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Abstract—Distributed applications enhance their execution by
using remote resources. However, distributed execution incurs
communication, synchronization, fault-handling, and security
overheads. If these overheads are not offset by the yet larger
execution enhancement, distribution becomes counterproductive.
For maximum benefits, the distribution’s granularity cannot be
too fine or too crude; it must be just right. In this paper, we
present a novel approach to re-architecting distributed appli-
cations, whose distribution granularity has turned ill-conceived.
To adjust the distribution of such applications, our approach
automatically reshapes their remote invocations to reduce ag-
gregate latency and resource consumption. To that end, our
approach insources a remote functionality for local execution,
splits it into separate functions to profile their performance, and
determines the optimal redistribution based on a cost function.
Redistribution strategies combine separate functions into single
remotely invocable units. To automate all the required program
transformations, our approach introduces a series of domain-
specific automatic refactorings. We have concretely realized our
approach as an analysis and automatic program transformation
infrastructure for the important domain of full-stack JavaScript
applications, and evaluated its value, utility, and performance on
a series of real-world cross-platform mobile apps. Our evaluation
results indicate that our approach can become a useful tool for
software developers charged with the challenges of re-architecting
distributed applications.

Keywords-distributed applications; re-architecting; refactor-
ing;

I. INTRODUCTION

Distribution has become part and parcel of the majority
of computing domains. By using remote resources, a dis-
tributed application can enhance its functionality or improve
its quality of service. Sometimes distribution is inevitable,
when certain resources can be accessed only remotely. In
other cases, distribution is a choice: the same functionality
can be executed by means of local or remote resources.
Distributed execution is not free though—invoking remote
functionality incurs communication, synchronization, and pro-
gramming effort costs. These costs must be offset by the
attendant execution enhancement for distribution to remain
beneficial. Otherwise, distributed execution only incurs over-
heads, which hurt both performance and maintainability. Of
course, if some functionality can be accessed only remotely,
these overheads are justified and unavoidable. However, if
distribution is introduced to improve an application’s quality of

service, it must be introduced at the right level of granularity,
when opting to execute a functionality remotely over the
network indeed improves application performance. Introducing
too much distribution for the expected benefits is a known
architectural problem, documented as the Nano-Service Anti-
Pattern [1].

Distributed execution is often used to improve performance.
For example, in mobile apps, as the computing resources
of remote, cloud-based servers surpass those of mobile de-
vices, a functionality can be executed faster remotely than
locally. However, executing a remote cloud-based function-
ality requires passing parameters and receiving results over
the network. Network communication significantly compli-
cates the device/cloud performance equation. Transferring data
across a network imposes latency and energy consumption
costs. For low-latency, high-bandwidth networks, these costs
are negligible. For limited networks, these costs can grow
rapidly and unexpectedly, as operating over high-loss networks
requires retransmission, which consumes additional battery
power. Hence, the added overhead of network transfer bur-
dens the mobile device’s battery budgets, often negating the
performance benefits of executing a local functionality at a
remote cloud-based server [2].

To maximize the benefits of distribution, it has to follow
the Goldilocks Principle [3], [4]: it cannot be introduced at
a granularity that is too fine or too crude; it must be just
right. In this paper, we study the problem of re-architecting
distributed applications to adjust their distribution granularity
as a means of improving performance and efficiency. Our
approach comprises the following steps: (1) our novel domain-
specific refactoring—Client Insourcing—automatically inte-
grates a remote functionality with the local code, creating
a semantically equivalent centralized application variant; (2)
the variant’s performance is profiled, with a cost function-
based heuristic determining how to reshape the original dis-
tribution to improve performance and efficiency; (3) a series
of automatic refactorings reshape and redistribute the original
remote functionality into new remotely invoked units, whose
aggregate latency and resource consumption are minimized
thus boosting distribution benefits.

The contribution of this paper is four-fold:
1) An automatic redistribution approach for distributed ap-
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plications that improves their performance and efficiency
by reshaping their remote functionalities.

2) A set of domain-specific automatic refactorings for
moving remote functionalities to the client as well as
their reshaping and redistribution.

3) A cost function-based heuristic for identifying how to
improve the performance of distributed applications by
reshaping their remote functionality.

4) A reference implementation of our approach that con-
cretely realizes our design and a systematic evaluation
of our approach’s value, utility, and performance.

The rest of this paper is structured as follows. Section II
describes our approach for assessing and improving the utility
of distributed functionality. Section III introduces the refer-
ence implementation of our approach. Section IV evaluates
the development and performance aspects of our approach.
Section V discusses the applicability and limitations of our
approach. Section VI compares our approach to the related
state of the art. Section VII presents concluding remarks and
outlines future work directions.

II. ASSESSING AND IMPROVING THE UTILITY OF
DISTRIBUTED FUNCTIONALITY

We target distributed applications that comprise the client
and server parts, communicating with each other by means
of distribution middleware, such as the HTTPClient library or
CORBA [5]. Our application domain are full-stack JavaScript
applications, in which both the client and server parts are
written in JavaScript; this domain is becoming increasingly
widespread due to the popularity of Node.js and other server-
side JavaScript frameworks. The client invokes server-side
remote functionality, which executes corresponding code and
returns back the results to the client. The client passes input
parameters, and the server returns results. The middleware
mechanism serializes and deserializes both the parameters and
results to transfer them across the network and make them
available for computation.

A. Motivating Example

Consider Bookworm1, a book reader implemented as a full-
stack JavaScript mobile app. In addition to enabling users to
read books on their mobile devices, Bookworm has a feature
that reports statistical information extracted from the text of
the books. To that end, the app features a remote service that
given a book title, analyzes its text and returns the results
of this analysis. Because text processing is computationally
intensive, it is commonly performed remotely at a powerful
server rather than locally on a mobile device. The original
implementation of this remote text analysis service runs all
analysis tasks (e.g., overall length, punctuation percentage,
unique vocabulary, etc.) in sequence, returning their results in
bulk. For large books, waiting for all the tasks to complete
before any results become available can degrade the user
experience. Hence, a possible restructuring could separate

1https://github.com/davidwoodsandersen/Bookworm

the unit containing all sequentially performed analysis tasks
into multiple asynchronous units, each of which immediately
returning the computed results back to the client.

As it turns out, the majority of the resulting remote ex-
ecutions for analysis tasks (e.g., overall length, punctuation
percentage, etc.) are not computationally intensive. However,
the client consumes additional resources to execute these tasks
by performing multiple remote invocations. The only analysis
task that involves heavy processing and takes a long time
to execute is “extract unique vocabulary.” To minimize the
overall latency of invoking these text analysis tasks, they can
be restructured into two remote services: one to invoke “extract
unique vocabulary” and the other one to invoke the remaining
analysis tasks in bulk.

To determine the optimal structuring and distribution of
the text analysis tasks would require profiling their execution
under different inputs. Hence, the remote analysis services
need to be both restructured and redistributed, a non-trivial
re-engineering task. The approach presented herein system-
atically identifies what an optimal distribution is for a given
optimization criteria and presents automated program transfor-
mations that eliminate much of the engineering complexity of
redistribution.
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Fig. 1. Motivating Distributed Mobile App Bookworm

B. Distribution Execution Cost Function

In the motivating example above, we show how redistribu-
tion can optimize remote services. Rather than trying to de-
termine redistribution optimization opportunities through trial-
and-error, distributed app developers need intuitive numerical
models that can inform them about the actual cost/benefit ratio
of remote services. To that end, we formulate the distribution
execution cost function.

Problem Formulation: Our goal is to determine which
functional distribution from the client’s standpoint would
minimize the following cost of distributed execution function:

CDist_Exec(ri) = α · latency(ri)+(1−α) ·
∑

resource(ri).
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Intuitively, executing a functionality remotely reduces the
computational load on the client at the cost of the delay,
measured as the remote invocation’s latency, and the local
resources consumed to make this invocation. Typically it
is distribution middleware that consumes these additional
resources, including computation, memory, and energy. The
invocation latency measures the expected deterioration in the
user experience—the more time the user has to wait for
a remote functionality to complete, the less satisfying their
experience will be. Hence, the distribution cost is the sum
of the expected deterioration in the user experience and the
amount of additional local resources consumed to invoke the
remote functionality. Hence, the optimization objective is to
identify the most favorable remote utility/client cost ratio.
Our optimization strategy strives to determine the level of
granularity for remote services that maximizes this ratio.

Consider a long-running bulk remote service r. Since invok-
ing this service takes a long time, even with low client-side
resource utilization, the client cost may not be as favorable.
One can break up this long-running service r into a collection
of smaller services r

′

1, . . . , r
′

k. Assume that these smaller
services are not inter-dependent and now can be invoked
asynchronously. First of all, the original computational work
being offloaded to the server or the utility for r remains
unchanged by this redistribution. However, the combined
latency of invoking these smaller services would decrease,
but the consumed client resources would increase due to
multiple invocations, so the resulting cost (or utility/client cost
ratio) may not decrease. A more optimal redistribution in this
scenario may be to combine some of these smaller remote
services into one to decrease the resources that the client
would consume to invoke them. Hence, the cost of distribution
function is defined as the sum of the normalized execution
latency and client-consumed resources required to invoke a
remote service. It is the weight factor α that normalizes the
latency and resource consumption terms.

Problem Solution Outline: We estimate an optimal dis-
tribution for a remote service by minimizing the cost of
invoking the service’s constituent functionalities. To that end,
these functionalities can be invoked individually or in bulk in
different combinations. The following two operations express
the required program restructurings:
• [r

′

1, . . . , r
′

k]=partition(r): partitions a remote service r
into k independent parts, each of which becomes an
individually invocable remote functionality.

• Rh=batch([r0, . . . , rn]): batches n remote functionalities
into a larger remote service Rh.

Notice that the batch operation may be applied multiple
times to different remote services to achieve the required
service combinations. D-GOLDILOCKS implement a divide &
conquer algorithm that by means of partition and batch
identifies a distribution that minimizes the CDist function.

C. Client Insourcing to Restructure Remote Services

The partition and batch operations work with regular
JavaScript functions rather than remote services. Hence, to

remote
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(Re-Distribution)(Original Distribution)

Client 
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Fig. 2. Restructuring a remote service r into r′ remotely with Client
Insourcing

transform remote services into local functions, we introduce
a domain-specific automated refactoring—Client Insourcing,
which given a remote functionality invoked via middleware,
integrates that functionality with the client code. Client In-
sourcing undoes the current distribution r, thus creating a
centralized variant rlocal that can be redistributed differently.
Section III-A describes the technical details of Client Insourc-
ing.
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Fig. 3. Partitioning remote service r via Client Insourcing

D. Partitioning Insourced Functions

Based on the ability of Client Insourcing for restructuring,
our approach can partition a remote service into multiple
remote parts (Figure 4). Assume a remote function r consists
of some distinct functionalities. To identify independently
invocable parts, we can perform Client Insourcing on r,
making it a centralized function r_local. Then, we can apply
program analysis and refactoring for centralized apps to split
the r_local into k distinct functions r′_local1, · · · , r′_localk.
Finally, k distinct functions can be distributed becoming
r
′

1, · · · , r
′

k.

E. Batching Remote Invocations (BRI)

For networking environments with large bandwidth and
high latency, it may be advantageous to batch multiple re-
mote invocations into a single one to reduce the aggregate
latency. The research literature describes several approaches
that implement this optimization. The Data Transfer Object
(DTO) and Remote Façade [6] design patterns aggregate indi-
vidual services. Remote Façade exposes multiple fine-grained
services via a coarse-grained remote interface. DTO serves
as a bulk object for transferring parameters and results of
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Fig. 4. Partitioning/Batching remote service r

remote service invocations. Remote Batch Invocations (RBI)
provides language support for creating DTOs for combining
the invocation of arbitrary remote services, which can also be
intermixed with local operations [7].

Our approach batches fine-grained distributions by auto-
matically generating Remote Façades. First, the small remote
functionality is insourced to become local. Then, the resulting
independent local functions are inlined into a single function
using the Inline Function refactoring. That single function then
becomes a new unit of distribution.

Combining to the partition operation, our approach can
arbitrarily generate Remote Façades for the k distinct func-
tions r′_local1, · · · , r′_localk. For an instance, a subset
{r′_local1, r′_local3} and are inlined into a single function
r′_local1_3, which is then distributed into r′1_3. In essence,
a combination of these automated refactorings creates a dis-
tributed execution that would be similar to the result of
implementing the Remote Façade optimization by hand.

III. REFERENCE IMPLEMENTATION: D-GOLDILOCKS

We concretely realized our approach as a series of au-
tomated refactorings. These refactorings both migrate func-
tionalities between different hosts and also restructure the
granularity of remote service invocations Figure 5 shows our
overall automated refactoring approach.

A. Client Insourcing Refactoring

Client Insourcing is a domain-specific2 refactoring that auto-
matically integrates a remote functionality with the client code.
Because our application domain is JavaScript applications,
and JavaScript is known to defeat static analysis techniques,
Client Insourcing includes a dynamic analysis phase to identify
the exact boundaries of the server functionality to insource.
The programmer is only required to annotate the invocation
points of the remote functionality to insource. These points
correspond to the locations in the client code, at which remote
invocation parameters are serialized to be transferred across
the network, and the remote service’s results are unserialized
to be used in the subsequent program steps. Intuitively, Client
Insourcing identifies serialization/unserialization points in the
client code is to detect the entry/exit execution points of the
remote functionality to insource. To that end, Client Insourcing

2its application domain are full-stack JavaScript applications

extracts the passed parameters and the return results in the
recorded HTTP traffics.

Algorithm 1: Client Insourcing Refactoring

1 Client_Insourcing (Csrc, Ssrc);
Input : Csrc:client code, Ssrc:server code
Output: Cinsourced

src : Centralized App for Csrc, Ssrc

2 Sn_src=normalize(Ssrc);
/* add Instrumenting code(Jalangi2/JS code) */

3 [Cinst
src ,Sinst

n_src]=addInstrument(Csrc,Sn_src);
/* Instrumenting the server/client code to

identify entry and exit points */

4 Log=remoteExecution(Cinst
src , Cinst

n_src);
/* Loading JavaScript program rules */

5 Rulenodejs=loadNodejsProgramRules();
/* Generate facts for server code */

6 FactSsrc
=genProgramFact(Sn_src);

7 ModelSsrc = Rulenodejs + FactSn_src ;
/* Check dependency for candidate points */

/* Query dep. stmts for entry/exit */

8 Stmtsentry=queryDepStmt(Log.Pentry,ModelSsrc
);

9 Stmtsexit=queryDepStmt(Log.Pexit,ModelSsrc
);

/* Cutting dependent JS statements */

10 Stmtsdep=Stmtsexit − Stmtsentry;
/* Make a regular ftn with adaptation */

11 flocal=compGen(Stmtsdep, Log.(Pentry, Pexit));
/* Add the flocal with Logged Position */

12 Cinsourced
src =compAdder(flocal,Log.pos,Csrc);

/* Return insourced version of Csrc */

13 return [Cinsourced
src , flocal];

The design Client Insourcing of follows that of other
declarative program analysis frameworks [8]–[10] that analyze
JavaScript using the z3 SMT solver. To analyze server code
written by means of the Node.js framework, Client Insourcing
defines its own sets of z3 rules for Node.js and that of facts for
subject programs. The profiled parameters and return results
are added as new z3 facts to be able to reason about the entry
and exit points of the remote execution. Client Insourcing
generates local functions by solving constraint problems with
z3. First, Client Insourcing checks the dependency between
the entry and exit point candidates to locate the correct pair
of points. Next, it finds a subset of dependent statements for
the exit point in the server part and the subset of the dependent
statements from the entry point. Client Insourcing generates
local functions by differencing the entry and exit sets. Finally,
the generated functions change the call structure of the client
code into regular local calls by using the recorded insertion
points. Algorithm 1 shows the overall refactoring procedure.

B. Partitioning a Function into Individually Invoked Functions

To partition a JavaScript function into individually invoked
functions, D-GOLDILOCKS first applies static analysis to deter-
mine the dependencies of the function-to-partition. These de-
pendencies comprise all references to global references and the
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Fig. 5. Process for D-GOLDILOCKS

//original Client:app.js
$scope.getLadyWithPetDog =

function() {...
$http.get(’/api/ladypet’).then(

function(response){
var text = response.data; ...
});/*remote invocation*/ }

//original Server:server.js
function getSenAvg(array){...};
function getVoca(str){...};
...
app.get(’/api/ladypet’,

function(req, res){...});

//after Client Insourcing:app.js
//Insourced remote functions
function getSenAvg(array){...};
function getVoca(str){...};
...
function ladypet_local(){
//invoke every subtasks
...};
$scope.getLadyWithPetDog =

function() {...
//from remote to local
var text = ladypet_local();

...}

//after Redistribution:index.html
<!DOCTYPE html>
<script src="./app.js">
...
ClientDTO.b_param = BATCH_PARAM;
//Batched Invocations:
getSenAvg=ClientDTO(getSenAvg);
getVoca=ClientDTO(getVoca);
...
</script>

Fig. 6. Redistribution Steps

invocations of other functions. To that end, D-GOLDILOCKS
traverses the function’s control-flow graph3 in the depth-first
order. Then a greedy algorithm is applied to determine the
maximum number of partitions, each of which is an indepen-
dently invocable function. The algorithm strives to produce
the highest number of candidate partitions, with the following
exceptions: 1) mutually dependent partitions as indicated by
the original function’s call graph or 2) partitions that share
global variables. Such candidate partitions are merged into a
single one.

C. Batching Remote Invocations
D-GOLDILOCKS automatically generates a client-side DTO

and remote Façade stubs for batching the small remote
services. The actual Remote Façade function, invoking the
original services, becomes the new entry point of the re-
mote execution. The client DTO stub accumulates the remote
invocations of the fine-grained services at the client before
transferring them in bulk to the remote Façade function; the
BATCH_PARAM parameter to the batch specification becomes
the number of service invocations to accumulate. The remote
Façade function sequentially (or synchronously) invokes the
bundled services and returns their execution results combined
into a single value in bulk. For the following specification, D-
GOLDILOCKS generates a remote Façade f1name_f2name with

3https://github.com/wala/JS_WALA

the concatenated function names of the original fine-grained
services f1name and f2name (Figure 7).

Client
DTO

f1_f2_f3

Remote 
Façade
f1_f2_f3

f1_f2_f3.f1(p1)

f1_f2_f3.f2(p1)

f1_f2_f3.f3(p2)
DTO_script

f1_f2_f3client(p1,p2, p3) f1_f2_f3server(p1,p2, p3)
R_URI:port/f1_f2_f3

f1(p1)

f2(p1)

f3(p2)

Fig. 7. Batching Invocation of f1,f2, and f3 by means of Client DTO and
Remote Façade

D. Redistribution Steps

The three code snippets in Figure 6 show the original client
and server parts, their centralized insourced version, and a
redistributed client part.

Client Insourcing automatically transforms a client server
distributed interaction into a centralized counterpart, moving
server functions to the client and replacing all middleware
invocations with local function calls. When insourcing a
remote functionality, all its dependent server-side code has
to be copied to the client. That code may be scattered around
multiple functions and standalone declarations. Each insourced
remote functionality is placed in a single function, added to
the client codebase. Client Insourcing is similar to the Extract
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Function refactoring. Both refactorings create a newly named
function and the call sites to invoke it. Client Insourcing
differs in moving the extracted code from the server to the
client and replacing middleware functionality with local calls.
The middle column of Figure 6 shows the centralized variant
produced by Client Insourcing the code in the left column.

This centralized variant is used for profiling and redistri-
bution. In this example, two of the original server functions
are batched into a single function, invoked in the same remote
roundtrip. The batching operation is implemented via the Data
Transfer Object (DTO) pattern on the client and the Façade
pattern on the server.

E. Distribution Framework: Transforming Local Functions
into Remote Services

D-GOLDILOCKS implements a framework for seamlessly
transforming local JavaScript functions into remote services.
D-GOLDILOCKS maintains a list of local (insourced) functions
that implement the business requirements. D-GOLDILOCKS
uses the mustache.js framework4 to generate different clien-
t/server combinations of the insourced functions. The resulting
client and server parts communicate with each other by means
of Ajax and the Express.js middleware, as the majority of
our subject apps already use this middleware. For the server
to explicitly handle concurrent executions, it is enhanced
with a multi-core engine5 for the node.js. These frameworks
introduce the required distribution with minimal changes. The
newly redistributed functions only need to unmarshal their
parameters and marshal their results.

IV. EVALUATION

Our evaluation seeks answers to the following questions:
• RQ1:—Value: How much programmer effort is saved by

D-GOLDILOCKS’s automatic redistribution operations?
• RQ2:—Cost Model Correctness: How applying the

partition and batch operations affect the distributed ex-
ecution’s “latency” and “consumed resources” attributes?

• RQ3:—Utility of Cost Model for Redistribution: How
useful is the cost function for guiding redistribution
decisions?

• RQ4:—Energy Consumption: What is the effect of
redistribution on the amount of energy consumed by the
client?

A. Evaluation Setup

1) Dataset: Our evaluation subjects are real-world full
stack distributed mobile JavaScript applications and bench-
marks from the extremeJS [11]–[13]. extremeJS built re-
mote services over their distributing framework focusing on
JavaScript offloading. We tested their remote functionalities
only changing the server middleware from their distributing
framework (V8 within a C++ app) into Express.js.

4https://github.com/janl/mustache.js
5http://learnboost.github.io/cluster/

2) Latency and CPU Utilization of Remote Services:
We profile remote services under standard loads in terms of
the latency and resources for the client. We use a V8 pro-
filer6, which supports the line-by-line performance profiling of
JavaScript programs. D-GOLDILOCKS injects probes into the
instrumented source code and collects samples, which contain
the execution times (L in Table I) and CPU utilization levels
for each block. By summing these CPU levels, We calculate
the resource consumed by a remote execution (

∑
Tcpu in

Table I). Computationally intensive benchmarks with remote
functionalities always exhibit a high latency. We ran our
measurements over headless browser testing frameworks7 to
emulate a real world’s web client applications. The remote
server is hosted by DELL-OPTIPLEX5050 and we execute
remote services over a stable WiFi network.

TABLE I
SUBJECT REMOTE SERVICES

Remote Serv L(ms)
∑

Tcpu fLOC
CI fdecl f ind

sub |D|

/api/ladypet 77.38 337 394 9 8 1.6M
/api/thedea 164.62 695 394 9 8 1.6M
/api/thered 42.96 370 394 9 8 1.6M
/api/thegift 37.69 390 394 9 8 1.6M
/api/bigtrip 42.11 304 394 9 8 1.6M
/api/offshore 30.82 400 394 9 8 1.6M
/api/wallpaper 56.2 396 394 9 8 1.6M
/api/thecask 20.6 432 394 9 8 1.6M
/string-fasta 29.85 328 38 5 2 76
/cflow-rec 35.43 326 49 4 3 245
/prprty/brokers 20.64 323 379 3 3 1516
/prprty/brokerId 15.62 332 382 3 3 1528

B. Evaluating Software Engineering Value

1) Programmer Effort Saved: To answer RQ1, we esti-
mate the value of D-GOLDILOCKS automatically generating
JavaScript code. As an automated refactoring, Client Insourc-
ing saves programmer effort required to move remote function-
ality to the client, so it can be invoked via local function calls.
We count the number of uncommented lines of JavaScript
code (LOC) that need to be edited by hand to perform
the refactoring. Notice that Client Insourcing transformations
involve two phases: generating local functions and replacing
middleware invocations with local calls. The local functions
are generated by copying the server-side code, which becomes
the body of new client-side functions, whose parameters and
returns values are automatically inferred from the correspond-
ing server entry/exit points (fLOC

CI ). The original middleware
functionality is replaced with local calls. For instance, Client
Insourcing the /api/ladypet remote service generates a local
function of 394 ULOCs. Another D-GOLDILOCKS’s operation
is partitioning an insourced function fLOC_CI into smaller in-
dividually invoked functions fLOC

CI_1 ...f
LOC
CI_n . For each subject,

we report the number of the resulting functions f indsub . The final
D-GOLDILOCKS’s operation is batching individually invoked

6https://github.com/node-inspector/v8-profiler
7https://github.com/GoogleChrome/puppeteer,

https://github.com/jsdom/jsdom
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Fig. 8. Latency(ms) versus the number of Remote Invocations

functions into a larger function. To be able to determine
what the optimal combination of function is, D-GOLDILOCKS
generates all possible combinations of individually invoked
functions. Hence,we estimate the saved manual programming
effort, |D|, as the product of fLOC

CI and all possible com-
binations of f indsub . Because of the combinatorial explosion,
the values of |D| tend to be too large for any reasonable
manual treatment. For example, |D| for /api/ladypet is
394× 4, 139 ∼= 1.6× 106 ULOCs.
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Fig. 9. Scales between Latency and CPU Usage

2) Refactoring Impact: D-GOLDILOCKS redistributes a re-
mote functionality by insourcing it, partitioning it into parts,
and batching these parts into new individually invoked remote
functionalities. In this experiment, we assess the actual perfor-
mance impact of the number of batched parts on the resulting
invocation latency and consumed resource (RQ2). Figures 8
and 9 show the observed metrics for our experimental subject
applications. The larger the number of new remote functional-
ities, the smaller is the aggregate average latency incurred by
invoking them. The latency drops precipitously as the number
of functionalities start growing, but than flattens due to the
additional overhead of multiple remote invocations. Whereas,

the overhead or the CPU usage proportionally increases with
the number of new remote functionalities.

3) Utility of Redistribution Cost Model: To answer RQ3,
we applied our cost function to different redistribution scenar-
ios of our subjects. We empirically determined the required
normalizing factor for the latency and sum of CPU usages
terms by scaling the observed latency/CPU usage ratios across
all measurements (See Figure 9).

CDist_Exec(ri) = α · L(ri) + (1− α) ·
∑

Tcpu(ri)

, where α = L/ΣTcpu = 0.9281.
Splitting a singe long-running remote function into a small

number of asynchronously invoked parts decreases both the
aggregate latency and cost. However, as the number of parti-
tions grows, so does the cost, due to the increasing overhead
of invoking multiple remote functions (Figure 10).

Figure 11 shows how two the optimal distributions of /api
/theread and /api/thegift bring the distributed execution
cost down to the minimums. Recall that the task of getting
unique vocabulary (getVocabulary) was relatively computa-
tionally intensive, as compared to other tasks.

The optimal distribution comprises three individually
invoked remote services, extracted by partitioning
getVocabulary into smallest possible functions and then
batching them to minimize the aggregate latency and CPU
utilization.

C. Evaluating Performance and Energy Consumption
To answer RQ4, we measure the amount of energy con-

sumed by a mobile device to execute remote services over
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a stable WiFi network. The client device, QISKIW-L24-
HUAWEI, runs Android Marshmallow, and the remote server
is hosted by DELL-OPTIPLEX5050. We use PowerTutor [14],
a model-based energy profiler for mobile apps, to estimate
energy consumption (EC).

We report on the energy amounts consumed in three deploy-
ments of the Bookworm application: (1) the original distributed
execution, ECoriginal_dist, (2) the best distributed execution
achieved via redistribution, ECbest_dist, and (3) the worst dis-
tributed execution achieved via redistribution, ECworst_dist.
Figure 11 shows the best distribution (2 total remote invo-
cations). The worst distribution makes 8 remote invocations,
while the original version makes 1 remote invocation. As it
turns out, the original distribution consumes the lowest amount
of energy, ECoriginal_dist=8.4mJ, with the best distribution
not far behind, ECbest_dist=13.4mJ. The worst distribution is
an energy guzzler, consuming 6 times as much energy as the

original version, ECworst_dist=47.4mJ.

V. DISCUSSION

Our experimental results are subject to both internal and
external threats to validity. Our approach also has applicability
constraints. We discuss these and other issues in turn next.

A. Internal Validity

To redistribute our subject applications, we use the Express,
JQuery, and Cluster frameworks. The way these frameworks
introduce distribution may certainly affect the performance of
the resulting distributed applications. By using these frame-
works in a black-box fashion, we have no control over
how they implement their remote execution features. Since
our redistribution phase starts from a centralized JavaScript
variant, any other distribution frameworks can be used in
place instead, possibly resulting in differently performing
distributed applications. Nevertheless, these differences would
be unlikely to change the overall performance profile of the
redistributed applications. As our measurements show, the
performance latency of remote invocations is dominated by
network communication and the server’s computational load.
The choice of distribution middleware would have a marginal
impact on the performance of these functionalities.

As our units of distribution, we use existing functions.
Another possibility would be to consider splitting existing
functions into smaller units that can be distributed indepen-
dently. Measuring the performance of and redistributing code
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at the level of granularity of existing functions certainly have
impacted our performance results. Nevertheless, in this work
we aim at a fully automatic approach to determining which
distribution would be optimal. It would be impossible to
automate the process of breaking up existing functions into
meaningful constituent blocks.

B. External Validity

D-GOLDILOCKS makes all redistribution decisions based
on the obtained performance characteristics of the applica-
tion, whose remote functionality has been insourced. Our
implementation relies on the V8 profiler to measure the
performance of such applications. It is possible that other
profilers could show different performance numbers, thus
affecting D-GOLDILOCKS’s redistribution recommendations.
Network connectivity can also affect our experimental results.
All our experiments were conduced over a stable WiFi network
connection. Operating over limited unstable networks would
incur higher energy consumption overheads. D-GOLDILOCKS
applies a cost function to decide whether a given distribution
needs to be fine-tuned. One may disagree with this heuristic
and choose a different one, particularly well-suited for certain
application domains. Even if one completely rejects the valid-
ity of our decision-making heuristic, our overall redistribution
approach still has value. The ability to reshape centralized
functionality before redistributing the result is a new promising
approach to optimize the execution of distributed applications.

C. Applicability and Limitations

Distributed execution is always a result of certain ar-
chitectural decisions. D-GOLDILOCKS makes it possible
for developers to revisit these decisions, without resorting
to prohibitively expensive manual code modifications. In-
stead, D-GOLDILOCKS relies on domain-specific and general
refactoring transformations. Hence, developers who use D-
GOLDILOCKS are still required to understand the original
distributed application’s architecture. As is usually the case,
D-GOLDILOCKS eliminates much of the accidental rather than
essential complexity of architecting distributed applications
[15].

All our evaluation examples are full-stack JavaScript appli-
cations. However, conceptually our approach is quite general
and should be applicable to any distributed application domain.
However, other domains may require additional engineering
effort. Although full-stack JavaScript applications have be-
come extremely popular, to redistribute JavaScript code to ex-
ecution platforms that use a different programming language,
one may be able to apply language-to-language translation, an
approach whose success can differ widely depending on the
source and target languages.

VI. RELATED WORK

Our approach to redistributing full-stack JavaScript applica-
tions relies on the dynamic analysis of JavaScript programs,
middleware design, automated software transformation, and

domain-specific refactoring. We briefly describe the most
closely related state of the art next.

Dynamic analysis approaches have been applied to ascertain
the properties of JavaScript programs for various purposes.
An empirical study identifies the factors that affect the per-
formance of JavaScript programs by using browser profiling
engines [16]. Dynamic analysis is also used to detect Just-In-
Time(JIT)-unfriendly JavaScript code, suggesting a refactoring
to improve performance. JITProf [17] measures how prevalent
JIT-unfriendly code is, with the goal of helping developers
detect such code locations. DLint [18] proposes a dynamic
checker for bad coding practices in JavaScript, as based
on formal descriptions. JSweeter [19] detects performance
bottlenecks that are related to the type mutation of the V8
engine.

As communication overhead can be critical in mobile ap-
plication execution, middleware-based approaches optimize
the network overhead in distributed mobile applications. To
reduce the number of network requests, repeated HTTP re-
quest are detected and bundled [20]. Middleware e-ADAM
[21] optimizes energy consumption by using middleware
functionality that uses data communication, encoding, and
compression. APE [22] is an annotation-based middleware
service for continuously-running mobile (CRM) applications.
APE distributed execution is deferred until other applications
cause the device to switch into the network activation state.
These approaches optimize various performance aspects of
distributed mobile execution by reducing the network com-
munication overheads. In contract, our approach considers the
entire distributed application architecture, reshaping both the
client and server parts and restructuring the communication
functionality between them.

Recently, several techniques have been introduced that can
automatically integrate portions of a program’s source code
into another program. Systems that include CodeCarbonReply
and Scalpel [23], [24] support this functionality for C/C++
programs. Similarly to the D-GOLDILOCKS workflow, the pro-
grammer starts by annotating the code regions to integrate, and
then a program transformation tool automatically adapts the
receiving application’s code to work with the transferred func-
tionality. If the client and server parts of the same application
are treated as separate programs, D-GOLDILOCKS can be also
seen as a tool that integrates server-side code with the client
code. However, another important feature of D-GOLDILOCKS
is automatically replacing middleware functionality connecting
the client and server parts with direct function calls. Finally, D-
GOLDILOCKS focuses on improving performance by reshaping
the granularity of remote functionality.

The research community has devoted a considerable effort
to automate the program transformations required to render
local functionality remote to the rest of the computation [25]–
[27], an architectural change that is the opposite to that of
Client Insourcing. The client-to-remote architecture evolution
has even been supported as a refactoring transformation called
cloud refactoring. Specifically, energy efficiency one of the
foremost design and implementation concerns for mobile
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apps. Currently, moving energy intensive functionality to the
cloud has been promoted as a way to reduce the energy
consumption. However, accessing a remote component incurs
network communication and middleware processing costs,
which can offset the energy savings provided by executing
the component at a remote server. As confirmed by our
evaluation, by eliminating any remote communication and
removing middleware functionality [28]. As we discovered in
this work, the realities of modern software development often
require both types of architectural transformations, in which
the locality of application functionality can be changed at will,
from local to remote and vice versa.

VII. CONCLUSION AND FUTURE WORK

We plan to continue exploring the range of applicability
of our approach. Two additional performance aspect we want
to explore are multiple clients/servers and dissimilar network
connectivity. In addition, the ability to insource remote func-
tionality can facilitate the execution of other software evolution
and maintenance tasks that we plan to investigate.

We have presented an automated approach that makes
it possible to revisit the architectural decisions made when
introducing distributed execution to improve performance.
Oftentimes these decisions are based on assumptions that fail
to hold in realistic deployments. However, the current state
of the art lacks systematic treatments both to identify the
inefficiencies of distributed architectures and the automated
tools that eliminate much of the tedious and error-prone
manual effort required to redistribute such applications. As
distributed execution has become required for the majority of
computing applications, our approach can help improve the
utility derived by distribution and can enjoy wide applicability
in helping solve realistic performance problems.
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