
Quality of Information Matters: Recommending
Web Services for Performance and Utility

Zheng Song, Owen Rowader, Zhengquan Li, Maryam Tello
Department of Computer and Information Science

University of Michigan at Dearborn
Dearborn, Michigan

{zhesong,orowader, zqli, maryamt}@umich.edu

Eli Tilevich
Department of Computer Science

Virginia Tech
Blacksburg, Virginia

tilevich@cs.vt.edu

Abstract—Widely used in modern software systems, web ser-
vices have become a standard means of provisioning remote
resources. As the number of available web services increases,
multiple services that satisfy the same functional requirement can
be used interchangeably. Given a set of interchangeable services, a
software developer needs to find a web service that would provide
the best performance and utility. However, web services are
recommended based only on their system-related performance
characteristics (so called QoS, whose properties include latency,
reliability, availability, etc.), while their data-related performance
characteristics (e.g., data freshness, correctness, coverage, etc.)
are often overlooked. As a consequence, a recommended ser-
vice may end up delivering information that is inaccurate or
outdated, but with high performance. To address this problem,
this paper introduces Quality of Information (QoI), a quality
metric complementary to QoS, that measures to which degree
a web service satisfies data-related non-functional requirements.
To minimize the manual effort required to evaluate the results
of invoking individual services, we introduce a comparative
testing methodology based on the new concept of Objects of
Interest (OI). By using OI, developers can normalize the relevant
information obtained from dissimilar services, so it can be
automatically compared. To concretely realize our ideas, we
create QiSR, a system that recommends web services based
on their QoI metrics. QiSR helps developers in determining
how to match services’ input and output with application data
requirements and how to measure the information quality of
services. To evaluate the effectiveness of QiSR, we test it on
representative manually selected web services. Our evaluation
shows that services recommended based on both QoI and QoS
exhibit better combined performance and utility than services
recommend on QoS alone.

Index Terms—Quality of Information, Web Service, Compar-
ative Testing

I. INTRODUCTION

Having been introduced more than twenty years ago, web
services remain the primary state-of-the-practice approach
for applications to request data or functionality from cloud-
based servers over the Internet. RapidAPI [1] and Pro-
grammableWeb [2], the two most popular web service markets,
each provides 30K and 24K registered web services, respec-
tively, to serve over 400,000 developers [3]. Many of these
web services provide similar functionalities. For example, the
RapidAPI team manually cluster 516 set of APIs that pro-
vide similar functionalities [4]. Examples of these collections
include: 19 APIs [5] related to real-time or historical flight

data, 52 APIs [6] related to image processing and facial
recognition, 14 APIs related to sending emails and validating
email addresses [7]. Some of these APIs provide equivalent
functionalities and can be used interchangeably.

Fig. 1. Web Service Recommendation Workflow

Software developers are facing the challenge of finding the
most suitable services that fit the application requirements. As
shown in Fig.1, existing web service recommendation systems
first find the services that satisfy functional requirements,
and then filter or rank them by features that fall into two
major categories: 1) system-related Quality of Service (QoS)
attributes, including reliability, responding time, availability,
and cost [8]–[10], 2) user’s ratings and preferences [11]–[13].

Fig. 2. Results Given by Face Recognition APIs (accessed in Feb 2022)

Through a preliminary study, we found that equivalent web
services may return different results for the same query. For
example, face recognition services may return different results
for the same image (see Fig. 2), real-time stock price tracing
services may return different prices for the same stock, and
Amazon product search services may miss some products.
Such differences reflect the services’ diverse data-related

QoS attributes, in terms of their accuracy, data freshness, and
coverage. Although such data-related QoS attributes can make
a significant impact on the user’s experience, they are totally
neglected by existing server recommendation approaches.

This problem is likely caused by the following reasons: 1)
software developers mix non-functional performance charac-
teristics of web services with Quality of Service, a concept
inherited from network performance measurement. In the
mindset of most software developers, QoS refers naturally
to the system-related performance characteristics, including
reliability, latency, and availability. Lacking a specific term to
describe the data-related performance characteristics of web
services, developers may find themselves unable to reason
about this phenomenon. As an analogy, the Himba people
are known for their inability to differentiate between green
and blue, as their language has no word that describes the
color blue [14]; 2) Compared with system-related performance
metrics, data-related metrics are harder to measure. QoS can
be easily measured by invoking web services periodically
using a few selected input values and recording the invocation
latency and result status. Measuring data-related performance
characteristics require not only to generate inputs for web
services that cover the software developers’ interest domain,
but also to analyze the results returned by web services and
decide whether they are correct and up-to-date.

To solve these problems, this paper introduces Quality of
Information (QoI), a concept complementary to QoS that
measures to which degree a web service satisfies data-related
non-functional requirements. We define a few QoI character-
istics, and describe some of their features. To help developers
measure QoI for their application scenarios, we design and
implement QiSR, a semi-automatic recommender system for
web services. QiSR’s design is motivated by the facts that 1)
if the results of several web services reach a consensus, their
correctness will not impact the recommendation results; 2) if
the results are different, their comparison can sometimes help
the developers to decide which result is better. We evaluate
QiSR on three sets of web services, and our results confirm
its effectiveness.

This paper makes three contributions: (1) it identifies the
problem of overlooking data utility of web services and
solves this problem by recommending services based on the
new metric of QoI; (2) it presents a new procedure for
systematically measuring the QoI of web services; (3) it
describes the design, implementation, and evaluation of a
recommender based on QoI. The rest of this paper is organized
as follows. Section II introduces the technical background
and briefly summarizes existing approaches for recommending
web services. Section III demonstrates the problem via running
examples, defines QoI and its characteristics, and discusses the
observed interesting properties of QoI. Section IV presents
the design of QiSR and our procedure for measuring QoI.
Section V presents our evaluation, and Section VI concludes.

II. BACKGROUND AND RELATED WORK

We first cover the main technical concepts used in this
research as well as the prior state of the art.

A. Web Service Marketplace

Originally, a service-oriented architecture included a web
service registry as “a phone book” of web services. However,
in modern deployments, large-scale web service registries have
been replaced by human-maintained web service marketplaces.
Using a marketplace, a service developer uploads detailed in-
formation about their services, including description of service
functionalities, input and output parameters, invocation code
examples, and invocation charges.

Application developers search a marketplace for the re-
quired functionalities by using keywords. Given a list of
search results, developers select one service that best fits
the requirements and subscribe to it, so their application can
invoke the service. All service invocations are routed through
the marketplace, which serves as a gateway for delegating the
invocations. The marketplace first invokes a service from its
provider’ platform, and returns the results to the client. The
marketplace also records the number of invocations and their
performance (including latency, availability, and popularity),
publicly displaying this statistics for each hosted service. A
service’s popularity score is a function of the number of
invocations as well as the number of its active users over a
period of time.

B. Web Service Recommendation

With service marketplaces hosting over 30K web services,
application developers need effective tools for finding the
most suitable web services for different application scenarios.
Service recommendation also finds suitable components for
service mashups, which chain existing services to provide new
functionalities. Existing approaches for recommending web
services can be broadly classified into three basic categories:

a) Content-based: Content-based recommendation ap-
proaches analyze service descriptions and other related con-
tent to identify services whose content is most relevant to
the specified keywords. For a given keyword, the TF-IDF
model [15] calculates how frequently it appears in a service
description. To improve clustering accuracy, Woogle [16]
discovers a small number of latent function factors (LFFs).
To improve recommendation accuracy, another approach [17]
uses additional information generated by users (e.g., service
tagging) along with service descriptions.

b) QoS-based: QoS-based recommendation approaches
analyze the QoS of preselected services and identify the ones
with the highest QoS attributes. Existing approaches study how
to monitor services’ QoS [8], [9] and how to predict services’
QoS based on historical data [10], [18], [19]. We observe
that although some papers define QoS as a multi-dimensional
performance metrics, most of them actually only consider
reliability and latency in their evaluations. This observation
also applies to service marketplaces, which display only the
latency and availability(service level) QoS attributes.

c) User Preferences based: The user preferences-based
approaches assume that application developers know already
which web services work better for their applications. For
example, a developer may choose to use web services with
high data accuracy, whenever the veracity of data is critical to
meet the requirements, such as in biomedical applications [12].
Developers often share this domain knowledge with each other
by means of user rating [13] or user feedback [11]. We observe
that the service pages of RapidAPI also display user rating as
popularity, which is calculated by the number of invocations
and the number of active users.

Data quality assessment has been studied by [20]. The
authors introduced several metrics to measure data quality,
which include accessibility, amount of data, believability, com-
pleteness, conciseness, consistency, correctness, interpretabil-
ity, objectivity, relevancy, reputation, security, timeliness, and
understandability. However, to the best of our knowledge, no
prior work has explored how to recommend web services
based on their data quality.

C. Comparative Testing

Comparative testing—comparing software products with
similar functionalities—has been applied to evaluate face
detection algorithms [21], find the correct system behavior
on given test inputs [22], and analyze the performance of
deep learning models [23]. Given multiple products with the
same functionality as candidates to accomplish a specific task,
testers rank these products to choose the most suitable ones
in the testing context. However, to the best of our knowledge,
no prior work has explored how to comparatively test web
services for data quality.

III. QUALITY OF INFORMATION

In this section, we demonstrate the necessity of Quality
of Information by examples and then formally define this
concept.

A. Problem Motivation

Consider the following examples: the first example comes
from the domain of the Amazon keyword search, and the
second one comes from the domain of language translation.

Assume that a user needs to search for products on Amazon
by keywords. Multiple APIs provide this functionality, so we
select three top-rated APIs, as recommended by the RapidAPI
search engine: Amazon Data [24], Amazon Price [25], and
Amazon23 [26]. Given the keyword “fidget toys” as input, the
aforementioned APIs return the information that is summa-
rized in Fig. 3. Each API returns a number of results, with each
of them being an Amazon item that features a unique ASIN
(Amazon Standard Identification Number), its price, whether it
is a prime product, its number of user reviews, and its average
user review rating, as shown in Fig. 4.

We notice three major differences in the obtained results:
1) The number of results: Amazon23 gives 44 results,

Amazon-data gives 18 results, and Amazon-price

Fig. 3. List of Amazon Search Results

Fig. 4. Amazon Item Information (accessed in Feb 2022)

gives 47 results. The difference in the numbers of these
results reflects how complete the data of these APIs are.

2) The ranks of result items: All these APIs include two
Amazon items with ASINs B07F6G3F1D (marked in
green) and B086CBQD2M (marked in yellow). However,
these three APIs rank the two results quite dissimilarly.

3) For the same item (i.e., ASIN B07VLKMMJ5 in Fig. 4,
the three APIs give different prices, prime statuses, and
numbers of reviews. These differences reflect how fresh
the data provided by these APIs are.

.
The second example shown in Fig. 5 is about trans-

lating an English sentence into Spanish. For two input
sentences I am Tom and Hello, world!, the results
given by The-best-translator differ from those of
the other two APIs. Yo soy Tom and Soy Tom for the
first input are both correct, while Hola, Mundo! given by
The-best-translator for the second input is wrong.

Fig. 5. Translation API Results (accessed in Feb 2022)

These two examples demonstrate that APIs providing seem-
ingly the same functionality may in fact differ quite a lot in
the quality of their results.

B. Quality of Information

Among all QoS attributes, only “accuracy” is related to
the quality of data, while the remaining attributes (latency,
tail latency, reliability, availability, etc.) mostly come from
the networking domain as a common means of measuring
system performance. To address this problem, we introduce
the concept of “Quality of Information” (or QoI for short)
that measures how well an API satisfies data-related non-
functional requirements. Based on our observation, we divided
QoI attributes into the following four major categories:

1) Accuracy: measures the quality of the results being
correct or meeting the user’s expectations. Accuracy can

be both subjective or objective. For example, the face
recognition results (Fig. 2) and the language detection
results (Fig. 5) have the only correct answers. On the
contrary, how the order of the Amazon search results
(Fig. 3) fits the user’s expectation is more subjective.

2) Completeness: measures the level of missing informa-
tion in the results. For example, the number of the
Amazon search results (Fig. 3) reflects the completeness
of these APIs. Another example is finding the number of
faces in an image. Assume all faces are identified cor-
rectly, so the number of faces in the results reflects the
completeness of the API’s face identification algorithm.

3) Coverage: measures how an API reacts to different
inputs. For example, some COVID statistics update APIs
may not have data for certain zip codes; another example
is, some language translation APIs may fail to give back
results when certain Spanish characters are included in
the query.

4) Freshness: measures how often a data-related API up-
dates its data from the data source. For example, the
stock price APIs give different real-time stock prices
when being invoked simultaneously; the Amazon item’s
details are different as well (Fig 4).

C. QoI Characteristics

Based on our observation, we summarize several character-
istics of QoI and QoI measurement:

1) It is harder to measure QoI than QoS. Both QoS and
QoI reflect how well an API satisfies a service’s non-
functional requirements. Measuring QoS only requires
invoking an API and recording the response time and
status code, while measuring QoI requires generating
meaningful inputs and qualitatively assessing the invo-
cation results.

2) QoI depends on the service users’ contexts. If a partic-
ular user of a language translation service will never
need to translate Spanish, then the defect caused by
certain Spanish characters should not impact QoI for
that user. Similarly, some face recognition service may
be more accurate for high-resolution images or photos
taken in brighter environments. When measuring QoI
for recommending services, it is important to generate
inputs similar to the users’ real execution context.

3) Compared with measuring precise QoIs for each and
every API, a practical way for recommending services
is to compare the QoI of equivalent APIs. Instead of
manually validating each invocation result of these APIs,
we only want to focus on assessing the dissimilar results.
If all APIs reach a consensus on the results of an input,
this data point would not impact the QoI comparison of
the APIs.

These observations have motivated us to design and imple-
ment QiSR, a tool that helps API users to compare the QoI of
equivalent APIs for selecting the most suitable API for their
application scenarios.

IV. MEASURING QOI VIA COMPARATIVE TESTING

This section describes the design and detailed implementa-
tion of QiSR, a tool for recommending equivalent web services
based on their respective QoI.

A. Objects of Interest

When web services provide equivalent functionality, their
input and output parameters can be heterogeneous. The source
of heterogeneity may come from multiple angles:

• Parameter Names: Parameters that have the same mean-
ing can be named dissimilarly by different service
providers. For example, Amazon Price names the input
search keyword as “keywords”, Amazon Data “keyword”,
and Amazon23 “query”.

• Parameter Formats: Parameters that have the same mean-
ing can be differently formatted. For example, Amazon
Data formats the price parameter as a number, while
Amazon23 as an array of {“before price, current price,
currency, discounted, saving amount, saving percent”}.

• Parameter Meanings: Parameters that seemingly represent
the same information can have dissimilar representations.
For example, faceanalysis (Fig. 2) returns 7 categories:
“angry”, “disgust”, “fear”, “happiness”, “sadness”, “sur-
prise”, and “neutral”, while microsoft-face1 also returns
the category of “contempt”.

To be able to invoke such heterogeneous web services, so
their results can be meaningfully compared, QiSR’s design is
based on the concept of “Objects of Interest” (OI for short).
An object of interest is similar to a database record which also
features one primary key and one or multiple attributes. It is
an atomic data object that QiSR parses from the output of web
services and uses for subsequent comparison and ranking.

For example, for the face recognition APIs in Fig. 2, we
define an OI as {image:PK, emotion}. For the Amazon
search APIs in Fig. 3 and Fig. 4, we define one OI ”Re-
sult List” as {keyword:PK, result amount, result
1, result 2, result 3, result 4, result 5}, and
another OI “Item Details” as {ASIN:PK, price, prime,
rating, reviews}.

We apply the following principles when defining an OI:
• An OI should have one primary key. The primary key

can be the input to web services, or it can be the unique
identification of the objects to compare. For example, the
Item Details is an OI that we parse from the results of a
keyword based search, with its primary key (ASIN) being
the unique identification of the Amazon product that is
not related to the service input.

• An attribute field cannot be an array or a list. If an
attribute can only be presented by an array, then it should
become a separate OI. In the Amazon search example, we
break the results of one round of API invocation into two
OIs — Result List and Item Details.

• An attribute field can be a set of predefined constants (i.e.,
enum type). However, we need to project the different
enum definitions in the results returned by different APIs

to one set of predefined constants. For example, all
emotions can be classified into a combination of six basic
emotions, including fear, anger, joy, sadness, disgust,
and surprise [27]. We convert the returned emotions into
a six-dimensional vector, use the one with the highest
accumulative weight as the main emotion, and compare
the main emotion returned by different APIs (see Fig. 6).

Fig. 6. Normalizing the Emotion Attribute

B. General Workflow

Fig. 7 shows the general workflow of QiSR that proceeds
in the following 6 steps:

1) Specifying OI and connecting them to the selected
equivalent services. In this step, the user defines OI as
a JSON configuration file, defines lambda functions that
connect each OI attribute to the input/output parameters
of web services, and defines the comparison function for
each OI attribute. For example, the user can define an OI
for face emotion recognition services as {Image:PK,
emotion}. The emotion will be normalized from the
service invocation results by a lambda functions spec-
ified in Fig. 6. Each service may require its dedicated
lambda function, as its returned emotion categories may
be named differently. The comparison function for the
only attribute Emotion can be: majority voting
+ human validation (See Sec. IV.C for details).

2) Generating OI Primary Keys. In this step, the user
specifies a dictionary of input values (image URLs in
our example) to generate OI objects. If the user wants to
invoke each web service 100 times, 100 OI objects will
be created from the dictionary that contains the provided
100 image URLs.

3) Invoking Web Services. In this step, QiSR invokes the
web services for each OI object. The corresponding
lambda functions for converting OI to service specific
input parameters are applied before each invocation.

4) Processing Outputs. QiSR applies the lambda functions
associated with each web service on the service’s invo-
cation result, to create OI replicas. As the example has
three services to compare for each of the 100 OI, there
will be 300 OI replicas.

5) Comparing the results. QiSR applies the comparison
functions on the corresponding OI attributes of services’
OI replicas. For example, the majority voting +
human validation comparison function applies the
majority voting first in order to find the OIs that are not

agreed upon by web services. If two services agree on
one result and the other service returns a different result,
the first two services will be marked as correct while
the last marked as incorrect. If three web services give
three different results, human operators will be asked to
manually grade the results.

6) Reporting the final scores of web services. The fi-
nal score of each web service is calculated as s =∑

∀a∈A wa ∗ sa, where A denotes all OI attributes, wa

denotes the weight of the OI attribute a, and sa denotes
the score a receives from its comparison function.

To summarize, QiSR takes as input a JSON file that
contains: 1) OI definition; 2) lambda functions for converting
OI attributes to/from the input/output parameters of each
web services; 3) lambda functions for comparing the same
attribute of multiple OI replicas of various web services; 4)
a dictionary for generating OI primary keys. After executing
the aforementioned steps, QiSR outputs the QoI ranking of
the web services by comparing their final scores.

C. Result Comparison Functions

We provide several comparison functions as built-in mod-
ules of QiSR, including majority voting, sorting, ground truth,
and human validation.

1) The majority voting module can take in as the parameter
the acceptance rate r, whose default value is 0.5. When
more than r percentage of web services have the same
result, the result is marked as correct and the other
results are marked as incorrect. If no result is agreed
upon by more than r percent of services, the human
validation procedure takes over.

2) The sorting module takes the sorting order (ascending
or descending) as input. For example, the number of
user reviews shown in Fig. 4 will only increase with
time. Hence, if one web service’s result features a larger
number of reviews as compared with other services, we
mark the service as fresher than others.

3) The ground truth module takes as input the ground truth
value d of all OI objects and the tolerance scope e. The
module marks a service result as correct if it falls into
the range of [d− e, d+ e].

4) The human validation module asks the user to manually
mark the correct results for each OIs. The user interface
is shown in 8.

Instead of using these built-in modules, users can also define
their own result comparison functions and pass them to QiSR
via a custom configuration.

D. Reference Implementation

We implement QiSR in almost 3,000 lines of Python code,
written on top of Restler [28], an open source tool for
fuzz testing web services. Restler takes as input the swag-
ger/OpenAPI specification of the web services under test, and
QiSR further takes as input a configuration file that contains
the OI specification and other lambda functions. QiSR interacts

Fig. 7. Workflow of QiSR

Fig. 8. Human Validation Workflow

Fig. 9. Execution Result Demonstration

with the user via a command line interface. Fig. 9 demonstrates
the results of an example execution of QiSR.

V. EVALUATION

Our evaluation seeks answers to the following questions:
• Does QiSR save programmer effort in assessing the QoI

of equivalent web services?
• How do the results returned by QiSR compare in terms

of accuracy to those produced via a manual assessment?
• How do service recommendations differ when they are

based on QoS vs. QoI? Which recommendations better
meet the programmer’s expectations?

For our evaluation, we select typical use cases of using web
services and demonstrate how QiSR can be applied for QoI-
based service recommendation.

A. Use Case 1: Language Detection

We manually pick five APIs that provide the functionality
of language detection: take as input a sentence and output
the language it is written in. Table I gives the information of
these APIs (text-processing-11, language-detection-22, detect-
language3 3, language-detection4 4, and natural-language-
detection 5) as presented on their RapidAPI web pages.

1rapidapi.com/webknox/api/text-processing-1/
2rapidapi.com/detectlanguage/api/language-detection-2/
3rapidapi.com/simontribus1996/api/detect-language3
4rapidapi.com/symanto-symanto-default/api/language-detection4/
5rapidapi.com/spekulatius/api/natural-language-detection-nld/

TABLE I
QOS OF LANGUAGE DETECTION APIS

API Name Popularity Latency Reliability
text-processing-1 6.1 206 ms 100%
language-detection-2 8.2 277 ms 100%
detect-language3 4.6 2873 ms 100%
language-detection4 7.6 461 ms 100%
natural-language-detection 4.8 698 ms 100%

We choose the majority voting module with the default 50%
threshold as the result comparison function. We randomly pick
100 sentences and use them as input to run QiSR. Among all
of these 100 OIs, only one OI requires human validation: two
APIs agree on one result, two APIs agree on another result,
and the remaining one API returns a third result; therefore, no
result is agreed upon by more than 50% of all APIs. Hence,
we conclude that QiSR can indeed save programmer effort in
assessing the QoI of web services. Rather than analyzing the
results of executing all 100 OIs by hand, a programmer would
need only to manually examine the result of one OI, for which
the automatic assessment cannot arrive to a definitive result.

We manually examine the correctness of all the OI results.
One of the co-authors of this paper served as a human
validator. This person is an upperclassman majoring in Com-
puter Science, without any commercial software development
experience, but with working knowledge of Spanish, French,
and German. The validator reports the following observations:

• QiSR is incorrect for only one OI. For the input sen-
tence of “Ridicule!”, detect-language3 detects it to
be “French”, natural-language-detection returns “undeter-
mined”, while the other three APIs return “English”. By
applying majority voting, detect-language3 and natural-
language-detection are marked as incorrect. However,
“Ridicule!” can be both English and French.

• Language-detection-2 and Language-detection-4 return
null results for 8 French sentences and 2 Spanish sen-
tences. After carefully looking into the pattern of these
sentences, we found that these two services cannot cor-
rectly process ”\u00E9”, the Unicode character of the
Latin small letter e with an acute accent (é).

• Natural-language-detection and text-processing-1 have
the highest error rate. They misidentify Spanish, French,
English, and German as other languages quite a lot.

The overall scores (S) of these web services, as graded by
QiSR and the human validator are given in Table II. We

observe that the scores given by QiSR are similar to those
given by the human validator, with an average difference of
1.2%. We also observe that the user preferences for web
services (popularity) are related to both QoI and QoS. For
tp1 (text-processing-1): although it has the best QoS, it is
ranked the 3rd in user preference due to its lowest QoI ranking
among its peers. For dl3 (language-detection3): although its
QoI is 12% percent better than the second best service (ld2),
its latency is 10 times larger than that of ld2, making its user
preference the lowest. By introducing QoI, we can answer the
question of why some services with high QoS may not be
rated very highly by its users.

TABLE II
QOI, QOS, AND USER RANKING OF LANGUAGE DETECTION APIS

S (QiSR) S (Human) Ranking by QoI QoS User
tp1 63% 65% 5 1 3
ld2 88% 89% 2 2 1
dl3 99% 100% 1 5 5
ld4 88% 88% 3 3 2
nld 71% 69% 4 4 4

B. Use Case 2: Amazon Product Search

We created 100 keywords as inputs for web services that
search for Amazon products. The keywords range from daily
products like “LED lights”, “candy”, and “coffee
maker” to more complicated phrases including “mother
day gifts”, “LED lights for bedrooms”, and
“maxi dresses for women summer”.

As discussed above, we use two OIs (Result List and
Item Details) to measure the QoI of the results. The first
OI is graded by the number of the search results, while the
second OI is graded by the amount of reviews, as deleting
reviews happens rarely on Amazon.

Based on QiSR’s outcomes, we find that amazon23 gives
the most search results 88% of the time, compared with 8% for
amazon-data and amazon-price each. The percentages
add up to more than 100%, as sometimes two or three services
return the same number of results. amazon23 has the most
reviews for 97.1% of the times, compared with 92.9% for
amazon-data and 99% for amazon-price. Overall, we
recommend amazon23 or amazon-price to our users
based on their QoI assessment results, which is in line with
the user preferences for these APIs. As shown in Table III, al-
though amazon-23 (A23 in the table) and amazon-price
(AP) have comparable latency, amazon-23 is rated higher by
the users. The reason for these differences can be explained
by the respective QoIs of these services (i.e., number of search
results and data freshness in the table).

TABLE III
QOI, QOS, AND USER RANKING OF AMAZON SEARCH APIS

of results Freshness latency reliability popularity
A23 88% 97.1% 4556ms 100 9.7
AP 8% 92.9% 5664ms 100 8.6
AD 8% 99% 1065ms 99 9.7

C. Use Case 3: Emotion Detection

We choose three web services (Microsoft face 6, face-
analysis 7, and luxand-cloud-face-recognition 8) for detecting
emotions. We randomly pick 100 photos from the CK+
Dataset [29], which contains photos with expert-annotated
emotion labels. We choose the majority voting function to
compare their results.

As shown in Table IV, Microsoft face and Luxand are
graded by QiSR to be correct for all 100 OIs, while faceanal-
ysis is graded to be correct for 81 OIs. We compare all results
with the expert-annotated labels and confirm that QiSR’s
results are all correct. We also manually look into the errors
of faceanalysis and find that the results given by faceanalysis
are pretty close to the ground truth. For example, microsoft-
face and Luxand label an image as disgust, while faceanalysis
labels it as anger, but it would be hard for anyone but an
expert in emotion analysis to decide which label describes the
image better. From Table IV, we also observe that, although
faceanalysis (FA) shows better QoS performance than Luxand
in terms of both reliability and latency, its popularity is a bit
lower than that of Luxand. The reason is that in terms of QoI,
faceanalysis is 20% lower than Luxand.

TABLE IV
QOI, QOS, AND USER RANKING OF EMOTION DETECTION APIS

QoI latency reliability popularity
MS Face 100% 1842ms 100 9.2
FA 81% 1008ms 98 8.3
Luxand 100% 1766ms 92 8.6

D. Discussion

Based on the quantitative results and observations in the use
case studies, we revisit the questions above:
RQ1: Does QiSR save human effort in assessing the QoI of
equivalent services?

QiSR has reduced the human effort in all use cases. In
case 1, only 1 OI out of 100 required a manual resolution,
while cases 2 and 3 required none.

RQ2: How do the results returned by QiSR compare in terms
of accuracy to those produced via a manual assessment?

QiSR has provided highly accurate results, as confirmed by
the manual validation for case 1 and the comparison between
QiSR’s results and emotion labels. It would be impractical to
verify the voluminous results of Amazon product search in
case 2, QiSR’s recommendations correspond to the reported
popularity of these services. QiSR’s accuracy is affected by
the rationale behind which result comparison function to use.
For example, to achieve high comparison accuracy by using
majority voting, the web services under test have to provide
highly accurate results, independent of each other. Otherwise,
QiSR may mark as correct an incorrect result agreed upon by

6rapidapi.com/microsoft-azure-org-microsoft-cognitive-
services/api/microsoft-face1

7rapidapi.com/promityai-promityai-default/api/faceanalysis
8rapidapi.com/aboykov/api/luxand-cloud-face-recognition

two low-accuracy web services.

RQ3: How do service recommendations differ when they are
based on QoS vs. QoI? Which recommendations better meet
the programmer’s expectations?

In all three cases, the QoS rankings of the evaluated services
differ by a large margin from their popularity, as based on their
actual usage. The popularity of a service is determined by
how well the service satisfies the requirements, both in terms
of performance and utility. This finding strongly motivates
the need for QoI, as QoS-based rankings differ greatly from
those based on popularity. With QoI and a tool like QiSR
in place, programmers can better understand and measure the
data-related performance and utility of web services.

VI. CONCLUSION

This paper presents QiSR, a comparative testing tool for
evaluating the Quality of Information of web services. We
define QoI as a concept complementary to QoS, that measures
to which degree a web service satisfies data-related non-
functional requirements. QiSR facilities the measurements of
QoI by defining Objects of Interest and specifying lambda
functions that convert web services’ input/output parameters
to OI attributes and compare these attributes. We apply QiSR
on three sets of manually selected web services and our
evaluation showed that user’s rating on web services can be
better explained by considering both QoS and QoI.

VII. ACKNOWLEDGEMENT

This research is supported by NSF through the grants
#2104337, #2203825, and # 2232565 as well as by the Sum-
mer Undergraduate Research Experience Program of UMDear-
born.

REFERENCES

[1] “Rapidapi - the next-generation api platform,” https://rapidapi.com/,
accessed: 2022-03-30.

[2] “Programmableweb - apis, mashups, and the web as platform,”
https://www.programmableweb.com/, accessed: 2022-03-30.

[3] “Sneak peek: New api provider dashboard,”
https://rapidapi.com/blog/new-api-provider-dashboard-sneak-peek/,
accessed: 2022-03-30.

[4] “All api collections (rapidapi),” https://rapidapi.com/collections, ac-
cessed: 2022-03-30.

[5] “Flight data apis,” https://rapidapi.com/collection/flight-data-apis, ac-
cessed: 2022-03-30.

[6] “Top image processing and facial recognition apis,”
https://rapidapi.com/collection/top-image-recognition-apis, accessed:
2022-03-30.

[7] “Best email apis,” https://rapidapi.com/collection/email-apis, accessed:
2022-03-30.

[8] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Qos-aware web service rec-
ommendation by collaborative filtering,” IEEE Transactions on services
computing, vol. 4, no. 2, pp. 140–152, 2010.

[9] X. Chen, Z. Zheng, Q. Yu, and M. R. Lyu, “Web service recommendation
via exploiting location and qos information,” IEEE Transactions on
Parallel and distributed systems, vol. 25, no. 7, pp. 1913–1924, 2013.

[10] J. Zhu, P. He, Z. Zheng, and M. R. Lyu, “A privacy-preserving qos
prediction framework for web service recommendation,” in 2015 IEEE
International Conference on Web Services. IEEE, 2015, pp. 241–248.

[11] Y. Liu, A. H. Ngu, and L. Z. Zeng, “Qos computation and policing in
dynamic web service selection,” in Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters, 2004,
pp. 66–73.

[12] S. Galizia, A. Gugliotta, and J. Domingue, “A trust based methodology
for web service selection,” in International conference on semantic
computing (ICSC 2007). IEEE, 2007, pp. 193–200.

[13] X. Liu and I. Fulia, “Incorporating user, topic, and service related latent
factors into web service recommendation,” in 2015 IEEE International
Conference on Web Services. IEEE, 2015, pp. 185–192.

[14] “It’s not easy seeing green,” https://languagelog.ldc.upenn.edu/nll/?p=17970,
accessed: 2022-03-30.

[15] Y. Elshater, K. Elgazzar, and P. Martin, “godiscovery: Web service
discovery made efficient,” in 2015 IEEE international conference on
web services. IEEE, 2015, pp. 711–716.

[16] Q. Yu, H. Wang, and L. Chen, “Learning sparse functional factors for
large-scale service clustering,” in 2015 IEEE international conference
on web services. IEEE, 2015, pp. 201–208.

[17] L. Chen, Y. Wang, Q. Yu, Z. Zheng, and J. Wu, “Wt-lda: user tagging
augmented lda for web service clustering,” in International conference
on service-oriented computing. Springer, 2013, pp. 162–176.

[18] M. Zhang, X. Liu, R. Zhang, and H. Sun, “A web service recommenda-
tion approach based on qos prediction using fuzzy clustering,” in 2012
IEEE ninth international conference on services computing. IEEE,
2012, pp. 138–145.

[19] Y. Ma, S. Wang, F. Yang, and R. N. Chang, “Predicting qos values
via multi-dimensional qos data for web service recommendations,” in
2015 IEEE International Conference on Web Services. IEEE, 2015,
pp. 249–256.

[20] L. L. Pipino, Y. W. Lee, and R. Y. Wang, “Data quality assessment,”
Communications of the ACM, vol. 45, no. 4, pp. 211–218, 2002.

[21] N. Degtyarev and O. Seredin, “Comparative testing of face detection al-
gorithms,” in International Conference on Image and Signal Processing.
Springer, 2010, pp. 200–209.

[22] E. G. Sirer and B. N. Bershad, “Using production grammars in software
testing,” ACM SIGPLAN Notices, vol. 35, no. 1, pp. 1–13, 1999.

[23] L. Meng, Y. Li, L. Chen, Z. Wang, D. Wu, Y. Zhou, and B. Xu, “Mea-
suring discrimination to boost comparative testing for multiple deep
learning models,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 2021, pp. 385–396.

[24] “Amazon data,” https://rapidapi.com/magedata/api/amazon-data/, ac-
cessed: 2022-03-30.

[25] “Amazon price,” https://rapidapi.com/ajmorenodelarosa/api/amazon-
price1/, accessed: 2022-03-30.

[26] “Amazon 23,” https://rapidapi.com/restyler/api/amazon23, accessed:
2022-03-30.

[27] P. Ekman, “Basic emotions,” Handbook of cognition and emotion,
vol. 98, no. 45-60, p. 16, 1999.

[28] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api
fuzzing,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 748–758.

[29] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews,
“The extended cohn-kanade dataset (ck+): A complete dataset for action
unit and emotion-specified expression,” in 2010 ieee computer soci-
ety conference on computer vision and pattern recognition-workshops.
IEEE, 2010, pp. 94–101.

