
Secure and Flexible Message-Based Communication
for Mobile Apps Within and Across Devices

Yin Liua,∗, Breno Dantas Cruzb, Eli Tilevichc

aFaculty of Information Technology, Beijing University of Technology, Beijing 100124, China
bDept. of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA, USA
cSoftware Innovations Lab, Virginia Tech, 2202 Kraft Drive, Blacksburg, VA 24060, USA

Abstract

In modern mobile platforms, message-based communication is afflicted by data leakage attacks,

through which untrustworthy apps access the transferred message data. Existing defenses are

overly restrictive, as they block all suspicious message exchanges, thus preventing any app from

receiving messages. To better secure message-based communication, we present a model that

strengthens security, while also allowing untrusted-but-not-malicious apps to execute their busi-

ness logic. Our model, HTPD, introduces two novel mechanisms: hidden transmission and

polymorphic delivery. Sensitive messages are transmitted hidden in an encrypted envelope. Their

delivery is polymorphic: as determined by the destination’s trustworthiness, it can be delivered

no data, raw data, or encrypted data. To allow an untrusted destination to operate on encrypted

data deliveries, HTPD integrates homomorphic and convergent encryption. We concretely re-

alize HTPD as PoliCC, a plug-in replacement of Android Inter-Component Communication

(ICC) middleware. PoliCC mitigates three classic Android data leakage attacks, while allowing

untrusted apps to perform useful operations on delivered messages. Our evaluation shows that

PoliCC supports secure message-based communication within and across devices by trading off

performance costs, programming effort overheads, and security 1.

Keywords: mobile security, message-based communication, secure inter-component

communication

∗Yin Liu is the corresponding author.
Email addresses: yinliu@bjut.edu.cn (Yin Liu), bdantasc@iastate.edu (Breno Dantas Cruz),

tilevich@cs.vt.edu (Eli Tilevich)
1This article is a revised and extended version of our prior paper, published in the 17th EAI International

Conference on Security and Privacy in Communication Networks (SecureComm 2021) [1]

Preprint submitted to Journal of LATEX Templates August 19, 2022

1. Introduction

An essential part of modern mobile platforms is inter-app communication2, which is typically

message-based: apps send and receive various kinds of messages, some of which may contain sen-

sitive data. When a malicious app accesses sensitive data, data leakage occurs. To prevent data

leakage, modern mobile platforms (e.g., Android and iOS) customize their communication mod-5

els to control how apps access message data. However, these models remain vulnerable to data

leakage, commonly exploited by attacks that include interception, eavesdropping, and permission

escalation. These attacks leak volumes of sensitive data, as has been documented both in the

research literature [2][3][4][5][6] and in vulnerability reporting repositories (e.g., CVE3) [8][9][10].

To prevent data leakage, state-of-the-art approaches fall into two general categories: (1)10

taint message data to track and analyze its data flow [11][12], and (2) track call chains, as

guided by a permission restriction policy for sending/receiving data [13][14][15]. Although these

approaches4 strengthen the security of message-based communication, their high false positive

rates often render them impractical for realistic communication scenarios. Once any app in a

call chain or data flow is identified as “malicious,” even as a false positive, they can no longer15

receive any messages. Although “untrusted” may not be “malicious”, these data flow monitoring

approaches block all untrusted-but-not-malicious destinations. In addition, mobile users may

change app permissions at any point, thus also causing false positives. With high false-positive

rates, these prior approaches lack flexibility required to secure message-based communication,

without blocking untrusted-but-not-malicious destinations from operating on delivered messages.20

In this paper, we present HTPD, a novel model that improves the security of message-

based communication. The name of HTPD is from its two combined mechanisms: (1) Hidden

Transmission of messages and (2) their Polymorphic Delivery.

Mechanism (1) serializes a message object with additional information (e.g., data integrity

or routing information) as an encrypted binary stream, and then hides the resulting stream as25

the data field of another message used for transmission. Intercepting the transmitted message

would not leak its hidden content to interceptors. In the meantime, it cannot be tampered

2In Android, it is also called inter-component communication (ICC).
3CVE stands for the Common Vulnerabilities and Exposures, which is a well-known vulnerability reporting

website [7]
4All of them target Android, due to its open-sourced codebase, which can be examined and modified.

2

with undetectably either: before delivering the message to a destination, the model retrieves the

message’s hidden content, using it to verify the message’s integrity and destination.

Mechanism (2) steps away from the standard message delivery, in which the delivered mes-30

sage data is presented identically to all destinations, having so-called monomorphic semantic.

Instead, depending on the destination’s trustworthiness at runtime, the delivered message data

is presented either in no form, raw form, or encrypted form, thus having polymorphic semantic.

No data is presented for misrouted messages or when the message’s integrity cannot be veri-

fied. Raw data is presented to destinations whose trustworthiness can be established. Encrypted35

data is presented to all other destinations. However, the received encrypted data can still be

used in limited computational scenarios, due to homomorphic encryption (HE) and convergent

encryption (CE), which preserve certain arithmetic and comparison properties of ciphertext,

respectively.

To the best of our knowledge, our approach is the first to apply HE and CE to the design40

of message-based communication models. Homomorphic and convergent operations on sensi-

tive data provide the middle ground between permitting access to raw data and denying access

altogether. The primary barrier to widespread adoption of HE and CE has been their heavy

performance overhead. The resulting escalation in execution time has rendered these encryp-

tion techniques a poor fit for intensive computational workloads of large statistical analyses and45

machine learning. In contrast, our work demonstrates that HE and CE can effectively solve

long-standing problems in the design of mobile message-based communication. Because mo-

bile communication rarely involves large computational workloads, the inclusion of HE and CE

provides the required security and flexibility benefits, without noticeable deterioration in user

experience.50

To reify our model, we developed PoliCC, an Android middleware5 that plug-in replaces

Android inter-component communication (ICC). PoliCC mitigates interception, eavesdropping,

and permission escalation attacks, without preventing untrusted-but-not-malicious apps from

operating on delivered message data. In addition, PoliCC applies HTPD to both inter-app

and inter-device communication, so messages can be transmitted uniformly within and across55

devices, thus demonstrating HTPD’s generality and extensibility.

5Similarly to prior works, we target Android as the dominant open-source platform.

3

When it comes to performance overheads, as compared to Android ICC, PoliCC’s attack

mitigation adds at most 40.4ms (15.4 times from baseline) and 2mW (11.1% from baseline).

Based on the security/performance trade-offs revealed by our experiments, app developers can

make an informed decision on whether to apply our security enhancements to their specific60

application scenarios.

This article contributes:

(1) HTPD—a novel model that strengthens the security of message-based communication

via hidden transmission and polymorphic delivery. This model retains the protection of prior

models, but eliminates their unnecessary restrictions, so untrusted-but-not-malicious destinations65

can perform useful operations on the delivered message data.

(2) The first successful application of homomorphic and convergent encryption to the design

of mobile message-based communication, offering operations on encrypted sensitive data as the

middle ground between permitting access to raw data and denying access altogether.

(3) PoliCC—a reification of HTPD that plug-in replaces Android ICC, mitigating inter-70

ception, eavesdropping, and permission escalation attacks, without preventing untrusted-but-not-

malicious apps from operating on delivered data. Through its plug-and-play integration with the

Android system, PoliCC requires only minimal changes to existing apps.

(4) An experimental evaluation that shows how PoliCC prevents the aforementioned attacks

carried out against benchmarks and real apps, and reports its performance and programming75

effort overheads.

This article extends our earlier paper, presented at the 17th EAI International Conference on

Security and Privacy in Communication Networks (SecureComm 2021) [1]. In comparison to that

conference publication (18-page, single-column), this article reports on additional unpublished

research that extends our prior work as follows:80

(a) PoliCC now also supports Device-to-Device data communication, unlike the previous

version, which only worked within a single device;

(b) We report on the results of an empirical study of thousands of popular Android apps that

reveals their ICC usage, including the prevalence of specific API methods and transmitted data

types;85

(c) We explain the specifics of PoliCC’s programming interfaces, through which Android

developers can enable untrusted-but-not-malicious apps to perform useful business operations

4

with encrypted data.

Our experiences of designing, engineering, and evaluating our approach that supports ex-

changing data within and across devices should be of value and relevance to the audience of this90

journal.

The remainder of this paper is structured as follows. Section 2 discusses our threat model.

Section 3 presents the HTPD model and gives an overview of our approach. Section 4 presents our

empirical study of Intent API usage. Section 5 and 6 detail PoliCC’s design and implementation,

respectively. Section 7 presents our evaluation results. Section 8 discusses related work. Section 995

discusses conclusions and future work directions.

2. Threat Model

By following our model, message-based communication can prevent data leakage, so it would

not be exploited by interception, eavesdropping, and permission escalation attacks. Our model

can strengthen any message-based communication, but our reference implementation is Android-100

specific. We generally define each of the aforementioned attacks, and present examples of their

real-world occurrences in Android apps.

S D

U

(a)

S D

U

(b) (c)

DS

permissionspermissions

escalated
permissions

Figure 1: Examples of Attacks

2.1. Examples of Data Leakage Attacks

Interception:. Figure 1-a demonstrates an interception attack: source S is transferring data to

destination D, with U intercepting the transferred data. Another common name of this attack105

is man-in-the-middle.

In Android, this attack can target both within and across device communication.

5

(1) To communicate within the same device, Android provides the inter-component commu-

nication (ICC) mechanism (detailed in 3.4). Using ICC, a source app sends an Intent6 to user-

permitted destination apps: with explicit Intents, only specific destinations can receive data;110

with implicit Intents, any destination that registers a certain Intent Filter7 can receive data. As

defined in Common Attack Pattern Enumeration and Classification (CAPEC) [16], an intercep-

tion attack occurs when malicious apps inappropriately receive an implicit Intent by declaring a

certain Intent Filter [17]. These attacks have been detected in many real-world Android apps [18],

which even be used in some developer tools for benign purposes. For example, a developer tool,115

Intent Intercept, intercepts the transferred Intent to help developers in debugging ICC-based

communication [19].

(2) For device-to-device communication (i.e., across devices), consider a real attack reported

in CVE, the MensaMax app-4.3 transmits sensitive information to a web server as cleartext, with

the transmissions maliciously captured at the network packets level, resulting in data leakage [9].120

Worse, attackers can tamper with the intercepted information to misroute them to malicious

destinations.

Eavesdropping:. Figure 1-b demonstrates an eavesdropping attack: source S broadcasts data to

destination D, but U (i.e., eavesdropper) can also receive the data. In Android, when an app

broadcasts Intents, any app can receive them by declaring a certain Intent Filter. Consider a real125

eavesdropping attack reported in CVE, when WiFi is switched, the Android system broadcasts

an Intent that contains detailed WiFi network information (e.g., network name, Basic Service Set

Identifier (BSSID), IP address, and DNS server). However, having declared the corresponding

Intent Filter, any applications can receive this Intent and disclose the sensitive information[8].

Permission Escalation:. Figure 1-c demonstrates a permission escalation attack: source S has130

been granted sufficient permissions to access sensitive data, but destination D has not. When

S sends its sensitive data to D, D’s permission is escalated. In Android, to access sensitive user

data (e.g., GPS, contacts, and SMS), apps must secure the required permissions. As previously

reported, attackers can force apps, with dissimilar permissions, to communicate sensitive data

6In ICC, Intent objects serve as data delivery vehicles.
7Intent Filter declares expected Intent properties (action/category)

6

to other apps, thus leaking it to the destinations [10, 20]. For example, if an app has GPS135

permissions, it can send its obtained user geolocation information to any app that has no such

permissions, which may cause sensitive data leakage.

2.2. Untrusted Data Processing

The aforementioned attacks that exploit data leakage share the same root cause: a destination

illicitly accesses and discloses or tampers with sensitive message data. However, blocking all140

suspicious message transmissions may paralyze apps’ legitimate operations. Consider the scenario

from the eavesdropping attack above: if, having received a message containing the device’s IP

address, an untrusted app uses the received IP only for legitimate operations (e.g., host IP

verification), is it reasonable to block all such message transmissions to strengthen security?

A more flexible solution could use homomorphic encryption (HE) and convergent encryption145

(CE), currently most commonly used for sending sensitive data to the cloud for processing by

untrusted providers. Using HE/CE schemes, data owners encrypt and send their data to the

cloud server. The cloud server operates on and returns the encrypted results to the data owner.

Only the data owner, possessing the secret key, can decrypt the results. In the case above,

an untrusted app can still receive the IP address’s encrypted version to verify its host address,150

without accessing the raw IP address. By means of HE/CE, HTPD enables untrusted apps to

operate on sensitive data without data leakage.

2.3. Assumptions and Scope

To counteract the threats, our design is subject to the following constraints:

(1) Assumptions:155

• Trustworthiness. Since HTPD relies on apps’ trustworthiness to determine whether to

expose no data, raw data, or encrypted data, we assume that application trustworthiness

can be reliably configured or calculated. Further, attackers cannot change the involved apps’

trustworthiness. As an abstract metric of how to expose the data, the trustworthiness can

be represented as many specific forms, such as permissions in the above example attacks160

(discussed in Section 3.1).

7

• Mobile devices have been paired by the user. PoliCC transmits Intents across paired devices

via Bluetooth8. However, the pairing procedure is outside of PoliCC’s purview. Android

users typically discover and pair with nearby mutually trusted devices using the built-in

Bluetooth Settings component (i.e., Settings→Bluetooth).165

(2) Scope: Message-based data leakage vulnerabilities. HTPD’s focus is message-based

data leakage vulnerabilities. That is, the vulnerabilities should (a) cause data leakage, and (b)

occur during message transmission. Hence, other attacks, such as denial of service (DoS)9 that

target data transmission (not data leakage), stealing data by breaking the system (not during

message transmission), are out of scope.170

Moreover, various attacks against key management can pilfer decryption keys. Although these

attacks are a serious security challenge, mitigating these attacks is orthogonal to our approach.

By relying on Android’s private storage and straightforward data synchronization to manage the

keys, the HTPD model’s reference implementation does not exacerbate the key management

vulnerabilities. Furthermore, as defenses against these vulnerabilities become more effective,175

they can be easily integrated with HTPD.

3. The HTPD Model

We present the HTPD model and its application to Android ICC in turn next.

3.1. Definitions

(1) Source/Destination. In message-based communication, a source sends messages, and a des-180

tination receives messages. In mobile platforms, apps can be both source and destination.

(2) Sending and Receiving Points. We use the term a sending point to describe an API function,

invoked by a source and passed message data, that starts transmitting messages.A receiving point

is a callback API function, through which a destination retrieves the transferred message data.

8The proliferation of wearable devices, including watches, fitness trackers, and smart-glasses, has standard-

ized the Bluetooth technology as a foundation for connecting wearables with a smartphone. Our conceptual

contribution is not bound to Bluetooth and would remain applicable for any device connection protocol (e.g.,

WiFi-Direct).
9Although DoS is not our focus, one of PoliCC’s features mitigates them (see Section 7.5).

8

original msg

1 D
Destination

polymorphic
msgtransmission

msg
wrapper msg

S
Source

trustworthiness
examination

transmission
msg

original
msg

Sending Point Receiving Point

2

4

5 6 7 8 10 11 12

extra info

extra info

9

encryption (HE / CE)

3

encryption

Figure 2: HTPD Transmission Mechanisms

(3) Trustworthiness. Trustworthiness measures the degree to which an app can be trusted. We185

use this metric to define how an app can access message data. An app whose trustworthiness is

established can access raw message data; otherwise, encrypted data or no data. Trustworthiness

can be measured in different ways: (a) data integrity (i.e., to detect data tampering) and desti-

nation examinations (i.e., to detect misrouting). For example, if the received message fails such

examinations, the destination app should not access the raw data. (b) apps’ permissions and the190

relationship between apps’ permission sets. For example, if a source app’s permission set is larger

than that of a destination app, messages transmitted between them may become vulnerable to

permission escalation attacks, causing data leakage (2.1). (c) reputation score. For example, if

an app’s reputation score in app markets [21] is low, then allowing it to access raw data may

cause data leakage. HTPD can be parameterized with various measures of trustworthiness, as195

required for a given scenario of message-based communication. In particular, to determine an

app’s trustworthiness, our HTPD’s reification uses both (a) and (b).

3.2. Transmission Mechanisms

Figure 2 depicts HTPD’s hidden transmission and polymorphic delivery mechanisms. When

a source starts transmitting a message (step 1), the message’s data field is inserted with some200

extra information (e.g., custom routing) (step 2). After that, the message is serialized (step 3)

and encrypted (step 4) to a binary stream, which becomes the data field of a newly created

wrapper message. Hence, the original message is hidden within the wrapper message, which

becomes the transmission message (step 5).

Next, the transmission message is dispatched via the system’s standard communication chan-205

nel (step 6). Once the transmission message arrives to its receiving point, its data field is

extracted, decrypted, and deserialized into the original message (steps 7,8). Then, the extracted

extra information is used to examine the destination’s trustworthiness (e.g., data integrity, app

9

permissions), which determines in which form the message data can be accessed. In the cases of

failed integrity checks or misrouted deliveries, HTPD would not disclose any data. If the destina-210

tion’s trustworthiness is established, HTPD reveals the raw form of the original message’s data;

otherwise, it encrypts the data into its homomorphically or convergently encrypted form (step

11). Due to its polymorphic delivery, the final received message is referred to as “polymorphic

message” (step 12).

3.3. HTPD in Practice215

To reify HTPD, we developed PoliCC, a plug-in replacement of Android ICC. By mitigat-

ing Android ICC’s data leakage vulnerabilities, PoliCC prevents the aforementioned attacks

(Section 2.1). Following the definitions above, apps serve as message source/destination, whose

sending/receiving points are managed by PoliCC (as shown in Figure 3). PoliCC retains Intent

objects as ICC transmission vehicles, but hides the original Intent object within a so-called Host220

Intent object, whose data field stores the original Intent object’s encrypted serialized version.

To guide its polymorphic delivery, PoliCC computes the destination app’s trustworthiness:

(a) the delivered message’s routing information10, and (b) how the permission sets of the source

and destination apps relate to each other. PoliCC delivers no data from messages identified as

tampered with or misrouted; it delivers raw data to destinations whose permission sets are equal225

to or exceed those of source apps; and it delivers homomorphically or convergently encrypted

data to all other destinations.

Polymorphic
Intent

Host Intent

Intent

Host Intent

S D

POLICC

Source
App

Destination
App

Sending
Point

U
Untrusted

App
Receiving
Point

1 3 2

Figure 3: PoliCC Solution Overview

10In Android ICC, routing information can be used for both data integrity and destination examinations (de-

tailed in 6.2).

10

Consider how PoliCC prevents the attacks described in 2.1: Preventing Interception

Attacks. As shown in Figure 3, an interception attack can be carried out at the receiving point

·: an untrusted app U becomes the final delivery destination by declaring a certain Intent Filter230

(case-1 in 2.1), or at point ¸ before the receiving point: U captures the network packets being

transferred to an app on another device (case-2 in 2.1). In the first case, having received the

transferred Intent, U would be able to retrieve the contained raw data only if U’s permission

set equals to or exceeds that of the source app. Otherwise, the received data would be homo-

morphically or convergently encrypted, so it would not be leaked. In the second case, U would235

receive a Host Intent, containing only the encrypted and thus inaccessible original Intent. At this

point, tampering with the Host Intent’s routing information would be easily detected through

data integrity and destination examinations at ·.

Preventing Eavesdropping Attacks. As discussed in 2.1, an eavesdropping attack occurs

when the Android system broadcasts an IP address (i.e., string value), received by both a trusted240

app D and an untrusted app U. Without sufficient permissions, U would receive the IP address

as a convergently11 encrypted string. Since convergent encryption makes it possible to compare

encrypted values for equality, U can verify the host address by convergently encrypting the host

address and comparing the result with the received data.

Preventing Permission Escalation Attacks. As discussed in 2.1, an escalation attack occurs245

when a source app with GPS permissions obtains and sends user geolocation information to a

destination without these permissions. Without the geolocation permissions, destination D would

be delivered geolocation (i.e., numeric value) as a homomorphically12 encrypted numeric value,

so no permissions would be escalated. If D forwards the delivered ciphertext to malware M to

decrypt the ciphertext, M’s permission set would have to be equal or greater than the union of250

permission sets of the source app and D, a hard-to-satisfy requirement for the granted permissions

to access raw geolocations.

3.4. Enabling Technologies

Intent and Android ICC. Intents carry data in their so-called “extended data field.” To

store/retrieve key-value data into/from an extended data field, apps call the “put/get” API meth-255

11Convergent encryption is applied to string data.
12Homomorphic encryption is applied to numeric data.

11

ods (i.e., putExtra(), get*Extra(), etc.). To dispatch Intents, Android provides startActivity,

which launches the Activity the user interacts with, and sendBroadcast, which launches the

BroadcastReceiver that processes broadcast Intents. Before delivering an Intent, ICC must re-

solve it by examining which Intent Filters the installed apps declared. Upon matching Intent

Filters, ICC delivers the resolved Intent to their corresponding destination apps. With multiple260

destinations, ICC prompts the user to select only one destination per Activity and allows all

matched destinations to receive Intents broadcast using BroadcastReceiver.

Android Permission Scheme. To prevent the misuse and exploitation of sensitive data, the

Android permission scheme restricts which sensitive data or API calls can be used by which apps:

to obtain certain data (e.g., ACCESS_FINE_LOCATION to obtain geolocations), an app must have265

secured user permissions, either during installation or at runtime. Otherwise, invoking a protected

call raises an exception and causes the execution to stop. Besides system-level permissions, an

app can also require securing a custom permission to send/receive Intents. PoliCC uses Android

application permissions: the relationship between the permission sets of the source/destination

apps provides the trustworthiness measure that guides the polymorphic delivery of messages.270

Homomorphic Encryption (HE) [22] encodes a numeric value, so its encrypted value (i.e.,

ciphertext) can be arithmetically operated on. HE preserves the invariant: the decrypted result of

an arithmetic operation on ciphertexts is identical to the same operation’s result on the cleartext

version of the operands. Untrusted parties can operate on homomorphically encrypted ciphertext

operands, while a trusted party can decrypt the encrypted result. PoliCC homomorphically275

encrypts message’s numeric data, so its ciphertexts can still be computed without decrypting.

Convergent Encryption (CE) [23] encodes string values, so the comparison order is preserved

in their ciphertexts, as a given string (i.e., cleartext) is always encrypted into the same ciphertext.

Computed from a cleartext, a hash code becomes the cleartext’s encryption key. Finally, the hash

code itself is encrypted with a user-provided key. Both researchers and practitioners have used280

CE to identify duplicated records in file systems[24]. PoliCC convergently encrypts message’s

string data, so its ciphertexts can still be used in comparison to find identical data.

Xposed [25] is a framework for interception the invocations of the Android system and app

functions, without modifying their code. Injected custom code can be executed before or af-

ter the intercepted functions, using the beforeHookedMethod or afterHookedMethod interfaces,285

respectively. PoliCC use these interfaces to hook sending/receiving points.

12

4. An Empirical Study of ICC Intent

Since our solution is intended to plug-in replace Android ICC to secure message-based com-

munication, it is necessary to study the status quo of ICC Intent usage in the Android app.

Although several prior studies have analyzed how Android apps use ICC/Intent and provide a290

good baseline for understanding ICC scenarios, we aspired to comprehensively analyze a larger

sample of apps, differentiated by their specific types (e.g., adware, spyware, trojan), with the

goal of designing our solution to be able to prevent data leakage in diverse ICC scenarios.

In this section, we first summarize the findings reported by prior analyses. We then discuss

the results of our analysis. These findings drive the design of our solution presented in Section 5,295

i.e., why we choose to keep Intents (findings 1 and 4), why we focus on Integer and String (findings

2 and 5), and why we focus on Activity and Broadcast (finding 3).

4.1. Summary of Prior Findings

Finding 1: Common use of extended data fields in Intents. Octeau et al. analyzed the use of

ICC in Android app on (1) a “random sample” dataset with 350 apps randomly selected from300

over 200,000 apps in the Google Play Store, (2) a “popular app” dataset of 850 apps from top

25 most popular free apps from 34 categories in the Play store. 36% of Intents in the “random

sample” dataset and 46% in the “popular apps” contain key-value data in the extended data

fields [26].

Finding 2: The Intent’s API of operating Integer and String values (i.e., putString and putInt)305

are the top 10 used Android API methods [27].

Finding 3: startActivity is the most frequently used ICC method. 96% of the apps in the

studied dataset (1023 malware samples collected by Zhou et al. [28] and 1023 apps randomly

selected from the Google Play Store) call this method, which accounts for 56% of all the ICC

methods calls [29].310

4.2. Studying ICC Usage in the Wild

I. Study Methodology. We downloaded 1507 safeware apps (i.e., a complete set at the time of

the study) from the online F-Droid repository [30], a repository of safe apps. We also analyzed

over 9000 known malware apps from the RmvDroid repository [31], including adware, spyware,

trojan, and other riskware. We analyzed these safeware and malware’s distribution binaries as315

13

follows: (1) download the *.apk files for each Android app; (2) for each app, decompile its *.apk

files into their smali [32] intermediate representation, which is amenable to automated program

analysis [32]; (3) examine the smali representation for the accesses to the data stored in Intent

objects.

II. Major Findings.320

Finding 4: More than one-third of safeware/maleware apps put data into Intent’s extended

data fields, and three-quarters of the safeware apps and even more of the malware apps

retrieve the received Intent data. Our study shows that 34% of safeware, 77% of adware,

50% of spyware, 50% of trojan, and 41% of other riskware invoke putExtra to place data

into Intents, while 73% of safeware, 91% of adware, 72% of spyware, 88% of trojan, and

43% of other riskware invoke get*Extra to retrieve data from the received Intents.

Finding 5: The most common data types stored in Intent’s extended data fields are strings

and integers. Our findings show that 58% of safeware, 83% of adware, 62% of spyware,

77% of trojan, and 42% of other riskware retrieve String objects or arrays. Also, 17%

of safeware, 63% of adware, 54% of spyware, 18% of trojan, and 5% of other riskware

retrieve int values, arrays, or Integer objects. In terms of the operations that retrieve

Intent data, about 65%, 59%, 54%, 80%, 79% of them return strings, in safeware, adware,

spyware, trojan, and other riskware, respectively; while 21%, 33%, 35%, 11%, 17% of them

return integers, in safeware, adware, spyware, trojan, and other riskware, respectively.

That is, the data retrieval operations on strings and integers account for 86%, 92%, 89%,

91%, and 96% of the total retrievals, in safeware, adware, spyware, trojan, and other

riskware, respectively.

III. Threats to Validity. As all static analysis techniques, ours is vulnerable to false positives:

not all detected scenarios of Intent-based communication will be triggered in real app executions.

Nevertheless, the detected numbers reasonably approximate the actual runtime occurrences of325

ICC.

14

5. PoliCC Design

We next explain PoliCC’s design and then describe its architecture and permission policies.

5.1. Design Choices

PoliCC follows several design choices that we made by consulting both prior studies and our330

ICC usage studies above.

(1) Why keep Intents? Finding 1—Intent’s extended data fields are commonly used in

storing data [26]. Our study confirmed this finding: Finding 4— About three-quarters of the

safeware apps and even more of the malware apps access the received Intent data13. Hence, as a

plug-in replacement of Android ICC, PoliCC retains the Intent object as the message delivery335

vehicle, so existing apps could continue using Intents whose data would be protected from leakage.

(2) Why Focus on Integer and String? Finding 2—Among the top 10 mostly used

Android API methods are those that manipulate Integer and String values (i.e., putString and

putInt) [27]. Our study confirmed this finding: Finding 5—The most common data types stored

in Intent’s extended data fields are String and Integer. Hence, our design supports operating on340

encrypted strings and integer values (6.3).

(3) Why Activity and Broadcast Communication?

Finding 3—The startActivity ICC method is the most frequently used [28]. Hence, PoliCC

supports startActivity. To demonstrate HTPD’s applicability, PoliCC also supports sendbroadcast,

whose data flow allows multiple destinations.345

(4) Why Focus on Communication both within and across Devices?

When it comes to the communication both within and across devices, we decided to provide

this facility in our system for two reasons: (a) Due to the growing popularity of wearable and IoT

Android devices, an increasing number of common application scenarios now involve device-to-

device communication. Hence, facilitating the implementation of cross-device communication is350

important. Furthermore, our approach to cross-device communication brings yet another option

to the design space. (b) We see value in providing a unified programming interface for different

communication types within and across devices. In lieu of a unified interface, app developers

13For conciseness, the term “Intent data” refers to “the key-value data stored in an Intent’s extended data

field.”

15

have to either implement vastly dissimilar communication mechanisms on their own, or learn

a different set of programming interfaces for what is essentially the same communication func-355

tionality (e.g., Wearable Data Layer API [33]). These development practices incur unnecessary

programmer effort and can potentially open new attack surfaces (e.g., ad-hoc implementations

of communication mechanisms would likely be insecure). In addition, the time and the effort

required to support these dissimilar communication mechanisms divert the resources from the

difficult problem of preventing dangerous data leakage attacks: monitoring data flow or call360

chains across devices does require additional and dissimilar implementation strategies.

Hence, we design PoliCC to support uniform communication within and across devices. Not

only does our reference implementation prove that the unified Intent interface can be applied to

both within and across devices communication and prevent relevant data leakage attacks with our

secure message-based communication mechanism, but it also identifies the performance overhead365

such a mechanism generates. We see this material as being conducive in potentially guiding

both researchers and practitioners in determining the acceptable trade-offs between security and

efficiency.

5.2. System Architecture

Figure 4 shows PoliCC’s system architecture. As discussed in Sections 3.2 and 3.3, starting370

at a Source App (step 1), a regular Intent object is redirected to PoliCC Module twice (steps 2,

4), first becomes a Host Intent object (step 3), then a Polymorphic Intent object, finally being

delivered to the Destination App (step 5). During this process, PoliCC utilizes Xposed hooks

to redirect the Intent object into PoliCC Module. To secure the Intent object, PoliCC Module

converts it into a Host Intent object then a Polymorphic Intent object via modules Serialize375

& Deserialize, Re-encapsulation, Routing info & Permission Examination, and Encrypt &

Decrypt. To enable cross-device communication, PoliCC transmit Host Intents across devices

via PoliCC Service’s Device-to-Device Communication. Users authorize which apps can send

data across devices via Configuration, lest the transmitted Intents cannot cross the device’s

boundaries (discussed in Sections 6.1 and 6.2).380

In addition, user-configured custom keys encrypt the decryption keys of homomorphic/conver-

gent encryption, persisting them in Keys, private storage managed by Key Management (discussed

in Section 6.4). Besides, by configuring PoliCC to notify of the transmission information (e.g.,

16

source/destination, permissions, data types, actions) (Notify), the user can stop the delivery of

any PoliCC Intents.385

Keys

Source
App

Re-encapsulation

Destination
App

POLICC
Module

Intent Polymorphic
Intent

built-in ICC

Sending
Point

Receiving
Point

Hook

Serialize &
Deserialize

Routing info &
Permission
Examinations

Encrypt &
Decrypt

Host Intent2

3

5

4

Key Management

POLICC
Service

Configuration Notify

Device-to-Device
Communication

1

Hook

Figure 4: PoliCC Architecture

With the design choices above, consider how our architecture secure the Android ICC while

enabling untrusted data process. To transmit messages securely, PoliCC provides Host and

Polymorphic Intents for ICC’s data transmission flow of both Activity and Broadcast. The Host

Intent acts as a transmission vehicle over the Android ICC; it hides the original Intent’s data and

routing information. The Polymorphic Intent delivers data polymorphically: only destination390

apps with sufficient permissions can access raw Intent data. To allow untrusted apps to operate

on sensitive data securely, PoliCC provides arithmetic and comparison operations on ciphertext,

enabled by homomorphic and convergent encryption: Variant of Elgamal encryption14 [34] for

int/Integer/BigInteger values and convergent encryption (combines SHA256 with AES) for

14As fully homomorphic encryption is slow, its partial variant achieves a practical performance security tradeoff.

17

String values. So int/Integer/BigInteger variables become HEInteger objects, and String395

one become encrypted String objects.

5.3. Permission Policies

As discussed in 3.3, PoliCC uses Android app permissions and the relationship between the

permission sets of the source/destination apps as the trustworthiness measure that determines

whether to deliver raw data or encrypted data15. Hence, we design PoliCC as a policy-based400

middleware: an extensible set of policies governs data access and Intent routing. → indicates

the From-To Intent transmission relationship within or across devices. E.g., {I | (S → D)t}

indicates that the source app S sends the Intent I to the destination app D at time t (S and D

can be installed on the same or different paired devices).

P (S)t denotes the permission set of app S at time t. If the user changes P (S) at runtime,405

P (S)t 6= P (S)t+1. Hence, PoliCC always dynamically analyzes permissions, reading the latest

permissions for all apps. Further, I denotes the original Intent, and IEN denotes that its data

has been encrypted. We define the PoliCC policies as follows:

(1) Encryption & Decryption Policies. When D receives I (or IEN) from S, if the permission

set of S is a subset of or equal to that of D, I’s (or IEN ’s) data remains unencrypted; encrypted410

otherwise:

If {I or IEN | (S → D)t},

• iff P (S)t ⊆ P (D)t, return I

• otherwise, return IEN

(2) Permission Transitivity. Whether a destination app receives I or IEN is determined415

by the transitive closure of the permission relationships between the encountered apps in that

Intent’s transmission chain:

If {I | ((S → D1)t → D2)t+1},

• iff (P (S)t+1 ∪ P (D1)t+1) ⊆ P (D2)t+1, return I

• otherwise, return IEN420

15Because the “no data” delivery is caused by failed data integrity checks rather than permissions, we detail it

in 6.2.

18

6. Implementation

We describe PoliCC’s hidden transmission and polymorphic delivery.

6.1. Hidden Transmission

To seamlessly integrate hidden transmission into Android ICC, we had to determine: (1)

where to place the sending/receiving points, (2) how to pack message data into its delivery425

vehicle, and (3) how to transmit messages uniformly within and across devices. We solve these

problems as follows.

(1) Hook Mechanism. For PoliCC to take control over the delivery of Intent objects, the

hook mechanism taps into the Android ICC. ICC commences by invoking the API methods

startActivity to start an activity and sendbroadcast to send a broadcast, so we use them as430

“sending points.” Similarly, ICC ends up the final delivery by invoking performLaunchActivity

for the activity and deliverToRegisteredReceiverLocked for the broadcast, so we use them

as “receiving points.” PoliCC intercepts the sending/receiving points by hooking into these

API methods via the beforeHookedMethod and afterHookedMethod interfaces, respectively.

PoliCC’s custom code is injected to execute before or after the intercepted API methods, thus435

performing HTPD’s transmission strategies. Note that we used the Hook mechanism to create

a viable proof of concept to be able to evaluate PoliCC’s security-enhancing properties. To

deploy HTPD commercially, one should consider an implementation fully integrated with the

system.

(2) Host Intent. A Host Intent is derived from an original Intent by retaining the routing440

information (e.g., action, category) but removing the extended data (i.e., the data inserted via

putExtra). Instead, the only piece of extended data in Host Intent are serialized and encrypted

representations of the original Intent. This implementation strategy is non-intrusive, thus re-

quiring no changes to the source app’s Intent API. Specifically, our implementation intercepts

the built-in Intent transmission procedure at the points right before an Intent is dispatched (i.e.,445

sending points) and delivered (i.e., receiving points). At the sending point, a Host Intent is

constructed, replacing the original Intent; at the receiving point, the Host Intent’s content is

extracted, decrypted, and deserialized into the original Intent, which is then polymorphically

delivered to the destination app (see 6.2). Notice that this strategy makes it possible to transmit

Host Intents through the built-in Intent transmission channels. Because these two interception450

19

points cannot be bypassed, the Host Intents would always be constructed at the sending point,

and the original Intent would always be reconstructed at the receiving point. In essence, PoliCC

can straightforwardly detect any tampering with the routing information of a Host Intent.

(3) Transmitting Intents. To control how apps exchange data with PoliCC, device users

authorize apps to transmit data across devices. PoliCC maintains a list of the authorized apps455

to check each app encountered by a transmitted Intent. If all encountered apps are authorized,

PoliCC continues transmitting the Intent within and across devices; otherwise, only within the

same device.

Within the device, Intents are transmitted using the Android ICC channel. In contrast,

to send/receive the Intent transmitted across devices, PoliCC service applies the Bluetooth460

technology. Launched at the device start time, the service acts as both a server and a client. As

a client, to send Intents across devices, it transmits serialized Host Intents to the paired devices.

As a server, at launch time, it starts a background monitoring thread to keep track of the data

streams sent by remote clients. Upon receiving a sent stream, it deserializes the stream into a

Host Intent, to be further transmitted by means of the Android ICC. By checking the source465

information, PoliCC confirms if an Intent arrived from a remote device. It forwards such Intents

directly to the receiving point, then to follow the same steps as Intents transferred within the

same device.

6.2. Polymorphic Delivery

To seamlessly integrate polymorphic delivery into Android ICC, we had to determine: (1)470

how to link trustworthiness (i.e., routing info and permission relationships) to delivery strategies

(i.e., no data, raw data, or encrypted data), and (2) if it is possible to bypass our secure delivery

mechanism and how to defend against it. We solve these problems as follows.

(1) Examining Routing Info and Permissions. As described above, in the sending point,

PoliCC re-encapsulates the original Intent object, retaining its routing information, and inserts475

the source app’s information, which is checked as follows:

a) to check the routing information, having intercepted the Intent in the receiving point,

PoliCC extracts the routing information from both the Host and original Intents and compares

them for equality (i.e., integrity check). Then, it checks whether the current destination is

reachable through the original Intent’s routing information (i.e., destination examination). If480

20

any of these checks fails, the Intent object may have been tampered with, causing PoliCC to

deliver no data to the destination app.

b) to check the permission relationships between the source and destination apps, from the

original Intent, PoliCC extracts the inserted source app information. Note that, before sending

or forwarding an Intent (i.e., the sending point), PoliCC appends the current source app’s pack-485

age name into the Intent’s data field, thus keeping track of the Intent’s transmission history. At

the receiving point, PoliCC computes the union of the permissions granted to all source apps,

through which the Intent has passed in that transmission. Next, PoliCC obtains the destination

app’s permissions via the Android API. The results are compared based on the permission transi-

tivity policy (see 5.3): if the destination app’s permissions are not equal to or exceed the union of490

the source permissions set, PoliCC delivers the homomorphically/convergently encrypted data

to the destination app.

(2) Defense against Encryption Bypassing Attack. When forwarding a polymorphic Intent

with encrypted data to a sufficiently permitted destination app (see policies in 5.3), PoliCC

decrypts the contained data. To that end, a special field, isEncrypted, reflects whether the495

extended data of a Polymorphic Intent has been encrypted, so as to prevent the encryption

of ciphertext. However, malware can attempt to bypass the encryption process by maliciously

setting the isEncrypted field of an unencrypted Intent to “true,” an occurrence that we call an

encryption bypassing attack.

To defend against this attack, PoliCC provides a simple but effective defense: when the500

isEncrypted field is set to “true”, PoliCC first decrypts the data and then encrypts it again.

However, decrypting unencrypted data produces an unusable value, out of which the original

Intent data cannot be recovered16. Hence, this design effectively defends against the attacks that

tamper with the isEncrypted field, albeit rendering the transferred data unusable as a result of

invalid data attacks. Our design contends with the possibility of Intent data becoming damaged505

in such cases, as the main objective is to defend against data leakage attacks.

16With PoliCC’s encryption implementation, decrypting unencypted data destroys the original data, which

may not be the case for other encryption implementations.

21

6.3. Computing with Encrypted Data

As discussed above, Intent’s String data become convergently encrypted String objects, and

int/Integer/BigInteger data become homomorphically encrypted HEInteger objects in order

to allow untrusted apps to operate on ciphertext.510

(1) Operating on Encrypted String Data. PoliCC convergently encrypts String value,

so the ciphertext can be compared for equality. The encrypted string’s hash code is computed

via SHA256 [35] to be used as the encryption key. This encryption (i.e., encrypt the string

value with its hash code) uses AES [36] in the CTR mode17. The computed hash is encrypted

with a user-provided key via AES in the CBC mode. Finally, PoliCC combines the encrypted515

String value and the encrypted hash, outputting the combined value as the ciphertext. Since

the encrypted hash’s size is fixed, the outputted ciphertext can be easily separated, so (a) the

destination apps can obtain the encrypted String value to compare with their own convergently

encrypted String values; (b) PoliCC can obtain the hash value to recover the raw String

values.520

Recall the threat model’s scenario from 2.1, in which the system broadcasts an IP address,

received by an untrusted app U (line 1 in the code snippet below). U wants to use the received

IP address to verify its host IP. Since U’s permission set is smaller than the system’s, U receives

a convergently encrypted IP address. To still perform its IP verification operation, U can first

retrieve the received encrypted IP, by obtaining the combined ciphertext’s substring that begins525

at the hash size’s offset (line 2). Then, U can encrypt host IP in its stored collection (lines 3,4),

comparing the received encrypted IP with its own encrypted IP (lines 5), and respond whether

they matched (lines 6,7).

1 String combinedVal = intent.getStringExtra("IP");

2 String recvIP = combinedVal.substring(HASH_SIZE);530

3 String hash = SHA256(hostIP);

4 String encryptedHostIP = AES(hash,hostIP);

5 if (encryptedHostIP.equals(recvIP))

6 return true;

7 return false;535

17CTR is used for performance reasons and can be replaced by other modes.

22

(2) Operating on Encrypted Integer Data. HEInteger takes advantage of the Variant

of Elgamal encryption [34], a partial homomorphic encryption scheme that allows adding and

multiplying the encrypted numeric data. HEInteger extends java.math.BigInteger and over-

rides the add, subtract and multiply methods to provide its own homomorphic versions of540

the addition, subtraction, and multiplication operations, respectively. Thus, HEInteger not only

protects the contained int/Integer/BigInteger numeric data, but also supports mathematical

operations on the contained encrypted data. Besides, HEInteger implements a marker interface

HEType to allow instanceof queries in the apps to determine whether the retrieved integer is

encrypted.545

Recall the scenario from the threat model in 2.1, in which a source app with GPS permissions

obtains and sends user geolocation information to a destination (e.g., a cloud or edge server)

to estimate the distance of the user’s movement18. In our case, the destination is an Android

app U without these permissions. Suppose that every minute, U receives a polymorphic Intent,

whose contained HEInteger object represents the new latitude to which the user moved during550

that minute. Having obtained the HEInteger object (lines 1,2 in the code snippet below), the

app can obtain the difference between the latest value and the saved encrypted old latitude value

(line 4), multiplying the result by 69 (i.e., 1 latitude ≈ 69 miles [37]) (line 5) to estimate the

distance (in miles) by which the user has moved. The final result can be sent back to the source

app without ever decrypting it.555

1 Object newLatitude =

2 (Object)intent.getSerializableExtra("latitude");

3 if (newLatitude instanceof HEType) {

4 oldLatitude.subtract((HEInteger)newLatitude);

5 (HEInteger)oldLatitude.multiply(69); }}560

18GPS information can be used to estimate the movement, for example, one degree of latitude equals approxi-

mately 69 miles (364,000 feet) [37]

23

6.4. Key Management

In its operations, PoliCC manages three types of keys: public, private, and symmetric.

The former two types are used for homomorphically encrypted data. The latter one is used for565

convergently encrypted data and encrypted Intent byte arrays inside Host Intents. To manage

them, PoliCC’s API method getHEIntegerKey() returns public keys that enable developers to

construct their own homomorphically encrypted data for arithmetic operations. When it comes

to the private and symmetric keys, PoliCC places them into its private storage, which can only

be accessed by PoliCC itself. For device-to-device communication, we assume that the user has570

securely paired the communicating devices via Bluetooth (Section 2.3), so the PoliCC agents

running on these devices are considered trustworthy. Once the devices are paired, the paired

PoliCC agents directly synchronize their keys with each other. In the future, to exchange keys

with untrustworthy devices, we plan to add new interfaces that configure PoliCC to use any

available key exchange mechanism, such as Diffie–Hellman exchange [38].575

7. Evaluation

we seek to answer the following questions: Q1. Effectiveness: How effectively does PoliCC

reduce the threats? Q2. Cost: What is the performance overhead of PoliCC on top of the

Android ICC? Q3. Effort: How much additional programming effort is required to use PoliCC

instead of Android ICC?580

7.1. Environment Setup

Because PoliCC is implemented on top of the Xposed framework, our evaluation uses this

framework’s latest version (XposedBridge version-82 and Xposed Installer-3.1.5). Besides, to

make use of as many Android latest features as possible, while guaranteeing the compatibility

of Android apps, we use the Android Nougat (7.x) and Lollipop (5.x), currently run by 28.2%585

(the first highest percentage among the 8 most popular Android versions [39]) and 17.9% (the

fourth highest percentage) of Android devices. These Android releases as well as the latest one

are vulnerable to all the aforementioned attacks. In all experiments, the devices are: Nexus 6

with Android 7.1.1, Moto X with Android 5.1, and Moto G2 with Android 5.1.1.

24

7.2. Evaluation Design590

Q1. Effectiveness. As discussed in 2, PoliCC plug-in replaces ICC to secure its message-

based communication against interception, eavesdropping, and permission escalation attacks.

To evaluate PoliCC’s security mechanisms, we simulated the attacks, discussed in 2.1, and

conducted a case study with three real-world apps, discussed in turn next:

(1) Reproducing Attacks. To test how effectively PoliCC defends apps against the attacks595

described in 2.1, we had to reproduce these attacks with real apps. Unfortunately, several of

the apps, mentioned in the CVE entries describing the attacks, are not open-sourced, while the

target attacks would be impossible to trigger in a black-box fashion. Hence, we had to recreate

the described apps on our own.

(a) To reproduce the interception attack on messages exchanged by apps within the same device,600

we created: source app S, destination app D, and interceptor app U. S invokes startActivity(Intent)

to send an implicit Intent to D. However, by registering the same Intent Filter, the untrusted

app U receives the same Intent object as well. To reproduce the interception attack on messages

exchanged by apps across devices, we implemented another interceptor app U2, which intercepts

the sent Intent objects before they leave the sender device’s boundary, to misroute their delivery605

by tampering with their routing. Without loss of generality, we assumed that the end-user had

designated the destination apps as our untrusted apps U and U2.

(b) To reproduce the eavesdropping attack, we created source and destination apps (i.e., S and

D), with the same system-level permissions, and IP Verification app V with no such permissions.

S invokes sendBroadcast(Intent) to broadcast an Intent to be received by D. The Intent object610

contains an IP address. However, by registering the same Intent Filter, V can receive the same

Intent object as well.

(c) To reproduce the permission escalation attack, we created GC, a geo- location collecting

app, permitted to obtain geolocations from the GPS sensor, and DE, a distance estimating app,

forbidden to read geolocations. To process the obtained geolocations, GC invokes startActivity(Intent)615

to directly send an explicit Intent to DE. DE receives the Intent, retrieves the contained geolocation,

and estimates the distance of user movement.

We simulated the above attacks using Android ICC and PoliCC, and then compared the

respective outcomes. To determine whether PoliCC’s polymorphic delivery correctly responds

to changes in app permissions and device-to-device authorizations, we carried out each attack620

25

scenario with sufficient and insufficient permissions, with allowed and forbidden communication

across devices.

More importantly, to illustrate that apps with insufficient permissions can still execute useful

operations, we reused the IP Verification V and distance estimater (DE) apps from the

attack scenarios (b) and (c) above to check if their original operations (i.e., verify host IP—V,625

estimate distance of movement—DE) can still be executed.

(2) A case study with real-world apps. We also evaluated how effective PoliCC was at

mitigating the aforementioned attacks in three open-source, real-world apps: Intent Intercept

[19] (a debugging app), Mylocation [40] (a GPS app), and QKSMS [41] (a messaging app).

By registering numerous Intent Filters, Intent Intercept intercepts implicit Intents and ex-630

amines their data fields. Having the geolocation permissions (ACCESS_COARSE_LOCATION and

ACCESS_FINE_LOCATION), Mylocation can obtain the user’s geolocation and share it with other

apps via an implicit Intent with the ACTION_SEND action. Using its Intent Filter for the

ACTION_SEND action, QKSMS can receive the Intents containing this action. However, QKSMS has

no geolocation permissions. In our case studies, we always used Mylocation as the source and635

QKSMS as the destination.

Q2. Cost. To determine whether PoliCC’s performance overhead is acceptable, we compare

the respective execution time and energy consumption19 taken to deliver Intent data from the

source to the destination app by PoliCC and the Android ICC. Our measurements (a) exclude

prompting the user to approve the Intent transmission; (b) fix the length of intent data items640

(32 bytes for the String objects); (c) repeat all executions 20 times and then compute the

average execution time; (d) trigger startActivity/startBroadcast 100 times in 5 minutes,

measuring the amount of energy consumed by the participating apps and the system; and (e) fix

the experimental device (i.e., Moto G2) to compare PoliCC with the Android ICC. Besides, we

isolate the time PoliCC takes to deliver Intents, including the hook points and device-to-device645

transmission (if applicable) to identify the performance bottlenecks.

Q3. Effort. To confirm PoliCC’s portability, we test it on combinations of devices that run the

Lolipop and Nougat Android framework versions. To estimate PoliCC’s programming effort,

we measure the uncommented lines of code (ULOC) required to modify the original source app’s

19We measure energy consumption with PowerTutor 1.4 [42].

26

ICC code that sends an Intent to a destination app on the same or a paired device to (a) access650

the Intent data, and (b) retrieve and use homomorphically/convergently encrypted data.

Table 1: Effectiveness of PoliCC

Attacks Permission
Data Retrieved Successful Defense Operations Authorization

(across devices)
D-to-D

ICC PoliCC ICC PoliCC ICC PoliCC

Interception

—within device

insufficient raw encrypted × X - -
forbidden ×

sufficient raw raw × × - -

Interception

—across devices

- - no data - X - - allowed X

Eavesdropping

insufficient raw encrypted × X X X
forbidden ×

sufficient raw raw × × X X

insufficient - encrypted - X - X
allowed X

sufficient - raw - × - X

Permission Escalation

insufficient raw encrypted × X X X
forbidden ×

sufficient raw raw × × X X

insufficient - encrypted - X - X
allowed X

sufficient - raw - × - X

7.3. Results

I. Effectiveness.

Reproducing Attacks Table 1 summarizes the outcomes of reproducing each of the attacks:

(1) For the interception attack on messages exchanged by apps within the same device (i.e.,655

row “Interception—within device”), whether the interceptor app U’s permissions are sufficient or

not, Android ICC always delivers the Intent’s raw data to U, thus leaking sensitive data to an

untrusted party. In contrast, if U’s permission set is smaller than that of the source app (i.e.,

insufficient permissions), PoliCC delivers encrypted Intent data, thus successfully preventing

the attack. For the interception attack on messages exchanged by apps across devices (i.e., row660

“Interception—across devices”), after U2 tampers with the Host Intent’s routing information, its

examination fails causing PoliCC to deliver no data to the destination app, thus repelling the

attack.

(2) For the eavesdropping attack, whether the IP Verifi- cation V’s permissions are sufficient

or not, the Android ICC always delivers a raw IP address, thus leaking the data to V. In contrast,665

when V’s permission set is smaller than that of the source app, PoliCC delivers convergently

27

encrypted IP address. Although V cannot access the raw data, it can still validate the host IP

using the received encrypted IP address (column “Operations”).

(3) For the permission escalation attack, similar to the attacks above, the Android ICC

always delivers an explicit Intent with a raw geolocation to the distance estimater (DE), so670

the attack succeeds in exfiltrating the sensitive geolocation. In contrast, PoliCC Intent data’s

encryption status is determined by the source/destination permission relationship. When DE has

insufficient permissions, PoliCC delivers homomorphically encrypted longitude and latitude

values, so their raw values are not leaked. More importantly, DE can still perform its distance

estimation operation to approximate the distance by computing with the encrypted values.675

In addition, PoliCC’s across-devices transmission works as expected: with “allowed” au-

thorization, the device-to-device Intent transmission always succeeds (column “D-to-D”); with

“forbidden” authorization, the Intent cannot be transferred across the device boundary. More-

over, whenever the destination app is running on the same or different devices, PoliCC correctly

delivers no data, raw data, or encrypted data, by examining the routing information and the per-680

mission relationships between the source/destination apps. In summary, the Android ICC leaves

the data vulnerable to all three attacks, while PoliCC prevents these attacks in the cases of com-

munication within and across devices, while still preserving the ability of untrusted destination

apps to operate on the received encrypted message data.

(2) Case study with real-world apps.685

Case 1 (interception): (a) QKSMS acts as the malicious app that intercepts the implicit Intents

sent by Mylocation. In the original setup, QKSMS always obtains the raw geolocation value.

With PoliCC, since QKSMS lacks the geolocation permissions, it obtains only a homomorphically

encrypted geolocation. With the geolocation permissions added to QKSMS’s manifest file, it is

the end-user who determines the app’s data access by granting or declining the geolocation690

permissions, so QKSMS obtains the raw or encrypted geolocation values, respectively.

(b) Intent Intercept acts as the malicious app that intercepts the implicit Intents. The

app is configured to always obtain the implicit Intents sent by Mylocation. However, as it lacks

GPS permissions, Intent Intercept can only access geolocation data that is homomorphically

encrypted, so the raw geolocations are never leaked.695

Case 2 (eavesdropping): To execute an eavesdropping attack, Mylocation sends the same

Intent as in Case 1 via an added sendBroadcast. QKSMS receives this Intent via an added

28

broadcast receiver, registered for the ACTION_SEND action. In the original setup, QKSMS always

obtains the raw geolocation, irrespective of whether the end-user grants/declines the geolocation

permissions. With PoliCC, it is the end-user who determines the app’s data access by granting700

or declining the geolocation permissions, so QKSMS obtains the raw or encrypted geolocation

values, respectively.

Case 3 (permission escalation): To execute a permission escalation attack, Mylocation cre-

ates an explicit Intent containing a geolocation, sending it to an added Activity in QKSMS. In

the original setup, this permission escalation attack always succeeds. With PoliCC, the attack705

always fails, as long as QKSMS has no geolocation permissions.

Q2. Cost. Table 2 (at the top) shows PoliCC’s overheads. Specifically, PoliCC’s startActivity

increases T by 28.3ms (49.6%), Eapp by 0.8J (10.1%), and ∆Esys by 1mW (2.7%); sendBroadcast

increases T by 40.4ms (15.4 times), Eapp by 0.5J (9.4%), ∆Esys by 2mW(11.1%), as compared

to the Android ICC counterparts. Table 2 (at the bottom) breaks down the execution time per710

each PoliCC procedure. In both startActivity and sendBroadcast, the Sending/Receiving

Points perform similarly: these procedures’ hook and re-encapsulation mechanisms are fixed for

all operations. Not surprisingly, when communicating across paired devices, the majority of time

is spent in the Bluetooth communication itself, which is a fixed cost.

Quantity-wise, since PoliCC increases T by 40.4ms (43.2 - 2.8 in sendBroadcast column) at715

most, its execution time overheads are in line with other related solutions (e.g., [43]’s performance

overhead is ≈39ms), with the total latency much lower than the Android response time limit

(5000 ms [44]). Also, since PoliCC increases Eapp by 0.8J (8.7 - 7.9 in startActivity column)

and ∆Esys by 2mW (20 - 18) at most, its energy consumption overheads are negligible. It is

PoliCC’s protection mechanisms (i.e., re-encapsulation, encryption/decryption) that incur these720

performance and energy overheads.

Percentage-wise, PoliCC increases Eapp by 10.1% (8.7−7.9
7.9 ∗ 100% in startActivity) and

∆Esys by 11.1% (20−18
18 ∗100% in sendBroadcast) at most, so the energy consumption overheads

are negligible. In contrast, the execution time overheads are significant: PoliCC increases T

by 15.4 times (43.2
2.8 in sendBroadcast column) and 49.6% (85.3−57.0

57.0 ∗ 100% in startActivity).725

We report our evaluation results from the perspectives of both absolute numbers and percent-

age increases, as our ultimate objective is to make it possible for developers to make informed

decisions on the suitability of our solution in specific scenarios.

29

For cross-device communication, the highest performance and energy overheads are incurred

by sending an Intent to start an Activity across devices (T of 539.9 ms, Eapp of 11.4J, and730

∆Esys of 61mW). The observed latency is in line with existing cross-device communication

scenarios[45][46][47], while the energy consumption overheads are negligible, particularly due to

battery capacities soaring and fast charging technologies becoming mainstream.

Table 2: PoliCC’s Overheads (milliseconds–ms, Joules–J, milliwatt–mW)

ICCs
startActivity

(T / Eapp / ∆Esys)*

sendBroadcast

(T / Eapp / ∆Esys)*

Android ICC 57.0 ms / 7.9 J / 37 mW↑ 2.8 ms / 5.3 J / 18 mW↑

PoliCC (within device) 85.3 ms / 8.7 J / 38 mW↑ 43.2 ms / 5.8 J / 20 mW↑

PoliCC (across devices) 539.9 ms / 11.4 J / 61 mW↑ 333.1 ms / 9.2 J / 55 mW↑

Operations Sending Point Receiving Point Device-to-Device

startActivity 28.2 ms 13.5 ms 460.7 ms

sendBroadcast 28.8 ms 9.5 ms 202.9 ms

* T : execution time (ms); Eapp: energy consumed by source/destination apps (J);

∆Esys: additional system energy consumed by ICCs (mW).

Q3. Effort. We first confirm PoliCC’s portability by testing its operations on three Android

devices/versions: Nexus 6/Android 7.1.1, Moto X/Android 5.1, and Moto G2/Android 5.1.1 by735

running our subject apps on these devices in different combinations. This test has not revealed

any deployment and operational issues. For source apps, the PoliCC API is indistinguishable

from that of the Android ICC as well as for sufficiently permitted destination apps, as the

delivered Polymorphic Intents return raw data. With insufficient permissions, additional code is

required in destination apps to handle the delivered homomorphically and convergently encrypted740

data.

Nevertheless, the extra programming effort is small, as Table 3 demonstrates: in the source

apps, PoliCC requires no deviation from the familiar Android ICC API (column “Send”). In

the destination apps, the code for retrieving, using, and creating int/Integer/BigInteger and

String objects require extra lines of code (columns “Retrieve”, “Use”, and “Create”): (a) For745

BigInteger and String objects (columns “BigInt.” and “Str.”), due to the inheritance hierar-

chies of their operations, the code for retrieving them is indistinguishable between the Android

ICC and PoliCC (column “Retrieve”). To use the retrieved String object, 1 extra LOC is

30

required to separate its convergently encrypted value. To use the retrieved BigInteger object, 1

extra LOC is required to check whether the data is homomorphically encrypted (column “Use”).750

(b) For int/Integer values (columns “int”/“Int.”), their original receiving and operating meth-

ods are replaced with HEInteger’s methods (add, subtract, and multiply), taking 4 extra

LOCs at most (columns “Retrieve” and “Use”). Finally, it takes 3 extra LOC to create homo-

morphically and convergently encrypted int/Integer/BigInteger and String values (column

“Create”).755

Table 3: PoliCC’s Extra Prog. Effort (ULOC)

Send
Retrieve Use Create

int/Int./BigInt. Str. int/Int./BigInt. Str. int/Int./BigInt. Str.

0 1/1/0 0 4/4/1 1 3/3/3 3

7.4. Discussion

In this section, we first discuss our key evaluation results, and then present takeaways.

• performance characteristics: PoliCC applies the same security enhancement to both start-

Activity and sendBroadcast, which in turn adds quite similar latency overheads: 28.3 ms

for startActivity and 40.4ms for sendBroadcast. However, percentage-wise, PoliCC760

increases the execution time of sendBroadcast by 1540%, while startActivity only by

49.6%. These differences is an artifact of how Android ICC implements these commu-

nication mechanisms. In the original form, sendBroadcast takes about 2.8ms, while

startActivity 57.0ms, a 2000% difference. Adding the same overhead to two dras-

tically different baselines explains the vast dissimilarities in the resulting overhead val-765

ues. I.e.: startActivity increased by 49.6% (57.0ms → 85.3ms, added extra 28.3 ms),

sendBroadcast by 1540% (2.8ms → 43.2ms, added extra 40.4ms). In fact, even with this

large performance overhead, the end user should not suffer from poor responsiveness: even

43.2ms (as compared to the original 2.8ms) is still less than 1/20th of a second20.

20This total latency is still much lower than the Android response time limit (5000 ms [44]).

31

Takeaway-1 : To mitigate the performance overhead, one can integrate our solution

with the Android system, which reduces the hooking process (Section 6.1) to increase

execution speed. One can also refine the security mechanism for sendBroadcast

(e.g., relatively weaken the encryption phase or use a faster encryption algorithm)

in order to speed it up.
770

• false positives/negatives: PoliCC’s HTPD implementation may suffer from false posi-

tives/negatives if app permissions are granted incorrectly: (1) sufficient permissions are

granted to a malicious app (i.e., false-negatives); (2) insufficient permissions are granted to

a benign app (i.e., false-positives).

Takeaway-2 : To mitigate such false positives/negatives, one can notify users of

potential security attacks by using PoliCC’s notification feature. As an extra

feature (5.2), PoliCC’s Notify module can be configured to report the transmission

information (e.g., source/destination, permissions, data types, actions) to the user,

who can then stop the delivery of any PoliCC Intents. Further, the Notify module

can also mitigate the denial of service attacks: it can detect and block notifications

floods from any source app.
775

7.5. Limitation

As a reference implementation, PoliCC did not cover all the ICC Intent scenarios, which

contained limitations below.

• data type: As discussed in Section 5, PoliCC only supports operating on string and

integer values, including String, int, Integer, and BigInteger. However, it lacks support780

for other data types (e.g., string / int arrays, char, long, Parcelable, etc.) [48]. In fact, in

order to allow untrusted apps to operate on ciphertext, PoliCC converts Intent’s String

data into convergently encrypted String objects, and int/Integer/BigInteger data into

homomorphically encrypted HEInteger objects. Similarly, to enable other types, we can

either convert the data into our current homomorphic/convergent encryption objects, or785

32

create new homomorphic/convergent encryption classes for them. Such an extension would

only take an additional engineering effort.

• intercepting communication APIs: As discussed in Section 5, PoliCC only intercepts

startActivity and sendBroadcast rather than their relevant communication APIs (e.g.,

startActivityFromChild). We support “startActivity” because it is the most fre-790

quently used, and “sendBroadcast” because its data flow allows multiple destinations

(discussed in Section 5.1-(3)). It should be possible to reuse much of the existing code for

intercepting startActivity and sendBroadcast to extend this feature to other APIs.

• hooking mechanism: PoliCC performs Hook mechanism via Xposed. Note that we use

Xposed to create a viable proof of concept to be able to evaluate PoliCC’s security-795

enhancing properties. To commercially deploy HTPD, one can fully integrate it and its

mechanisms with any Android release and other mobile platforms, despite the peculiarities

of our reference implementation.

8. Related Work

Data flow & ICC calls Monitoring. Most of the existing solutions counteract data leakage800

attacks by monitoring the data flow or ICC calls. TaintDroid [11] traces data flows by labeling

sensitive data and transitively applying labels as the data propagates through program variables,

files, and interprocess messages. If any tainted data is to leave the system via a sink (e.g., network

interface), the system notifies the user about the coming data leakage. FlowDroid [12] applies

static taint analysis to check if any app lifecycle contains data leaks. XManDroid [15] tracks and805

analyzes the ICC data transferred in Intent objects at runtime to enforce the app’s compliance

with the defined permission policy. QUIRE [13] enables users to examine and terminate the

chain of requests associated with an ICC call. ComDroid [18] statically analyzes *.dex binaries of

Android apps to log potential component vulnerabilities. Besides, ComDroid tracks how an Intent

object changes moving from its source to destination. Other state-of-the-art Intent vulnerabilities810

detectors (e.g., IccTa [29], DINA [49], DroidRA [50], SEALANT [51], IntentScope [52]) further

improve the above methods for monitoring data flows & ICC calls. However, their reliance on

overly restrictive policies prevents them from supporting Android application-specific data flows,

also causing false-positives when data flows change unpredictably. In contrast, HTPD model

33

systematically defends against data leakage attacks, requiring neither data flow nor call chain815

tracking.

Encryption. Homomorphic encryption enables computational operations on ciphertext, with

some prior applications to mobile cloud computing. Carpov et al. [53] use homomorphic encryp-

tion to preserve the privacy of cloud-based health data. Drosatos et al. [54] use homomorphic

encryption to preserve the privacy of crowd-sourced data accessed via the cloud. Besides, homo-820

morphic encryption also can be used to compute the proximity of users in mobile social networks:

Carter et al. [55] use homomorphic encryption to find common locations and friends via private

set intersection operations that preserve user privacy. Convergently encrypted ciphertext can be

compared, so this encryption can securely identify duplicated records. Bennett et al.’s convergent

encryption-based encoding scheme allows boolean searches on ciphertext [56]. Anderson et al.825

apply convergent encryption to securely de-duplicate the number of backup files [57]. Wilcox-

O’Hearn et al. apply convergent encryption to build a secure distributed storage [58]. In fact,

many commercial systems used convergent encryption to enhance user data security and privacy:

Bitcasa [59], Ciphertite [60], Freenet [61], flud [62], and GNUnet [63]. PoliCC brings homo-

morphic / convergent encryption to mobile computing to secure message-based communication830

while enabling untrusted apps to execute useful operations.

Inter-Device Data Exchange. Several prior works focus on supporting Android devices to

exchange data. RICCi [45] makes it possible to exchange data peer-to-peer or over different

networks by extending the built-in Intent API. SAMD [64] supports platform-level device-to-

device collaboration, with the collaborating devices sharing code/resources and executing remote835

functionalities. Sip2Share [65] shares Services and Activities across devices by extending the

Android SDK. With ShAir, distributed mobile apps share data P2P [66]. PoliCC enables

devices to share data via a unified Intent API, while preserving the shared data’s security.

9. Conclusions

We have presented HTPD, hidden transmission and polymorphic delivery, a novel message-840

based communication model that secures message-based communication while allowing untrusted

apps to operate on the received message data. As a reference implementation of HTPD, PoliCC

plug-in replaces and extends Android ICC to defend against common data leakage attacks within

and across devices, while also providing a uniform API for transmitting Intents. Our evaluation

demonstrates that PoliCC mitigates interception, eavesdropping, and permission escalation845

34

attacks by trading off performance costs, programming effort overheads, and security. In addition,

we hope that our work would lead to HE and CE becoming widely accepted in the design space

of mobile message-based communication.

As future work directions, we plan to enable PoliCC to support more data types and communi-

cation APIs (e.g., startActivityFromResult) as well as further enhance its protection capabilities,850

for example, applying deep learning-based anomaly detection to identify the Intents that need

to be protected, and utilizing Android Trusted Execution Environment (Trusty) to secure the

sensitive operations.

Acknowledgements

The authors thank the anonymous reviewers, whose insightful comments helped improve this855

paper. This research is supported by NSF Grant #1717065 and Cisco Research Grant CG#

1367161.

References

[1] Y. Liu, B. D. Cruz, E. Tilevich, Htpd: Secure and flexible message-based communication

for mobile apps, in: Proceedings of the 17th EAI International Conference on Security and860

Privacy in Communication Networks (SecureComm 2021), 2021.

[2] L. Lu, Z. Li, Z. Wu, W. Lee, G. Jiang, Chex: statically vetting android apps for component

hijacking vulnerabilities, in: Proceedings of the 2012 ACM conference on Computer and

communications security, ACM, 2012, pp. 229–240.

[3] K. Xu, Y. Li, R. H. Deng, Iccdetector: Icc-based malware detection on Android, IEEE865

Transactions on Information Forensics and Security 11 (6) (2016) 1252–1264.

[4] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, B. Shastry, Towards taming

privilege-escalation attacks on Android, in: NDSS, 2012.

[5] Z. Fang, W. Han, Y. Li, Permission based Android security: Issues and countermeasures,

computers & security 43 (2014) 205–218.870

[6] A. Bosu, F. Liu, D. D. Yao, G. Wang, Collusive data leak and more: Large-scale threat anal-

ysis of inter-app communications, in: Asia Conference on Computer and Communications

Security, ACM, 2017, pp. 71–85.

35

[7] Common Vulnerabilities and Exposures, https://cve.mitre.org/ (2019).

[8] CVE-2018-9489, cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9489.875

[9] CVE-2018-15752, cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15752.

[10] J. Blasco, T. M. Chen, I. Muttik, M. Roggenbach, Wild android collusions.

[11] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,

A. N. Sheth, Taintdroid: an information-flow tracking system for realtime privacy monitoring

on smartphones, ACM Transactions on Computer Systems (TOCS) 32 (2) (2014) 5.880

[12] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,

P. McDaniel, Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware

taint analysis for Android apps, Acm Sigplan Notices.

[13] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, D. S. Wallach, Quire: Lightweight provenance

for smart phone operating systems, in: USENIX Security Symposium, Vol. 31, 2011, p. 3.885

[14] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, E. Chin, Permission re-delegation: Attacks

and defenses., in: USENIX Security Symposium, 2011.

[15] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, Xmandroid: A new Android

evolution to mitigate privilege escalation attacks, Technische Universität Darmstadt, Tech-

nical Report TR-2011-04.890

[16] Common Attack Pattern Enumeration and Classification, capec.mitre.org/.

[17] Intent Intercept, capec.mitre.org/data/definitions/499.html (2019).

[18] E. Chin, A. P. Felt, K. Greenwood, D. Wagner, Analyzing inter-application communica-

tion in Android, in: Proceedings of the 9th international conference on Mobile systems,

applications, and services, ACM, 2011, pp. 239–252.895

[19] Dev tool to view inter-app communication, f-droid.org/en/packages/de.k3b.android.

intentintercept/ (2019).

[20] M. Mimoso, Mobile app collusion can bypass native android security, https://tinyurl.

com/jpndk7g (2016).

36

https://cve.mitre.org/
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9489
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15752
capec.mitre.org/
capec.mitre.org/data/definitions/499.html
f-droid.org/en/packages/de.k3b.android.intentintercept/
f-droid.org/en/packages/de.k3b.android.intentintercept/
f-droid.org/en/packages/de.k3b.android.intentintercept/
https://tinyurl.com/jpndk7g
https://tinyurl.com/jpndk7g
https://tinyurl.com/jpndk7g

[21] Google, Google play, play.google.com/store/apps?hl=en (2018).900

[22] A. Acar, H. Aksu, A. S. Uluagac, M. Conti, A survey on homomorphic encryption schemes:

Theory and implementation, ACM Computing Surveys (CSUR) 51 (4) (2018) 79.

[23] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, M. Theimer, Reclaiming space from

duplicate files in a serverless distributed file system, in: Proceedings 22nd international

conference on distributed computing systems, IEEE, 2002, pp. 617–624.905

[24] Y. Duan, Distributed key generation for encrypted deduplication: Achieving the strongest

privacy, in: Proceedings of the 6th edition of the ACM Workshop on Cloud Computing

Security, ACM, 2014, pp. 57–68.

[25] Xposed, Xposed framework api, https://api.xposed.info/reference/packages.html

(2019).910

[26] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, Y. Le Traon, Effective

inter-component communication mapping in Android: An essential step towards holistic

security analysis, in: USENIX Security, 2013.

[27] L. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, Parameter values of android apis: A pre-

liminary study on 100,000 apps, in: 2016 IEEE 23rd International Conference on Software915

Analysis, Evolution, and Reengineering, Vol. 1, 2016, pp. 584–588.

[28] Y. Zhou, X. Jiang, Dissecting Android malware: Characterization and evolution, in: 2012

IEEE symposium on security and privacy, IEEE, 2012, pp. 95–109.

[29] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,

D. Octeau, P. McDaniel, Iccta: Detecting inter-component privacy leaks in Android apps,920

in: Proceedings of the 37th International Conference on Software Engineering-Volume 1,

IEEE Press, 2015, pp. 280–291.

[30] F-Droid, F-droid, f-droid.org/ (2019).

[31] H. Wang, J. Si, H. Li, Y. Guo, RmvDroid: towards a reliable Android malware dataset with

app metadata, in: Proceedings of the 16th International Conference on Mining Software925

Repositories, IEEE Press, 2019, pp. 404–408.

37

play.google.com/store/apps?hl=en
https://api.xposed.info/reference/packages.html
f-droid.org/

[32] B. Gruver, Smali/Baksmali Tool, github.com/JesusFreke/smali (2015).

[33] Google, Send and sync data on wear, https://developer.android.com/training/

wearables/data-layer (2019).

[34] I. Damg̊ard, J. Groth, G. Salomonsen, The theory and implementation of an electronic930

voting system, in: Secure Electronic Voting, Springer, 2003, pp. 77–99.

[35] Standard, Secure Hash, Fips pub 180-2, National Institute of Standards and Technology.

[36] F. P. Miller, A. F. Vandome, J. McBrewster, Advanced Encryption Standard.

[37] U.S. Geological Survey, How much distance does a degree, minute, and second cover on your

maps? (2019).935

[38] E. Rescorla, Diffie-hellman key agreement method, Tech. rep. (1999).

[39] Google, Distribution dashboard, developer.android.com/about/dashboards.

[40] GDR!, My location, https://tinyurl.com/yh9c8qok (2019).

[41] Moez BhattiCommunication, Qksms, https://tinyurl.com/k8dd4u2 (2019).

[42] L. Z. Mark Gordon, B. Tiwana, A power monitor, ziyang.eecs.umich.edu/projects/940

powertutor/ (2019).

[43] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, R. Morris, Information

flow control for standard OS abstractions, in: ACM SIGOPS Operating Systems Review,

Vol. 41, ACM, 2007, pp. 321–334.

[44] Google, ANRs, developer.android.com/topic/performance/vitals/anr.945

[45] B. D. Cruz, E. Tilevich, Intent to share: enhancing android inter-component communica-

tion for distributed devices, in: 2018 IEEE/ACM 5th International Conference on Mobile

Software Engineering and Systems (MOBILESoft), IEEE, 2018, pp. 94–104.

[46] H. Kang, K. Jeong, K. Lee, S. Park, Y. Kim, Android rmi: a user-level remote method invo-

cation mechanism between android devices, The Journal of Supercomputing 72 (7) (2016)950

2471–2487.

38

github.com/JesusFreke/smali
https://developer.android.com/training/wearables/data-layer
https://developer.android.com/training/wearables/data-layer
https://developer.android.com/training/wearables/data-layer
developer.android.com/about/dashboards
https://tinyurl.com/yh9c8qok
https://tinyurl.com/k8dd4u2
ziyang.eecs.umich.edu/projects/powertutor/
ziyang.eecs.umich.edu/projects/powertutor/
ziyang.eecs.umich.edu/projects/powertutor/
developer.android.com/topic/performance/vitals/anr

[47] M. Le, S. W. Clyde, Ingrim: A middleware to enable remote method invocation routing

in multiple group device-to-device networks, in: 2018 IEEE International Conference on

Internet of Things (iThings) and IEEE Green Computing and Communications (Green-

Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data955

(SmartData), IEEE, 2018, pp. 847–857.

[48] Google, Android Developers : Intent API, https://developer.android.com/reference/

android/content/Intent#putExtra(java.lang.String,%20int[]) (2022).

[49] M. Alhanahnah, Q. Yan, H. Bagheri, H. Zhou, Y. Tsutano, W. Srisa-an, X. Luo, Detecting

vulnerable Android inter-app communication in dynamically loaded code, in: IEEE INFO-960

COM 2019, IEEE, 2019, pp. 550–558.

[50] L. Li, T. F. Bissyandé, D. Octeau, J. Klein, Droidra: Taming reflection to support whole-

program analysis of Android apps, in: Proceedings of the 25th International Symposium on

Software Testing and Analysis, ACM, 2016, pp. 318–329.

[51] Y. K. Lee, P. Yoodee, A. Shahbazian, D. Nam, N. Medvidovic, SEALANT: a detection965

and visualization tool for inter-app security vulnerabilities in Android, in: Proceedings of

the 32nd IEEE/ACM International Conference on Automated Software Engineering, IEEE

Press, 2017, pp. 883–888.

[52] Y. Jing, G.-J. Ahn, A. Doupé, J. H. Yi, Checking intent-based communication in Android

with intent space analysis, in: Proceedings of the 11th ACM on Asia Conference on Com-970

puter and Communications Security, ACM, 2016, pp. 735–746.

[53] S. Carpov, T. H. Nguyen, R. Sirdey, G. Constantino, F. Martinelli, Practical privacy-

preserving medical diagnosis using homomorphic encryption, in: Cloud Computing, IEEE,

2016, pp. 593–599.

[54] G. Drosatos, P. S. Efraimidis, I. N. Athanasiadis, E. D’Hondt, M. Stevens, A privacy-975

preserving cloud computing system for creating participatory noise maps, in: Computer

Software and Applications Conference (COMPSAC), IEEE 36th Annual, IEEE, 2012, pp.

581–586.

39

 https://developer.android.com/reference/android/content/Intent#putExtra(java.lang.String,%20int[])
 https://developer.android.com/reference/android/content/Intent#putExtra(java.lang.String,%20int[])
 https://developer.android.com/reference/android/content/Intent#putExtra(java.lang.String,%20int[])

[55] H. Carter, C. Amrutkar, I. Dacosta, P. Traynor, For your phone only: custom protocols for

efficient secure function evaluation on mobile devices, Security and Communication Networks980

7 (7) (2014) 1165–1176.

[56] K. Bennett, C. Grothoff, T. Horozov, I. Patrascu, Efficient sharing of encrypted data, in:

ACISP, Springer, 2002.

[57] P. Anderson, L. Zhang, Fast and secure laptop backups with encrypted de-duplication., in:

LISA, Vol. 10, 2010, p. 24th.985

[58] Z. Wilcox-O’Hearn, B. Warner, Tahoe: the least-authority filesystem, in: 4th ACM inter-

national workshop on Storage security and survivability, 2008.

[59] Bitcasa, http://www.bitcasa.com/ (2019).

[60] Ciphertite, http://www.ciphertite.com (2019).

[61] Freenet, https://freenetproject.org/ (2019).990

[62] flud, http://flud.org (2019).

[63] Gnunet, http://gnunet.org (2019).

[64] J. Lee, H. Lee, B. Seo, Y. C. Lee, H. Han, S. Kang, SAMD: Fine-grained application sharing

for mobile collaboration, in: 2018 IEEE International Conference on Pervasive Computing

and Communications (PerCom), IEEE, 2018, pp. 1–10.995

[65] G. Canfora, F. Melillo, Sip2Share–a middleware for mobile peer-to-peer computing., IC-

SOFT 12 (2012) 445–450.

[66] D. J. Dubois, Y. Bando, K. Watanabe, H. Holtzman, ShAir: Extensible middleware for

mobile peer-to-peer resource sharing, in: Proceedings of the 2013 9th joint meeting on

foundations of software engineering, ACM, 2013, pp. 687–690.1000

40

http://www.bitcasa.com/
http://www.ciphertite.com
https://freenetproject.org/
http://flud.org
http://gnunet.org

	Introduction
	Threat Model
	Examples of Data Leakage Attacks
	Untrusted Data Processing
	Assumptions and Scope

	The HTPD Model
	Definitions
	Transmission Mechanisms
	HTPD in Practice
	Enabling Technologies

	An Empirical Study of ICC Intent
	Summary of Prior Findings
	Studying ICC Usage in the Wild

	PoliCC Design
	Design Choices
	System Architecture
	Permission Policies

	Implementation
	Hidden Transmission
	Polymorphic Delivery
	Computing with Encrypted Data
	Key Management

	Evaluation
	Environment Setup
	Evaluation Design
	Results
	Discussion
	Limitation

	Related Work
	Conclusions

