AND MURPHY, G. C.
Explicit programming. In AOSD 2002 (New York, NY, USA, 2002),
ACM, pp. 10–18.

[8] CACHO, N., SANT’ANNA, C., FIGUEIREDO, E., GARCIA, A.,
BATISTA, T., AND LUCENA, C. Composing design patterns: a
scalability study of aspect-oriented programming. In 5th International
Conference on Aspect-Oriented Software Development (Bonn,
Germany, 2006), ACM Press, pp. 109–121.

[9] CHEN, H., AND CHENG, R. ZK: Ajax without the Javascript
Framework. aPress, Aug. 2007.

[10] CLARKE, S., AND WALKER, R. J. Composition patterns: an ap-
proach to designing reusable aspects. In 23rd International Con-
ference on Software Engineering (Toronto, 2001), IEEE Computer
Society, pp. 5–14.

[11] CODEHAUS OPENSOURCE SOFTWARE COMMUNITY. The Castor
project. http://www.castor.org/index.html.

[12] COWARD, D. Java Servlet Specification Version 2.4, 2004.

[13] CUNHA, C. A., SOBRAL, J. L., AND MONTEIRO, M. P. Reusable
aspect-oriented implementations of concurrency patterns and mecha-
nisms. In 5th International Conference on Aspect-Oriented Software
Development (Bonn, Germany, 2006), ACM Press, pp. 134–145.

[14] CZARNECKI, K., AND EISENECKER, U. Generative programming:
methods, tools, and applications. ACM Press/Addison-Wesley
Publishing Co. New York, NY, USA, 2000.

[15] ECLIPSE FOUNDATION. Eclipse Java development tools. http:
//www.eclipse.org/jdt.

[16] EGYED, A., AND BALZER, R. Integrating cots software into
systems through instrumentation and reasoning. Automated Software
Engineering 13, 1 (2006), 41–64.

[17] FORGY, C. Rete: A Fast Algorithm for the Many Patterns/Many
Objects Match Problem. Artificial Intelligence 19, 1 (1982), 17–37.

[18] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Longman Publishing Co., Inc., 1995.

[19] GARRETT, J. J. Ajax: A new approach to web applications,
2005. http://www.adaptivepath.com/publications/
essays/archives/000385.php.

[20] GOTH, G. XML: The Center of Attention Up and Down the Stack.
Distributed Systems Online, IEEE 7, 1 (2006), 3–3.

[21] GRAY, J., AND ROYCHOUDHURY, S. A technique for constructing
aspect weavers using a program transformation engine. In AOSD ’04:
Proceedings of the 3rd international conference on Aspect-oriented
software development (New York, NY, USA, 2004), ACM Press,
pp. 36–45.

[22] GRISWOLD, W. G. Just-in-time architecture: planning software in
an uncertain world. In Joint proceedings of the second international
software architecture workshop (ISAW-2) and international workshop
on multiple perspectives in software development (Viewpoints ’96) on
SIGSOFT ’96 workshops (New York, NY, USA, 1996), ACM Press,
pp. 8–11.

[23] GRISWOLD, W. G., AND NOTKIN, D. Automated assistance for
program restructuring. ACM Trans. Softw. Eng. Methodol. 2, 3
(1993), 228–269.

[24] HAMMOUDA, I. A tool infrastructure for model-driven development
using aspectual patterns. Model-driven Software Development -
Volume II of Research and Practice in Software Engineering (2005),
139–178.

[25] HANNEMANN, J., AND KICZALES, G. Design pattern implemen-
tation in Java and AspectJ. In 17th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions (Seattle, Washington, 2002), ACM Press, pp. 161–173.

[26] HEINEMAN, G. T. Adaptation and software architecture. In 3rd
International Workshop on Software Architecture (Orlando, Florida,
1998), ACM Press, pp. 61–64.

[27] HENTHORNE, C., AND TILEVICH, E. Code generation on steroids:
Enhancing COTS code generators via generative aspects. In Second
International Workshop on Incorporating COTS Software into
Software Systems: Tools and Techniques IWICS 2007 (2007).

[28] HÜRSCH, W. L., AND SEITER, L. M. Automating the evolution
of object-oriented systems. In International Symposium on Object
Technologies for Advanced Software (1996), Springer Verlag, Lecture
Notes in Computer Science, pp. 2–21.

[29] JOHNSON, R. J2EE development frameworks. Computer 38, 1
(2005), 107–110.

[30] JOHNSON, R. E., AND FOOTE, B. Designing reusable classes.
Journal of Object-Oriented Programming 1, 2 (1988), 22–35.

[31] KALLEBERG, K., AND VISSER, E. Combining Aspect Oriented and
Strategic Programming. Electronic Notes in Theoretical Computer
Science 147 (2006), 5–30.

[32] KALLEBERG, K. T., AND VISSER, E. Fusing a transformation
language with an open compiler. In Seventh Workshop on Language
Descriptions, Tools, and Applications (LDTA’07) (Braga, Portugal,
March 2007), A. Sloane and A. Johnstone, Eds., pp. 18–31.

[33] KELLENS, A., MENS, K., BRICHAU, J., AND GYBELS, K.
Managing the evolution of aspect-oriented software with model-
based pointcuts. In ECOOP 2006 Object-Oriented Programming
(2006), vol. 4067, Springer Verlag, pp. 501–525.

[34] KELLER, R. Binary component adaptation. In 12th European
Conference on Object-Oriented Programming (1998), Springer-
Verlag, pp. 307–329.

[35] KEMERER, C., AND SLAUGHTER, S. Determinants of software
maintenance profiles: an empirical investigation. Journal of Software
Maintenance Research and Practice 9, 4 (1997), 235–251.

[36] KICZALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M.,
PALM, J., AND GRISWOLD, W. G. An overview of AspectJ. In
ECOOP (2001), Springer-Verlag.

[37] KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C.,
LOPES, C., LOINGTIER, J. M., AND IRWING, J. Aspect-oriented
programming. In ECOOP (1997), Springer-Verlag.

[38] KNIESEL, G. Type-safe delegation for run-time component
adaptation. In 13th European Conference on Object-Oriented
Programming (1999), Springer-Verlag, pp. 351–366.

[39] LEHMAN, M. M., AND BELADY, L. A., Eds. Program evolution:
processes of software change. Academic Press Professional, Inc., San
Diego, CA, USA, 1985.

[40] LIBX TEAM. LibX browser plugin for libraries. http://libx.
org.

[41] LIEBERHERR, K. J. Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS Publishing
Company, Boston, 1996. ISBN 0-534-94602-X.

[42] LIENTZ, B., AND SWANSON, E. Software Maintenance Manage-
ment. Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 1980.

[43] MCLAUGHLIN, L. Automated programming: the next wave of
developer power tools. Software, IEEE 23, 3 (2006), 91–93.

[44] MOREL, B., AND ALEXANDER, P. Automating component

adaptation for reuse. In Proceedings of the 18th IEEE International
Conference on Automated Software Engineering (2003), pp. 142–151.

[45] MOREL, B., AND ALEXANDER, P. SPARTACAS: automating
component reuse and adaptation. IEEE Transactions on Software
Engineering 30, 9 (2004), 587–600.

[46] MORISIO, M., SEAMAN, C. B., PARRA, A. T., BASILI, V. R.,
KRAFT, S. E., AND CONDON, S. E. Investigating and improving a
cots-based software development. In ICSE ’00: Proceedings of the
22nd international conference on Software engineering (New York,
NY, USA, 2000), ACM Press, pp. 32–41.

[47] NOTKIN, D., AND GRISWOLD, W. G. Extension and software
development. In Proceedings of the 10th International Conference
on Software Engineering (Singapore, 1988), IEEE Computer Society
Press, pp. 274–283.

[48] OREIZY, P., MEDVIDOVIC, N., AND TAYLOR, R. Architecture-
based runtime software evolution. In Proceedings of the 20th
International Conference on Software Engineering (ICSE) (1998),
pp. 177–186.

[49] ORLEANS, D., AND LIEBERHERR, K. DJ: Dynamic Adaptive
Programming in Java. In Reflection 2001: Meta-level Architectures
and Separation of Crosscutting Concerns (2001), Springer.

[50] PARNAS, D. L. Designing software for ease of extension and
contraction. In 3rd International Conference on Software Engineering
(Atlanta, Georgia, 1978), IEEE Press, pp. 264–277.

[51] PENIX, J., AND ALEXANDER, P. Toward automated component
adaptation. In Proceedings of the Ninth International Conference
on Software Engineering and Knowledge Engineering (1997),
Knowledge Systems Institute, pp. 535–542.

[52] PROCTOR, M., NEALE, M., LIN, P., AND FRANDSEN, M. Drools
Documentation. Tech. rep., JBoss Inc., 2006.

[53] SHONLE, M., GRISWOLD, W., AND LERNER, S. Beyond
refactoring: a framework for modular maintenance of crosscutting
design idioms. In Proceedings of the 14th ACM SIGSOFT Symposium
on Foundations of Software Engineering (FSE) (2007), ACM Press
New York, NY, USA, pp. 175–184.

[54] SIMONYI, C. The Death of Computer Languages, the Birth of
Intentional Programming. In NATO Science Committee Conference
(1995).

[55] SMARAGDAKIS, Y., AND BATORY, D. Application generators.
Encyclopedia of Electrical and Electronics Engineering (2000).

[56] SOARES, S., BORBA, P., AND LAUREANO, E. Distribution and
Persistence as Aspects. Software: Practice & Experience 36, 6
(2006).

[57] SUTTER, H. The free lunch is over: A fundamental turn toward
concurrency in software. Dr. Dobbs Journal 30, 3 (2005).

[58] TATSUBORI, M., CHIBA, S., KILLIJIAN, M.-O., AND ITANO, K.
OpenJava: A class-based macro system for Java. In Reflection and
Software Engineering. Springer Verlag, 2000, pp. 117–133.

[59] WILDE, N., MATTHEWS, P., AND HUITT, R. Maintaining object-
oriented software. IEEE Software 10, 1 (1993), 75–80.

