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Abstract. To personalize their services (e.g., advertisement, navigation, healthcare), mobile
apps collect sensor data. Typically, they upload the collected sensor data to the cloud, which re-
turns the inferred user profiles required to personalize mobile services. However, privacy concerns
and network connectivity/congestion issues can render cloud-based processing inapplicable. If
different apps collect the same type of sensor data, app providers can collaborate by combining
their data collections to infer on-device the user profiles required for personalization. Although
major mobile platforms provide on-device data sharing mechanisms, these direct data exchanges
provide no privacy protection. As an alternative to direct data sharing, we present differen-
tially privatized sensor data onloading for app providers’ collaboration. With our approach, app
providers can safely collaborate by using shared sensor data to personalize their mobile services.
We realize our approach as a middleware that acts as a trusted intermediary. The middleware ag-
gregates the sensor data contributed by individual apps, which execute statistical queries against
the combined datasets. Furthermore, the middleware’s adaptive privacy-preserving scheme 1)
computes and adds the required amount of noise to the query results so as to balance utility
and privacy; 2) introduces a Trust-Data Theory so as to detect and remove spurious data from
the combined collections; 3) rewards active contributing app providers so as to incentivize data
contribution; 4) integrates a Trusted Execution Environment (TEE) so as to secure all data
processing. Our evaluation shows that it is feasible and useful to personalize mobile services
while protecting data privacy: queries’ execution time is within 10 ms; participants’ dissimilar
privacy/utility requirements are satisfied; untrustworthy data are effectively detected; mobile
services are personalized, and data privacy of both app providers and users are preserved4.
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1 Introduction

Go-Between

Fig. 1. Three Data Sharing Approaches.

Mobile services have become a crucial part of the
digital economy [9], generating large and growing
revenues for application providers [33]. Follow-
ing the long-tail business model, app providers
focus on personalizing their mobile services by
constructing detailed user profiles, including in-
ferred frequent routes, preferred activities, and
daily body vitals, with services ranging between
targeted advertising to healthy living tips [11].
To optimize personalization, app providers con-
tinuously collect sensor data by means of mobile
apps, linked into data-sharing networks within
the same device or across other media (e.g.,
clouds), thereby creating larger collections for
constructing user profiles [18]. For example, numerous location-based apps (e.g., Google Maps, Uber,
Yelp, and TripAdvisor) collect geolocations when each respective app is in operation. If the user fre-
quents the same geolocations when using different mobile apps, these locations are “favorite,” a piece
of information that can be used to personalize location-based services.
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4 This article is a revised and extended version of our prior paper, published in the 12th EAI International
Conference on Mobile Computing, Applications and Services (MobiCASE 2021) [62]
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However, due to data privacy concerns, app providers often hesitate to share sensor data: their
collaborators may accidentally expose or even intentionally disclose the shared data, damaging repu-
tation and the bottom line [79,81]. Since it is the end user who owns all device data, the app provider’s
privacy directly impacts user privacy. That is, leaking the shared data threatens the privacy of app
providers and users. Hence, there is a great need and potential benefit in providing holistic mechanisms
for sharing sensor data that preserve the privacy of both app providers and users.

More importantly, when it comes to data sharing, bad actors may try misleading other contributors
by intentionally contributing spurious data. A simple sanity check can quickly filter out physically im-
possible data contributions (e.g., systolic blood pressure >1k mm Hg); however, such checks would fail
for attacks that contribute fake data within an expected range. Similarly, detecting by means of classic
statistical criteria, such as Benford’s law, 3-σ rule, Chauvenet Criterion, and Dixon Criterion, either
requires a specific data distribution or imposes restrictive conditions (e.g., only one outlier exists).
Modern anomaly detection (i.e., outlier detection) uses machine learning or deep learning algorithms
to identify outliers that deviate from the general data distribution [22, 28, 50, 60, 77, 84] and has been
applied to many research areas (gaze estimation [23], cyber-physical systems [19], wireless sensor net-
works [8], data streams [78], and Internet of Things [54]), albeit suffering from false positives/negatives.
Besides, a detector cannot distinguish whether the outliers come from an intentional (i.e., maliciously
adding fake data) or unintentional (e.g., collecting data from an inaccurate sensor) operation, so none
of the existing approaches can detect all data outliers. Thus, to mitigate the threat of spurious data
contribution, this problem domain requires new and effective solutions that allow data contributors to
safely collaborate while preserving user privacy.

To share the sensor data collected by their mobile apps, app providers can use cloud-based services
(the left-most option in Figure 1). Each app uploads its collected data to the cloud, which aggregates
and analyzes the results. Although the state of the art leverages attribute-based encryption [59] and
blockchain [87] to help preserve user privacy in data sharing, data privacy preservation remains an open
problem in the cloud-based data sharing process, which incurs various concerns: (a) cyber attackers
can steal uploaded data by exploiting the cloud server’s vulnerabilities [1–7]; (b) insiders or careless
employees can expose private data to the public [95]; (c) governments can legally force IT companies
to reveal their cloud-stored data [92]; (d) network connectivity/congestion issues can easily render
cloud-based processing infeasible, and the high overheads of current cloud-based privacy-preserving
solutions (e.g., blockchain, attribute-based encryption) further worsen the availability and feasibility
of cloud-based data sharing. In fact, a growing number of privacy tips recommend disabling cloud-
based storage and processing altogether with restrictive network access permissions [43] and network
blocking apps [45–47].

Mobile apps can also share their sensor data locally on the same device (i.e., the middle option in
Figure 1). This on-device data sharing and processing—referred to as data onloading—has been stud-
ied widely in the research literature [49,61,63,94,97] and adopted in industrial settings. In fact, major
mobile platforms do provide standardized mechanisms for the installed apps to share data locally (i.e.,
“App Groups” [12] in iOS; Intent, SharedPreferences, and ContentProvider in Android). How-
ever, these mechanisms are designed for apps to exchange data directly. As such, they are vulnerable
to privacy exploits: the receiver apps can be leaking the received data unwittingly or intentionally.
An alternative is for mutually distrustful app providers to discover the commonalities of their data
collections (i.e., obtain data intersections) via encryption-based Private Set Intersection (PSI) [52].
However, intersections alone are hardly ever sufficient to infer the profiles of mobile users.

Another alternative is to keep the exchanged data private, while permitting the querying of its
statistical properties [97]. Unfortunately, this alternative’s vulnerabilities can be exploited. For exam-
ple, exhaustive frequency queries over a complete finite set can exfiltrate the other contributor’s data.
A differential privacy mechanism can be applied to alleviate such risks (e.g., PINQ [69], GUPT [75]).
However, one cannot directly apply differential privacy due to the unique challenges of our problem
domain: 1) how to assign privacy levels to all collaborators (i.e., app providers) that may have dis-
similar privacy/utility requirements; 2) how to prevent some app providers from contributing only
minimal data but inferring lots of user profiles from the combined datasets; 3) how to defend against
attacks that lead to data and operations being illicitly accessed or tampered with.

To overcome the above challenges, we present a trusted middleware for privacy-preserving sensor
data onloading, serving as a trusted intermediary that aggregates the sensor data contributed by
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the collaborating apps and executes expressive statistical queries against the inaccessible combined
datasets (i.e., the right-most option in Figure 1). By introducing a trust-data theory, our approach
detects and removes spurious data from the combined collections. Besides, it also achieves the privacy-
utility tradeoffs that satisfy given privacy/utility requirements, incentivizes app providers to keep
contributing data, and secures the execution of these query functions by placing them in a Trusted
Execution Environment (TEE), whose trusted storage persists the shared data collections.

We target the dominant mobile platform (≈85% of the global mobile market [53]), the Android
platform, on which apps commonly share data with each other [17,91]. The reference implementation
of our approach—Go-Between—offers a system-level service that aggregates into combined datasets
the data contributions of the collaborating apps, which can then query the service to infer user profiles.
By adapting differential privacy for our problem domain, Go-Between adds adaptively customized
Laplace noise to the query results, thus properly preserving app providers’ data privacy. Significantly,
by applying a new theoretical detection model, Go-Between detects and removes spurious data
contributions from the combined dataset. Besides that, Go-Between balances collaborating apps’
dissimilar utility/privacy requirements (i.e., privacy can be increased at the cost of decreasing utility
and vice versa.) Further, Go-Between incentivizes data contributions: the more data an app con-
tributes, the more accurate and useful its inferred user profiles are. Moreover, Go-Between applies
TEE to the predefined statistical queries (e.g., Count, Mean, and Std), so as to safeguard the operations
and their data. Finally, Go-Between keeps the end-user in control of their data by informing them of
the data sharing events and explicitly allowing them to restrict apps to share data. The contributions
of this article are as follows:

1. A trusted middleware for differentially privatized onloading of sensor data that is:
– (a) usable: it dynamically adapts and balances privacy/utility, as driven by the properties

of the contributed data;
– (b) resilient: it detects and removes spurious data contributions from the combined dataset;
– (c) incentivizing: it rewards active contributing app providers with higher utility;
– (d) secure: it protects all operations and the contributed data in a Trusted Execution Envi-

ronment (TEE).
2. A general system design for privacy-preserving data onloading, whose building blocks include

differential privacy and TEE. The applicability of this design extends beyond our target domain.
3. A reference implementation—Go-Between—an Android system service, empirically evaluated to

demonstrate its efficiency, utility, and safety: all queries execute in < 10 ms; mobile services are
effectively personalized, while preserving app providers’ privacy.
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Fig. 2. The roadmap of the article.

This article extends our earlier confer-
ence paper, presented at the 12th EAI In-
ternational Conference on Mobile Comput-
ing, Applications and Services (MobiCASE
2021) [62]. In comparison to that confer-
ence publication (15-page, single-column),
this article reports on additional unpub-
lished research that extends our prior work
as follows:

(1) We introduce Trust-Data Theory,
which we created to formalize the descrip-
tion of our mitigation strategies for the
threat of contributing spurious data. We
concretely apply this theory to create a
mechanism for detecting and removing spu-
rious data. Furthermore, by simulating an
attack of contributing spurious data, we val-
idate that our theory and its reification can
effectively defend against such attacks.

(2) We explain how our programming
model, with its reactive/functional programming interfaces, enables Android developers to seamlessly
add privacy-preserving sensor data onloading to their mobile apps.
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(3) We also evaluate and report on our approach’s programmability by analyzing two widely-used
software metrics among our approach and similar Android system services.

(4) We formulate an Honest-But-Curious attack as a differential privacy problem and simulate such
an attack as a control group; we show how without our approach’s privacy preserving mechanism, an
attacker can always reconstruct the combined dataset by executing particular queries.

Roadmap: As shown in Figure 2, our research methodology proceeds from theory to practical ap-
plications, completing with discussion and conclusions. Our theoretical contribution adapts differential
privacy for a new problem domain; our practical application introduces the design, implementation,
and evaluation of our approach in practice; our discussion contextualizes our approach and its evalu-
ation results.

Specifically, the rest of this article is organized as follows. Section 2 discusses our application scenar-
ios, threat model, and solution overview. Section 3 presents how our approach applies differential pri-
vacy. Section 4 provides our mechanisms to complement differential privacy, including privacy&utility
tradeoffs, data contribution incentives, and trust-data theory. Section 5 details design and implemen-
tation of our approach. Section 6 presents our evaluation results. Section 7 discusses app provider’s
data privacy, and our approach’s applicability. Section 8 compares our work to the related state of the
art. Section 9 presents concluding remarks.

2 Go-Between Overview

To motivate our approach, we present two typical application scenarios and how Go-Between ad-
dresses their requirements. Then, we give an overview of differential privacy and key technologies used
by Go-Between.

2.1 Typical Application Scenarios

I. Geolocations can be used to infer a user profile’s location-based properties (e.g., favorite areas). To
optimize personalization, app providers frequently collect and share geolocations. An empirical study
has revealed how within 14 days 10 different mobile apps, not only mapping and navigation, but also
social media (e.g., Facebook) and shopping (e.g., Groupon) [10], shared geolocations 5,398 times.

Consider a navigation app N that collects the user’s geolocations to provide real-time traffic infor-
mation. On the same device, a shopping app R records the user’s geolocations independently to learn
about the frequently visited areas in order to recommend shopping and dining options. Finally, an
exercise app E collects the geolocations of the user’s regular running routes. Since all three apps collect
geolocations for different purposes, their providers may want to personalize their services, as informed
by the combined dataset of their respective collections of geolocations. By querying the combined
dataset (e.g., how many times the user visited a given area?), each provider can identify the user’s
“favorite” areas. This information can improve how each app provider tailors its services for the user,
such as displaying ads specific to the favorite areas.

II. Body vitals, another common type of sensor data, enables app providers to infer a user’s health
condition. Typical body vitals include temperature, pulse rate, and blood pressure. Health wearables
and trackers continuously collect body vitals, sending them for processing and storage to paired devices
with specialized apps. For example, a smartwatch or a blood pressure monitor would record a user’s
blood pressure, with the records transferred to an app running on the user’s mobile phone [74, 80]. A
mobile app can also receive body vitals from its user’s healthcare provider. For example, a recent news
report points out that a healthcare record can now be downloaded to its user’s mobile apps, so their
providers can potentially share the downloaded records with healthcare providers and insurers [89].

Consider a blood pressure monitor app M that periodically measures and records the user’s blood
pressure. A smartwatch app W records the user’s blood pressure at specified intervals. A personal
health records app H keeps track of the user’s blood pressure readings, taken during doctor’s appoint-
ments. Since all these three apps collect blood pressure readings, analyzing the combined dataset of
their respective collections can provide additional value to the user. For example, the frequency, the
mean, and the standard deviation of all the collected readings can indicate a possible hypertension
condition rather than experiencing occasional spikes of high blood pressure (due to stress).
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2.2 Solution Overview

App providers5 specify their privacy and utility requirements (e.g., high privacy/medium utility),
and then deposit their sensor data (e.g., geolocation/blood pressure datasets) with Go-Between,
which aggregates the deposited data into combined datasets for app providers to query. Go-Between
differentially privatizes the query results in accordance to both the properties of the deposited data and
the specified requirements. Through these queries, the collaborating app providers then personalize
their mobile services, without revealing their raw sensor data to their collaborators.

Specifically, an app first secures a user’s permission to deposit a certain type of sensor data with
Go-Between, which maintains a trusted record of all user-authored apps/data types. Any permitted
app can query the combined dataset of the deposited sensor data type. The apps collaborate via a
four-phase process: (1) apps specify their privacy and utility requirements and transfer their sensor
data to Go-Between6; (2) upon each data deposit, Go-Between starts computing the noise scale
for each built-in query operation, while detecting and removing spurious data from the combined
dataset; (3) the collaborating apps black-box query the combined dataset to infer the user’s profile; (4)
Go-Between pads the query results with a suitable amount of noise, determined by the pre-computed
noise scale, and returns them.

2.3 Threat Model

Since the user owns all the collected data, the privacy of app providers is an integral part of user
privacy. Nevertheless, app providers and users incur different data privacy threats, which we discuss
in turn next:

I. App Providers. The process of app providers depositing their sensor data is subject to the
following threats:

(a) to optimize mobile service personalization, every app provider strives to get access to as much
sensor data as possible. To that end, a provider could attempt to extract their collaborators’ raw data
from the combined datasets. This behavior is described by a classical threat model—honest-but-curious
attack [83]: an adversary tries to legally learn all possible information about the combined datasets.

(b) to prevent the above attack, some app providers may limit their data contribution as much
as possible, while taking advantage of their collaborators by inferring user profiles from the combined
datasets.

(c) to illicitly obtain the collected sensor data, malicious parties may perpetrate attacks to access
the combined datasets.

In all three threats above, a dishonest app provider or an attacker assumes the deposited data
are entirely accurate and real, so if they illicitly access the combined dataset, they would benefit as a
result. However, this assumption does not hold once some bad actor has deposited fake data into the
dataset:

(d) to gain an unfair business advantage, some app providers may deposit inaccurate or outright
fake data, thus impairing the utility of the combined datasets.

For example, a navigation app could intentionally put fake locations into the combined dataset in
order to paralyze its competitors’ navigation services that rely on the dataset.

II. Mobile Users. Irrespective of how app providers deposit sensor data, mobile users deeply care
about (e) which part of their data will be used and which app providers are involved in the process of
data sharing. Specifically, when a mobile app queries a Go-Between’s combined dataset, the mobile
users are eager to find out what kind of data will be queried and returned. In the meantime, they also
care about which mobile apps (i.e., app providers) are querying and exchanging their collected data
with Go-Between.

III. Countermeasures. To ensure data privacy of app providers, we introduce the following
countermeasures:

(a) to defend against honest-but-curious attacks, all query results are differentially privatized, so
the participating app providers cannot recreate the combined datasets (§ 3§ 4.1).

5 An app provider can have multiple apps, while an app has one provider only. For ease of exposition, we
assume a one-to-one correspondence between a provider and an app, and use terms “app provider”/“app”
interchangeably.

6 Each data type has its own combined dataset.
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(b) to discourage limited data sharing, a query result’s accuracy is positively correlated with the
size of the querier’s data contribution, thus incentivizing large-scale sharing (§ 4.2)

(c) to prevent the combined datasets from being illicitly accessed, all above operations and the
deposited data take place in a Trusted Execution Environment (TEE) (§ 5.1).

(d) to mitigate the threat of contributing inaccurate/fake data, such spurious data is detected/re-
moved from the combined datasets, as informed by our trust-data theory (§ 4.3)

(e) to keep the user in control, all sharing-related information (the list of apps, the data type,
and query, etc.) can be routed to the user for examination and approval. The user can opt out from
receiving this information.

2.4 Enabling Theory & Technologies

I. Differential Privacy(DP) [29] protects an individual’s private information from unauthorized
discovery (hereafter, individual refers to an app provider, and private information refers to the sensor
data collected by a provider.) More formally, a database D is a database of records in a data universe
U . Each record contains an individual’s private data. Differential Privacy defines two databases D and
D′ as neighboring databases if they differ by exactly one record. A mechanism M is a randomized
function that maps D to output R.
Definition 1: ε-differentially private mechanism. Given ε ≥ 0, M is ε-differentially private, iff
for all neighboring databases (D, D′), and for any sets of outputs S ⊆ R:

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] (1)
Definition 2: sequential composition. Given a set of mechanisms M = M1, ...,Mn, sequentially
executed on a database, with each Mi providing εi-differential privacy guarantee, the total guarantee
provided by M is:∑n

i=1 εi (2)
Definition 3: global sensitivity. For a query f : D → R; D,D′ are neighboring databases, the global
sensitivity of f is:

∆f = MaxD,D′ |f(D)− f(D′)| (3)
The value of ∆f (i.e., global sensitivity of f) indicates the maximal difference between the query
results on D and D′.
Definition 4: upper bound of ε [58]. Given a database D′ with n − 1 records sampled from D
(i.e., D′ ⊂ D and |D′| = |D| − 1), the probability of discovering the record in the database D (i.e.,
ρ), the number of records (n), the global sensitivity of query f (i.e., ∆f), and the maximal difference
between query results of each possible combination of D′ (i.e., ∆v):

ε ≤ ∆f
∆v ln

(n−1)ρ
1−ρ (4)

II. Laplace Mechanism [30, 31] adds independent noise to the actual query results. Lap(µ, b) rep-
resents the noise sampled from a Laplace Distribution with the scale factor of b and location factor
of µ. The Laplace distribution [56] is a double exponential distribution, in which the scale factor b is
positively correlated with the amplitude, thus determining the confidence level in the noisy results.
Briefly, b determines the amount of Laplace noise to add. Usually, we omit µ and use Lap(b) as the
added noise.
Definition 5 — noise scale. To satisfy ε-differential privacy for query f , use scaled symmetric noise
Lap(b) with b = ∆f/ε, that is:

Lap(∆f/ε) (5)
By setting the location factor of µ with the actual result of query f(D), we can get the privatized
value: f(D) + Lap(∆f/ε) that ensures the ε-differential privacy.
Definition 6 — noise scale for a query sequence. To satisfy ε-differential privacy for a query
sequence f1, ..., fn, use scaled symmetric noise:

Lap(
∑

i ∆fi/ε) (6)
III. Trusted Execution Environment (TEE) [35] provides hardware support for handling sensitive
data. TEE (1) partitions the CPU into the normal world for common applications and the secure
world for trusted applications; the secure world prevents external entities without authorization from
accessing trusted applications; (2) provides trusted storage to persist sensitive data, which can only be
accessed via the provided API; (3) provides a secure communication channel for external peripherals.
Open-TEE [67] virtualizes TEE via a software framework. By conforming to the GlobalPlatform
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Specifications of TEE, Open-TEE hosts trusted applications, in lieu of a hardware-based TEE. Known
as an efficient “virtual TEE,” Open-TEE features small storage and memory footprints as well as short
start and restart latencies for the trusted applications.

3 DP: From Theory to Practice

In this Section, we first explain by example how we apply differential privacy (DP) to defend against
the aforementioned honest-but-curious attacks.

Honest-but-curious attacks. We further develop the scenario in § 2.1 that deposits body vitals.
Consider the worst-case scenario: only two apps—H and M—deposit their collected blood pressure
readings. As shown in Figure 3, H stores its blood pressure readings into the combined dataset (i.e., D
— the table on the left). Then, H queries for the frequency of “150”, which returns “1”, as“150” occurs
only once in the combined dataset. After that, M adds one more reading of “150” to the combined
dataset (i.e., D’ — the table on the right). Then, H repeats the same frequency query on the updated
dataset, getting “2” as the result, meaning that “150” now appears twice. In this worst-case, H may
also discover that M has stored its dataset between H’s two frequency queries. Armed with this fact,
H can determine it was M that stored the other value of “150.”

App Provider Systolic Pressure

H 150

H 140

D
D’

App Provider Systolic Pressure

H 150

H 140

M 150

Fig. 3. The worst-case scenario of the attack.

Counter-measuring with DP. Con-
sider how DP can be applied to defend
against such honest-but-curious attacks.
The worst-case scenarios above can be for-
malized as a differential privacy problem
(see the formalization below). To put it
briefly, a DP mechanism would pad each
query result with noise. As an illustration, assume that H’s first and second queries are padded with
the noise amounts of “0.6” and “-0.5”, respectively, so the final results would become “1.6” (i.e., 1 +
0.6) and “1.5” (i.e., 2 - 0.5), respectively. These fractional results about the frequency of “150” in the
combined dataset still provide useful information (e.g., “1.6” and “1.5” are between 0 and 2). However,
now H can no longer infer if M has contributed “150” to the dataset.

Formalizing an attack scenario. As shown in Figure 3, let D denote the combined database
of blood pressure readings contributed by H, and D′ denote the combined readings database after M
inserts one record. Record x denotes the delta between D and D′, such that D = D′ − {x} (in our
case, D = D′ − {150}). H can perform any number and kind of legitimate queries against D (such as
the frequency query above). In addition to the information obtained through the legitimate queries,
we assume that H also possesses additional background knowledge (e.g., H discovers that M stores a
record between H’s two frequency queries). Hence, H can act as an adversary that attempts to extract
both the raw data content of D and determine which party has contributed which data elements. To
discover x, H queries D and D′. It can do so by executing the same query on D and D′ and computing
the delta of the results. The other contributors’ privacy becomes breached, as the adversary learns
their raw data.

4 Complementing DP

In this Section, we discuss how we complemented DP to meet the privacy requirements in our target
domain.

4.1 Privacy & Utility Tradeoffs

As discussed in § 3, differential privacy can prevent the potential breaches described in our threat
model by adding the Laplace noise to the query results to obtain an ε-differential privacy guarantee.
However, the resulting noise scale must balance the tradeoffs between privacy and utility. The former
represents how much noise to add, while the latter indicates how usable the noisy results are for
inferring user profiles. Privacy/Utility are negatively correlated: the higher is the level of privacy, the
lower is utility, and vice versa.
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I. Privacy. Definition (4) determines the upper bound of ε, and Definition (5) shows the noise scale.
By combining (4)(5), we obtain the lower bound of scaled noise Lap(b) with:

b = ∆v/ln (n−1)ρ
1−ρ (7)

As per Definitions (4) and (5) (discussed in § 2.4), ρ is the probability that the adversary can
correctly guess the absence/presence of a record in the combined dataset. n is the number of records.
∆v is the maximal difference between the query results of each possible combination of D′ (i.e., the
neighboring database discussed in § 2.4-I). Thus, n and ∆v can be calculated based on the dataset’s
properties. ρ can be configured by apps in order to control the privacy level based on their specific
requirements.
II. Utility. How accurate the query results are and how frequently the query is executed determine
utility:

a) For accuracy, we define the accuracy level (a) as the distance between the actual query result
and the result with noise. We determine a via the percent error formula:

a = 100 ·
∣∣∣Resultnoise−Resultactual

Resultactual

∣∣∣ (8)

Resultnoise is the query result with noise, and Resultactual is the actual query result. The collab-
orating apps can set the required accuracy level (i.e., a). After adding noise, if the result of a query’s
accuracy level cannot meet the level set by the app, the query fails.

b) For usage frequency, we define the usage frequency level (u) as the invocation number of a cer-
tain query. Based on the Definition 2, for example, if an app performs a query (providing ε-differential
privacy guarantee) 10 times, then the query’s total differential privacy guarantee is 10 · ε. Each collab-
orating app can configure its usage frequency level, used to adjust the noise scale. See Noise Increase
Scheme (§ 4.2-III) below for details.

4.2 Data Contribution Incentives

For app providers to be willing to keep contributing data to Go-Between, three conditions must be
met:

– The privacy level ρ should be a parameter shared across all collaborating apps. If the specified
privacy level affects only the app that specifies it, the resulting perverse incentive would suggest
specifying the lowest privacy level to obtain the highest utility.

– The amount of contributed data should be commensurate with the obtained utility.
– The more an app queries Go-Between, the more noise should be added to its privatized query

results.

To meet above conditions, we introduce global privacy level, bonus mechanism and noise increase
scheme, respectively.
I. Global Privacy Level: For each collaborating app, we define a contribution rate (c):

ci =
ωi∑
ωi

(9)

where ωi is the amount of data contributed by the ith app.
By weighting the average value of app-configured privacy levels by their contributed data’s amount,

Go-Between determines the global privacy level :
ρglobal =

∑
ciρi (10)

where ρi is the privacy level configured by the ith app.
The global privacy level is used to calculate the noise scale (b) by using (7) (discussed in § 4.1).

That is, the more data an app contributes to a combined dataset, the higher the impact of the app’s
privacy level on the overall global privacy level. This design prevents apps with only a small data
contribution from specifying the lowest privacy level with the goal of accurately inferring user profiles.
II. Bonus Mechanism: We establish a bonus mechanism that reduces the noise scale (i.e., increases
the accuracy) for apps in proportion to the amount of their contributed data. To that end, Go-
Between selects 10% of a given query’s noise scale as the bonus: BONUS = 10% · bquery, where
bquery is the query’s noise scale. When adjusting ith app’s noise scale (bi), we use the app’s contribution
rate (c) to calculate its bonus: ci ·BONUS, which is subtracted from the noise scale:

bi = bquery − ci ·BONUS (11)
III. Noise Increase Scheme: Since every query invocation accumulates ε (Definition 2), the like-
lihood of an attacker discovering the raw dataset is positively correlated with usage frequency level
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(u) (i.e., the number of query invocations). To reduce the risk of such discovery, Go-Between scales
bi up by ui times (i.e., bi ∗ ui). By increasing the noise scale proportionally to the number of query
invocations, Go-Between thus maintains the ε-differential privacy.

4.3 Trust-Data Theory

Determining the trustworthiness of data contributions is a hard problem. Existing solutions — sanity
checks, statistical criteria (e.g., Benford’s law, 3-σ rule, Chauvenet Criterion, Dixon Criterion), and
modern anomaly detection [50,82] — suffer from false positives/negatives. Besides, none of these solu-
tions can distinguish whether an outlier was caused by an intentional (i.e., fake data) or unintentional
(e.g., inaccurate sensor reading) contribution.

For our target domain, we present trust-data theory that reconsiders spurious data as a special kind
of noise to enhance our privacy model. Although contributing spurious data perpetrates an attack,
we recast this attack to perturb the combined dataset in order to achieve the required privacy/utility
tradeoff. Further, we develop a statistical testing method that determines whether app-contributed
data, irrespective of its trustworthiness, protects privacy.

I. Using spurious data.We observe that spurious data can be used to preserve data privacy. Consider
how differential privacy (DP) works: compute a noise value, add it to the actual data, and return the
result. That is, after adding the noise, differential privacy converts the “actual data” to the “spurious
data” to protect data privacy. Since the contributed “spurious data” changes the original dataset’s
distribution within an acceptable range, DP still provides useful query results. Hence, unless the
newly contributed data completely changes the original dataset’s distribution, the data contribution,
irrespective of its trustworthiness, can be accepted. In the following discussion, we explain how we
determine the threshold at which the contributed data changes the original dataset’s distribution.

Definition 7: Trust Sensitivity (TS). For a query f : D → R; Doriginal is the original database,
Dnew is the new database including the newly contributed data from a collaborating app; based on
Dnew and Doriginal, bnew and boriginal are the noise scale factors computed by the aforementioned
equations (3)(4)(5) in § 2.4-Definitions 3-5. TS is:

TS = Overlap{Lap(bnew), Lap(boriginal)} (12)

Figure 4 shows that the value of TS (the hatched area7) is the overlap between the Laplace Distribution
with the scale factors of bnew and boriginal, which indicate the similarity of the privatized results
before and after adding the new data (irrespective of its trustworthiness). That is, the larger TS is,
the more similar the privatized result is. A larger TS indicates that the newly contributed data only
unexcessively impacts the privatized result and thus can be accepted. The algorithm of computing TS
is discussed in Appendix-B.

TS

Lap(bnew) Lap(boriginal)

Fig. 4. The Go-Between Trust Sensitivity.

Definition 8: α-trust data. For 0 ≤ α ≤ 1, the newly contributed data ∆D (i.e., ∆D = Dnew -
Doriginal) is α-trust if TS ≥ α. In contrast, If TS < α, ∆D is untrustworthy.

7 We compute probability density function’s
∫

to obtain overlapped area.
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α is a threshold (i.e., lower-bound of TS): the smaller α is, the less stringent the trust condition is;
the more privacy is preserved, the less utility is provided. That is, having a smaller α, a larger amount
of untrustworthy data can be accepted. In the extreme (i.e., α = 0), data privacy is well-protected if
all the data is untrustworthy. By using α, Go-Between determines whether the newly contributed
data is acceptable. The value of α can be decided differently. By default, Go-Between sets α to each
app’s reputation score.
II. Determining the value of α. The app reputation score metric has been widely applied to
app markets (e.g., Google Play [40]). In addition, many anti-malware providers, such as McAfee,
Trend Micro, and Sophos Mobile, develop their own app reputation systems and report the apps
with low reputation scores as posing a high security and privacy risk [66, 90, 93]. The app reputation
score systems provide a straightforward guide to distinguish which apps can be trusted. We also
assume that, by employing crowdsourcing and sophisticated program analyses, modern reputation
management systems would be unlikely to report the High trust level for any malware. Hence, we set
the value of α to each app’s reputation score (e.g., the score can be collected from the Google Play).
Specifically, for the collaborating apps with low scores, we assign a high α value, i.e., only accept the
newly contributed data that preserves the original privatized result’s distribution; for those with high
scores, we assign a low α value, i.e., accept their contributed data even if it may change the privatized
result’s distribution (see § 5.3-III).
III. Defending progressive data distribution attack (PDDA). Determining whether the newly
contributed data (∆D) is trustworthy proceeds as follows. Based on the supported queries’ noise
scale, calculate Trust Sensitivity (TS) and compare it with the data contributor app’s threshold α.
However, consider the contributor app sharing a small size of ∆D (in the extreme, only one record
in ∆D). Obviously, growing the deposited dataset by a small chunk is unlikely to impact the overall
distribution. Hence, for large original datasets, ∆D, in all likelihood, will be recognized as trustworthy
data. Then, an attacker can continuously grow the dataset by contributing small chunks until the
dataset’s distribution is impacted. We call this attack progressive data distribution attack (PDDA).

To defend against PDDAs, Go-Between applies statistical sampling : before calculating the noise
scales for the new and original datasets, it first compares their sizes, samples the larger one, creating
a sampled dataset of the same size. In addition, to ensure the reliability of data distribution, Go-
Between requires that the newly contributed data (∆D) must contain at least 20 items (i.e., smaller
datasets are not accepted as contributions)8. Because TS is calculated from the sampled datasets (i.e.,
containing the same number of items), malicious contributors would be unlikely to succeed in growing
the combined dataset by contributing small chunks without impacting the overall distribution. For
example, consider the original dataset of size 100,000 and ∆D of 20. Go-Between randomly selects
20 records from the original dataset as a sampled dataset, and uses this sampled dataset and ∆D to
calculate TS. That is, although the original dataset’s size of 100,000 is much greater than the ∆D of
20, the TS is calculated from the sampled dataset of size 20 (i.e., the same as ∆D), thus defeating
PDDAs. We detail all the above mechanisms in § 5.3 below.

5 System Design & Implementation

Our approach is reified by theGo-Between framework, whose design and implementation we describe
in turn next.

5.1 Architecture

Mobile Apps configure their privacy and utility requirements, persist their individual collections of
sensor data, and perform predefined queries on the combined dataset via the Go-Between API (step
1). The API interacts with Go-Between service (step 2), a system-level Android service that encodes
the data via the Encoding Protocol (step 3) and executes service calls (i.e., query, persist, and
configuration) via Native Interface (step 4). Finally, the data is passed to TEE to be securely
operated on (step 5).

8 As a rule of thumb of practical statistical analysis, the minimum sample size is typically between 20 and
30 [72].
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Then, TEE-based operations (i.e., Data Ops:data management, query Ops:query, and DP Ops:differential
privacy operations) execute on Combined Set, with all configurations stored securely in Configs (step
6). Finally, the results are returned from TEE to Mobile Apps. More importantly, based on the per-
sisted data’s content and configuration, Accessibility Components calculate the noise scale for each
supported query type and detects whether the newly contributed data is trustworthy. These two fea-
tures run on dedicated worker threads, synchronized by means of Android’s Handler and Message. In
addition, whenever an app issues a query request, Go-Between Service can be configured to notify
the permission granting app (i.e., User Consent), so the end-user can approve the request to proceed.

Go-Between is integrated into the Android Platform as part of its standard SDK: Go-Between
API and Accessibility Components into the Android Framework Layer, Go-Between Service into
both the Framework and Native Library Layers, Encoding Protocol into the Native Library Layer,
and Native Interface into the Hardware Abstraction Layer [41]. Since inadvertent misconfigurations
or system attacks can cause data leakage, Combined Set and Configs are placed in TEE to become
hard-to-compromise, while Data Ops, Query Ops, and DP Ops run in TEE as trusted operations.

Go-Between Service

Data 
Management RxQuery

TEE

Encoding Protocol

Go-Between API
System 
Apps

User
Consent

Data Ops

Native Interface

Query Ops DP Ops

Combined_Set Configs

Requirement Configuration

Mobile Apps
App 1 App 2 App N

3

1

2
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4

6
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Fig. 5. System Architecture.
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Fig. 6. Go-Between Programming Model.

5.2 Programming Model

In the application scenario in § 2.1, a blood pressure monitor app M, a smartwatch app W, and a
personal health records app H cooperate to infer whether their user is suffering from hypertension.
When in operation, each app is recording the user’s blood pressure. These apps must be retrofitted to
use Go-Between services, and their installation procedure must secure a permission to do so, with
Go-Between keeping track of the permitted apps. Once the installed apps start persisting their data
collections in Go-Between, the combined dataset becomes available for querying.

The code snippet below and Figure 6 show the Go-Between programming interface and its
interactions with the rest of the framework, respectively. First, M, W, and H each obtains a service
instance from the Android service manager (line 1). Then, method setContext sets application context

(line 2), which determines a unique interaction id between an app and Go-Between. Next, the apps
configure their privacy and utility requirements (steps 1,2; lines 3). Step 3 in Figure 6 identifies the



12 Yin Liu, Breno Dantas Cruz, and Eli Tilevich

data persistence phase; method storeData (line 4) takes the parameters containing a private data
collection and its data type. These parameters are transferred to Go-Between Service (step 4). The
data type parameter identifies the type of the passed dataset’s items. Then, Go-Between combines
the data collections with the same data type in a combined dataset in TEE for inferring user profiles.

1 GoBetweenManager<Double> gb = (GoBetweenManager) getSystemService(GOBETWEEN_SERVICE);

2 gb.setContext(application_context);

3 gb.setRequirements(query_type, privacy_level, accuracy_level, usage_freq);;

4 gb.storeData(data_type, data);

5 MathObservable.Mean().subscribe(callback);

For each predefined query, Go-Between service calculates the noise scale using the contributed
data and configured privacy level, while detecting and removing spurious data from the combined
dataset (step 5). These two features run on dedicated worker threads, synchronized by means of
Android’s Handler & Message. Go-Between adopts the function query interface of RxJava [86] to
provide reactive queries (Mean in example, line 5). By executing the actual data calculations in TEE,
the design is invulnerable to malicious tampering or interception. By adding noise to the returned
query results, the design prevents apps from uncovering the raw collections of their collaborating
apps. If a query cannot be executed with the required levels of privacy and utility, it throws a runtime
exception that must be caught and handled.

Before using any Go-Between services, an app must secure an explicit permission from the mobile
user. To that end,Go-Between first notifies the user about the apps involved, the data type they want
to share, and which query is performed (step a). Then, the user communicates with Go-Between to
grant the permission (step b). If the permission is declined, the involved parties can request it again
at some later point. Once the permission is granted, the parties start collaborating via Go-Between.

Go-Between effectively reconciles the requirements of protecting data privacy and of inferring
user profiles from the protected data. We describe howGo-Between addresses these two requirements
in turn next.

5.3 Privacy Mechanism

Go-Between’s adaptively parameterized privacy mechanism: 1) configures each app’s privacy and
utility requirements, 2) determines the required noise scale, 3) detects and removes spurious data, and
4) adds noise and verifies the results still meet the requirements.

Table 1. Privacy & Utility Requirements

Privacyα Accuracyβ Usage Freq.γ

Level Pr. Level Err. Level Times

Lowest 70% Lowest 50% Lowest 1
Public 50% Estimate 30% Rare 5
Default 20% Default 20% Default 10
Critical 5% Exact 10% Frequent 50
Highest 1% Highest 5% Highest 100

α Privacy level is the probability of an ad-
versary correctly discovering the combined
dataset’s raw data, used to calculate the
noise scale.

β Accuracy level is the %error as per formula
(8), a noisy result’s utility for inferring user
profiles.

γ Usage frequency level, a query’s invocation
#, used to calculate a query’s noise scale,
especially in a sequence of queries.

I. Privacy & Utility Configuration. With Go-
Between, developers of mobile apps can configure
the privacy and utility levels for each query. However,
unless those developers are data privacy experts, de-
termining the exact required privacy levels is hard. To
address this problem, theGo-Between API provides
human-readable levels, as shown in Table 1, to express
the requirements, which include the privacy level (i.e.,
privacy requirement) and the accuracy level & usage
frequency level (i.e., utility requirement). Each of them
is divided into five consecutive levels from lowest to
highest. Queries with higher privacy levels need more
noise added to the result, and vice versa. The lower
the accuracy level, the more the noisy and the origi-
nal results differ, and the less useful the noisy results
are for inferring user profiles. With the restriction on
the usage frequency level, ε-differential privacy can be
ensured even if the apps continuously invoke a certain
query or perform a fused sequence of queries.

Consider applying the predefined query Mean, which obtains themean value of the combined dataset,
to our running example of sharing blood pressure readings. Suppose the personal health records app
H prefers higher privacy and utility levels of Mean, so it may set the privacy level to Critical, the
accuracy level to Exact, and the usage frequency level to Frequent; the smartwatch app W prioritizes
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privacy only, so it could configure the requirements as Highest, Estimate, and Rare, respectively; the
blood pressure monitor app M, with regular privacy and utility requirements, may set all parameters
to Default. Based on a given configuration, Go-Between automatically calculates the required noise
scale, and determines how to execute each query.

II. Noise Scale Calculation. Once apps specify their privacy/utility requirements and persist their
datasets into TEE, Go-Between calculates the noise scale for each query in two steps: 1) determine
the global privacy level (i.e., ρglobal) for the combined dataset contributed by the collaborating apps,
2) use ρglobal to determine the noise scale (i.e., b) required to fulfill the privacy/utility requirements
of each app. In addition, Go-Between incentivizes the collaborating apps to keep contributing data
(as discussed in § 4.2).

To illustrate how Go-Between determines the global privacy level, consider the running example
of apps H, W, and M setting their respective privacy levels for the Mean query to Critical (i.e.,
ρH), Highest (i.e., ρW ), and Default (i.e., ρM ), respectively. Go-Between first looks up the actual
probability values for these human-readable levels as per Table 1:ρH=5%, ρW =1%, ρM=20%. Then, by
weighting the average value of these probabilities by the data collection size of each app,Go-Between
determines the global privacy level: ρglobal=cHρH+cW ρW+cMρM , where c is the data contribution rate
of each app (as per formula-10 in § 4.1). Because Go-Between updates ρglobal whenever new apps
join an existing data sharing collaboration, ρglobal always reflects the actual privacy requirement of
the collaborating apps.

Having determined the global privacy level (ρglobal), Go-Between plugs the resulting value into

the formula-7 (§ 4.1) that calculates the noise scale of each predefined query: b = ∆v/ln (n−1)ρ
1−ρ , with

ρ becoming ρglobal, n becoming the size of the combined dataset, ∆v becoming the maximal difference
between the query results of each possible combination of the database D′ (n−1 records sampled from
previous combined dataset D). To determine ∆v, n−1 records are sampled from the combined dataset
by performing each query on n different data combinations (i.e.,

(
n

n−1

)
). For example, for a combined

dataset of 1000 items, select 999 (i.e., 1000 - 1) records, and perform a given query on them obtaining
a result. Then, repeat this process to obtain the query results of 1000 different data combinations.
Next, use the max and min results to calculate the ∆v for this query. Finally, calculate this query’s
noise scale using the formula-7 above. Go-Between obtains the noise scale for each predefined query,
persisting the results into TEE.

To determine the final noise scale for each app, Go-Between executes the bonus mechanism and
applies the noise increase scheme. In our running example, suppose the contribution rates (c) of apps
H, W, and M are cH , cW , and cM , respectively, while their usage frequency levels (u) for the Mean query
are Frequent (i.e., uH), Rare (i.e., uW ), and Default (i.e., uM ), respectively. These levels correspond to
the max # of invocations: uH = 50, uW = 5, uM = 10 (as per Table 1). Then the actual noise scale of

Mean for each app is calculated using: bi = ui ·(bquery−ci ·BONUS), where bquery = ∆v/ln
(n−1)ρglobal

1−ρglobal
,

with {ui|uH , uW , uM} and {ci|cH , cW , cM} (as per formula-11 in § 4.2). For example, each time app
H performs Mean on the combined dataset, Go-Between ensures ε-differential privacy by adding the
Laplace noise to the query result with the noise scale: bH = uH · (bmean − cH ·BONUS).

III. Detecting Spurious Data Contributions.

Table 2. Trust Levels

Trust Level App Reputation α value

5 built-in/system or > 4 stars 0
4 3 ∼ 4 stars 0.3
3 2 ∼ 3 stars 0.5
2 1 ∼ 2 stars 0.7
1 ≤ 1 star 1

a) Calculate Trust Sensitivity (TS): Having the newly
calculated noise scale bnew and the original scale
boriginal for each query (e.g., mean, standard devia-
tion, and frequency), Go-Between calculates each
query’s TS independently to produce TSquery (as per
formula-12 § 4.3) (e.g., TSmean, TSstd, and TSfreq).
Then, Go-Between obtains TS by selecting the
minimum value of TSquery, i.e., TS = min{TSmean,
TSstd, TSfreq}. Appendix-B provides the specific steps of computing TS.

b) Determine α: The contributing app’s α is extracted by consulting the app’s reputation score (i.e.,
collected from the Google Play), with Table 2 showing all trust levels. The built-in or system apps are
assigned the highest trust level. The trust level of other apps corresponds to their reputation scores.
The higher the trust level, the lower the α value, allowing to accept more “spurious” data.

c) Determine Trust-Data: If TS ≥ α, ∆D is trustworthy, so Go-Between keeps it in the combined
dataset. If TS < α, ∆D is declined as a spurious contribution.
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IV. Verifying Utility of Noisy Results. With the generated Laplace noise added to a query result,
Go-Between verifies whether the query satisfies the required accuracy level (i.e., a). Recall that app
H set its accuracy level (aH) to Exact. To verify the utility of the noisy result, Go-Between calculates
accuracy level (alvl) as per formula(8) (discussed in § 4.1): alvl = 100 ·

∣∣∣Resultnoise−Resultactual

Resultactual

∣∣∣. If alvl ≤ aH ,

Go-Between returns the noisy result or failure otherwise.

5.4 Inferring User Profiles

Go-Between offers trusted, TEE-based operations, exposed via the reactive and functional program-
ming interface of RxJava, a popular reactive programming framework with a large set of predefined
data operations that can be flexibly fused.
1) TEE-based Reactive Query. The reactive programming in RxJava framework creates asyn-
chronous data streams, which can be observed and operated on. Go-Between moves the creation of
data stream into TEE. To that end, Go-Between provides a set of statistical queries (e.g., count,
mean, std.) whose execution creates a data stream. These queries operate in TEE and obtain the
ε-differentially private results as data streams, operated on by means of the customized RxJava frame-
work to combine and filter them.

Consider how App M can infer whether the user suffers from hypertension: invoke the predefined
queries of Mean to obtain the distribution of the combined dataset of blood pressure readings. M
creates a data stream by invoking Mean API to obtain the mean value, with the request being passed
to Go-Between service. The permitted request is encoded and passed to TEE, which executes the
actual Mean operation. The operation’s result is padded with noise, verified, and returned as a data
stream.
2) Flexible Inference with Function Fusion.

A powerful functional programming mechanism, function fusion, creates new functions by efficiently
combining and customizing existing ones [24]. Go-Between adopts this mechanism, allowing to fuse
both predefined and user-defined functions via the client interface of the RxJava framework.

Consider our running example , app M needs to calculate the probability that a given blood pressure
reading is in the combined dataset. Although Go-Between provides no predefined operation for this
calculation, M can fuse the predefined CountAll and CountOne, as follows:

1 Observable<Integer> obsAll, obsOne;

2 obsAll = MathObservable.CountAll();

3 obsOne = MathObservable.CountOne(bp);

4 Observable.zip(obsAll, obsOne,

5 new Func2<Integer, Integer, Double>(){

6 @Override

7 public Double call(Integer all,Integer one)

8 {return one/Double.valueOf(all); } }

App M first calls CountAll to create a TEE-based data stream of the combined dataset size, referred
to by an Observable object (line 2). Similarly, calling CountOne produces another Observable that refers
to a data stream that contains the number of items in the dataset as per the bp parameter (i.e., the
given blood pressure reading) (line 3).Go-Between fuses these two operations together with standard
API zip (line 4), which passes each operation’s data stream to the downstream function (i.e., call)
as the parameters (line 7). Finally, call calculates the probability of the given blood pressure reading
being present (line 8).

To fuse a predefined operation with a custom function, Go-Between uses function subscribe, as
follows:

1 MathObservable.Std()

2 .subscribe(new Action1<Double>(){

3 @Override

4 public void call(Double d){...} };

Having created a TEE-based data stream of standard deviation (Std), the developer subscribes
a custom function for this data stream with subscribe (line 2). Then, the data stream is passed to
downstream custom function call (line 4).
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6 Evaluation

The following questions drive our evaluation.

– Q1. Feasibility: Does Go-Between offer acceptable performance levels?
– Q2. Utility: Do Go-Between’s data sharing collaborations satisfy dissimilar app requirements?
– Q3. Safety: How effectively does Go-Between eliminate the threats of apps uncovering their

competitors’ raw data?
– Q4. Programmability: How do the software metrics of Go-Between compare to those of

similar Android system services?

6.1 Experimental Setup

1) Experimental Environment Choice. We implement and evaluate Go-Between using the
official Android source code release, Android Open Source Project (AOSP), which provides an official
virtualized execution environment9 for testing and debugging Android apps. Because its standard
distribution excludes a TEE component, we integrated Open-TEE10 with AOSP by adding the Open-
TEE source code to the main codebase of AOSP and building them together into a single executable
image. To maximize the number of Android apps compatible with Go-Between, while having access
to as many of advanced Android features as possible, we use the Android Lollipop 5.1 release, currently
run by 14.4% Android devices (the third highest percentage among the 13 most popular Android
platform versions [38]) and has cumulatively covered 80.2% devices (cumulative distribution [36]).
2) Software & Hardware. The main system components of our experiments are: platform version
is Lollipop; host OS is Linux; CPU (MHz) is 3599.943; cache size (KB) is 2048; and TEE solution is
Open-TEE.
3) Benchmarks. To establish a performance baseline, we create a set of benchmarks that isolate the
Go-Between’s operations that store data collections and perform the pre-defined queries. Real-world
Android apps can directly invoke these operations (§ 5.1).

In addition, the software-based virtualization of TEE is bound to exhibit performance levels inferior
to those offered by hardware-based implementations. Hence, our performance results not in any way
unfairly benefit our approach. Since w.r.t. performance, our evaluation goals are only to demonstrate
that it is feasible to offer a Go-Between-like service locally on the device, in the presence of an actual
hardware-based TEE, the overhead of using Go-Between can only decrease.

6.2 Evaluation Design

Q1.Feasibility: Despite the computationally intensive nature of data processing, Go-Between must
operate unintrusively, with performance overheads comparable to those of similar Android system
services. In light of these evaluation objectives, we design a set of representative micro-benchmarks and
application scenarios, and measure the performance of the Go-Between-related functionality. Then
we compare these results with Android App’s standard response time limitation (i.e., Application Not
Responding (ANR) error). Specifically, we measure the total execution time (Ttotal) it takes to execute
a Go-Between operation with realistic data by a single app to understand service’s performance
impact. Specifically, we measure the total execution time taken by the predefined storeData, Mean, Std,
CountOne, and CountFreq operations. Go-Between calculates noise scales and detects untrustworthy
data concurrently on separate worker threads, whose performance we chose not to evaluate as they
leave the main execution unperturbed.
Q2.Utility: We follow our running example-I (§ 2.1): with apps N (App1), E (App2), and R (App3)
collecting geolocation data and collaborating via Go-Between to discover their user’s favorite lo-
cations. The user in this experiment is the Yeti11, who according to Nepali folklore haunts the Hi-
malayas [57]. As it turns out, the Yeti is a sophisticated and demanding mobile user. Due to the need

9 a common practice for studying various performance trade-offs on the Android platform [13,25,98].
10 a portable framework for code to run on any standard TEE implementation.
11 The Yeti is a metaphor that describes any real-world user with a similar behavioral profile in this application

scenario.
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to keep his existence inconspicuous, the Yeti refuses to upload any of the sensor output of his apps
to the cloud; besides, the network infrastructure of Himalaya renders any cloud services inaccessible.
Nevertheless, the Yeti demands highly personalized mobile services that customize the actively used
apps to his usage profile.

App1, App2, and App3 deposit with Go-Between 100, 50, and 20 Himalayan geolocations, re-
spectively. The experiment queries the combined dataset to determine the Yeti’s favorite locations
(i.e., CountFreq). The input is a square area, while the output is the number of times the Yeti visited
the area. Each of the apps queries three areas, with different privacy and utility requirements. We
seek answers to these questions: 1) how beneficial is Go-Between in discovering the Yeti’s favorite
locations as compared to using only the data of individual apps? and 2) how do the privacy and utility
requirements affect the Go-Between’s results?
Q3.Safety: We follow our running example-II (§ 2.1): a healthcare app H collects snapshots of systolic
blood pressure (SYS). H applies Go-Between to persist its data collection of 100 records into TEE
for collaborating with other apps, and sets its privacy and utility requirements as Highest (i.e., privacy
level ρH), Default (i.e., accuracy level aH), Default (i.e., usage frequency level uH). Then, we simulate
two attack scenarios:

(1) Revealing raw data: Because the reasonable range for SYS is between 90 and 180 mm Hg,
H’s competitor app C performs CountOne12 on all possible values to discover the combined dataset’s
raw data. Further, to maximize the opportunity to uncover the raw data of H, the app C sets its
requirement as Lowest (i.e., privacy level ρH), Highest (i.e., accuracy level aH), Default (i.e., usage
frequency level uH). Hence, it can contribute a large number of records to heighten the weights,
thus decreasing the privacy level of the entire dataset. Then, app C performs CountOne on the com-
bined dataset to obtain the frequency of each possible SYS occurrence. Finally, it compares these
query results with its own dataset to infer app H’s raw data. We evaluate with app C’s data sizes
of 20, 100, 1000, 5000 to a) verify whether our approach can preserve the data privacy for each col-
laborating app; b) to determine the resiliency of our privacy protection as a relation to the size of
the attacker’s contributed dataset. To demonstrate how other data sharing approaches behave under
this attack, we reproduce a classic honest-but-curious attack as the control group (released online:
drive.google.com/open?id=1GHhF65WbTLS7ybnKkrWtcJdZTx78CHCR).

(2) Contributing spurious data: Suppose H persists its data collection of 100 SYS values (≈120
mm Hg) recorded from a healthy person. Then, app C generates and persists random numbers to
the combined dataset. Without loss of generality, we assume that both H and C set their privacy
and utility requirements as Default, and H’s trust level is 3 (Tab 2, i.e., set the threshold α to 0.5).
As discussed in § 4.3, if TS < α (i.e., 0.5), Go-Between recognizes the newly contributed data as
spurious, removing it from the combined dataset. C can generate data collection within the range of
(0, 90), [90, 180], and [110, 130], and the generated data collections can be 20, 100, 1000 records. To
measure the worst possible case, we assume C can generate and persist random data collections many
times to make its TS value greater than α. Specifically, we evaluate C’s attempts numbered at 100,
10000, and 1000000 to identify the maximum TS value, thus verifying how effectively Go-Between
detects the contributed spurious data.
Q4.Programmability: We count the uncommented lines of code (ULoc) and the cyclomatic com-
plexity in the most common usage scenario: an app persists its data collection via storeData, and then
performs statistical queries (via single or fused operations). Besides, we select two standard Android
APIs (Backup service13, and Location service14) as the control group, and count their ULoc as based
on the Android official usage guides [37,39].

6.3 Results

Q1.Feasibility: As discussed in § 6.2, we benchmark the respective latencies of persisting data (i.e.,
storeData), and querying the combined datasets (i.e., Mean, Std, CountOne, and CountFreq) with dissim-
ilar data sizes (i.e., 20, 100, 1000, 5000). As shown in Fig.7, neither of the predefined queries exceeds

12 CountOne(m) queries “how many times does value ‘m’ appear in the combined dataset?”
13 Similar to Go-Between’s data persistence, it enables local mobile apps to back up their data at a remote

server.
14 Similar to Go-Between’s statistical queries, it provides a query interface for obtaining geolocations from

sensors.
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10 ms in latency, due to their low asymptotic complexity O(n). For storeData, as the data size grows,
so does the execution time (12 to 48ms), as the increases in data size are directly proportional to the
work performed by the data encoding/decoding and storing processes. To sum up, the Go-Between
API operations execute within the maximal threshold imposed by the Android platform (response
time<5s [44]) and expected by end-users (response<1s [71]); even the longest observed response time
taken by store-Data (≈48 ms) is still within these boundaries.

Fig. 7. Performance (log scale with millisecond).

Q2.Utility: As shown in Fig. 8 (in square), without Go-Between, the query of “how many times
the Yeti visited a given area”, performed by App1, App2, and App3 returns 17, 45, and 0, respectively,
for Area-A; 31, 1, and 6 for Area-B ; and 10, 0, and 8 for Area-C. Hence, App1 would think Area-B
as Yeti’s favorite, App2 Area-A, and App3 Area-C. However, in fact, the Yeti’s favorite area is A (62
visits overall), so without Go-Between the Yeti would be left very unhappy with the customizations
of App1 and App3.

We study the utility of Go-Between under different requirements. Fig. 8 shows (in bubble shape),
with the “Default” settings for all requirements, the subject apps obtain 63.15, 66.96, and 58.89 visits
of Area-A (i.e., the bubble in the upper left corner). The ε-differential privacy of these results is based
on the configured “Default” privacy level for each app. The noise added to these results is based on each
app’s noise scale (n) of this query. Because App1 contributes more data than App2, which contributes
more data than App3, n1¡n2¡n3. By adding the least noise to App1’s result, Go-Between makes it
most accurate (i.e., 63.15 is the closest to the actual result of 62). Although one cannot guarantee that
App1’s results would always be the closest to the actual value, the smallest noise scale maximizes such
chances, in conformance with Laplace distribution.

Setting the privacy level to “Highest” reduces accuracy the most. As shown in the bubble in the
middle left of Fig. 8, with the highest level, the query results for Area-A become: 74.81 (App1), 45.50
(App2), and 77.98 (App3), deviating greatly from the actual result of 62. Hence, one can increase
privacy at the cost of accuracy, and each app can specify the accuracy level as required for a given
scenario. To maximize accuracy, apps set their privacy level to “Lowest” and query for Area-B (actual
value: 38). Indeed, the results’ accuracy increases: 39.78 (App1), 39.07 (App2), 35.53 (App3) (i.e., the
bubble in the middle). Notice that the result for App2 (i.e., 39.07) is closer to the actual value than
that of App1 (i.e., 39.78). For very small noise scales, the amount of added noise is small as well,
making the results of App1 and App2 close to each other. Despite the differences in the added noise,
the results still conform to the Laplace distribution.
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(a) the square (i.e., Area-A, B, and C) contains the number of the Yeti’s visits to the area, as reflected in
each app’s individual data collection (i.e., without Go-Between and the combined dataset). E.g.,
square“Area-A” shows that App1 records 17 visits of the Yeti to this area, App2 45 visits, and App3 0 visits.
So, the actual number of the Yeti’s visits to the Area-A is 62 (i.e., 17 + 45 + 0).
(b) the bubble shape contains the query results for each app using Go-Between with the combined
dataset. E.g., the bubble in the upper left corner shows that with the “Default” settings for all requirements
(“All-Default”), the subject apps obtain 63.15 (“App1”), 66.96 (“App2”), and 58.89 (“App3”) visits to
“Area-A”.

Fig. 8. Utility of Go-Between.

As discussed in § 5.3, the app contributing more data increases its power to impact the combined
dataset’s privacy level. To evaluate this feature, we let App1 and App2 (respectively contributing
100 and 50 geolocations) set their privacy levels to “Highest”, while keeping it “Lowest” for App3
(contributing only 20 geolocations). The results (i.e., the bubble in the bottom middle of Fig. 8—
App1: 46.05; App2: 27.97; App3: 31.69) show that even with “Lowest” privacy level for App3, the
global privacy level increases, as the other apps contribute more data.

As discussed in § 5.3, the usage frequency level also trades privacy for accuracy: the more a
query executes, the easier it is for an adversary to discover the raw data of others. Go-Between
mitigates this risk by increasing the noise scale in accordance with the observed usage frequency,
which corresponds to the max number a query has been invoked. To evaluate this feature, we let all
apps set their usage frequency to “Highest”, meaning that the query can be repeated up to a 100
times. The results (i.e., the bubble in the upper right corner) become 44.75 (App1), 37.51 (App2), and
8.39 (App3), while the actual value is 18. That is, by setting the usage frequency level to “Highest”,
apps can continuously invoke frequent queries whose results would not be as accurate.

Q3.Safety: (1) Defending against the attack of revealing raw data: App H deposits withGo-Between
a dataset containing 20 duplicate systolic blood pressure (SYS) snapshots of 150 mm Hg. App C per-
petrates an attack to discover H’s raw data, by setting its privacy level to “Lowest” and performing the
query CountOne(150) (i.e., “how many times does value 150 appear in the combined dataset?”). Table 3
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shows that, with the size of its contributed dataset growing (the “Size” column), C’s contribution rate
increases (the “Contribution Rate” column), noise scale decreases (the “Noise Scale” column), and
query results (the “Noisy Value” column) approach the actual value (i.e., 20).

Table 3. Safety of Go-Between *

Size Contribution Rate Noise Scale Actual Value Noisy Value

20 16.7% 3.23 20 11.26
100 50.0% 2.02 20 22.14
1000 90.9% 1.31 20 20.39
5000 98.0% 1.07 20 19.49

* As a control group, we also reproduced a classic honest-
but-curious attack: Without Go-Between, the at-
tacker always uncovers the actual readings (this ex-
periment is released online: drive.google.com/open?
id=1GHhF65WbTLS7ybnKkrWtcJdZTx78CHCR).

With C’s “Lowest” privacy level, as the
size of C’s contributed dataset increases,
the global privacy level decreases, produc-
ing a fairly small noise scale to priva-
tize the query results. Therefore, with lit-
tle added noise, the C’s query results are
close to the actual values. Note that the
added noise conforms to the Laplace dis-
tribution, whose peak’s sharpness is con-
trolled by the noise scale. The smaller the
noise scale, the sharper the Laplace distri-
bution’s peak, so the added noise fluctu-
ates less, increasing the confidence in the accuracy of the query results. That is, with the actual value
of 20, querying a dataset of 1000 items produces 20.39, while querying a dataset of 5000 items produces
19.49. Although 20.39 is closer to 20 than 19.49 is, the second query’s noise scale is lower, increasing the
attacker’s confidence in its ability to discover the actual value. However, Go-Between still prevents
the attacker from determining what the exact raw data is.

To summarize, a) with high contribution rates, attackers may roughly guess what the raw data is,
while being unable to discover the exact values; b) to reduce the risk of such attacks discovering the
raw data, collaborating apps can increase the global privacy level by contributing more data.

(2) A Control Group: an Honest-But-Curious Attack: We develop the application scenario in § 2.1-
II, in which the apps M, W, and H collect the user’s blood pressure readings. Firstly, we implemented
an Android service whose access API provides two methods—store and frequency. The intended usage
scenario is for the collaborating apps to first store their sensor data with the service, which is then
queried for the occurrence frequency of given elements in the resulting collection. We then reproduce
the honest-but-curious attack: M, W, and H store their respective collected blood pressure readings
with the service. Afterwards, H, which acts as an honest-but-curious party, performs frequency queries
with the goal of uncovering the combined collection of blood pressure readings. Background knowledge
suggests that the reasonable range for systolic pressure are integer values between 90 and 180 mm Hg.
By exploiting this fact, H performs 91 frequency queries for each possible value in this range. The
return result of each query is then compared with the H’s own dataset. By subtracting the number
of occurrences of the queried value from those in its own set, H deduces the actual values stored in
the combined dataset. In this experiment, we randomly generate the blood pressure collections for M,
W, and H. In the 1000 repeats of the experiment, H was always able to uncover the combined blood
pressure readings.

Table 4. Trust Data detection of Go-Between

Newly Contributed Size
TS value

attempt times: 100 10K 1M

SYS value: (0, 90)
20 0.13 0.19 0.26
100 0.08 0.10 0.11
1000 0.08 0.11 0.12

SYS value: [90, 180]
20 0.40 0.53 0.62
100 0.27 0.32 0.33
1000 0.30 0.32 0.33

SYS value: [110, 130]
20 0.75 0.76 0.80
100 0.76 0.76 0.76
1000 0.75 0.76 0.76

(3) Defending against the attack of
contributing spurious data: Tab. 4 shows
the evaluation results of detecting untrust-
worthy data. First, the randomly gener-
ated data collection’s TS value is positively
correlated with the degree of similarity be-
tween the generated data and the original
dataset. Since the original dataset contains
100 records of SYS values that are around
120mm Hg, the generated data collection
within the range of [110, 130] obtains large
TS values (>0.7), and that within the
range of (0, 90) obtains small TS values
(<0.3). Second, the more attempts of gen-
erating data are, the more opportunity is for the data’s distribution to be close to the original one,
and the larger the TS values are (see the difference between the “1M” and “100” columns). Third, the
more records are in the generated random data collection, the more stable the TS value is. The 100-
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record data collection’s TS values are always stable, similar to 1000-record’s ones (a large collection is
sampled to 100 records to calculate its TS value). However, with 20 records, because it is more likely
to randomly generate numbers having a similar distribution to such a small amount of data, the data
collection’s TS values fluctuate but still has an upper bound. That is, in the range of [90, 180], the
generated collection’s TS is fluctuating between 0.40 and 0.62, but is always lower than the TS ([0.75,
0.8]), whose collection falls in [110, 130] (closer to the original data).

To sum up, in our case (i.e., α = 0.5), Go-Between successfully detects the untrustworthy data
(i.e., the entire row of SYS value: (0, 90), and the row of SYS value: [90, 180] with 100 and 1000 records)
and removes it from the combined dataset. In contrast, once a given data collection’s distribution is
similar enough to the original dataset, Go-Between considers contributions as trustworthy data (i.e.,
distribution impacts are acceptable), keeping them in the combined dataset.
Q4.Programmability: Table 5 presents the software engineering metrics of using Go-Between and
two representative Android system services. To assess the programming effort required to apply Go-
Between, we measure its metrics in a normal use case and compare the results with similar cases in the
control group (receive location updates for the location service [42], and back up SharedPreferences
for the backup service [37]). The Go-Between metrics are within the expected range, 11 ULoc
(calculate mean in § 5.2) and 21 ULoc (calculate probability in § 5.4), with the cyclomatic complexity
of 2. In contrast, the representative services take between 10 and 13 ULoc with comparable cyclomatic
complexity.

Table 5. Programmer effort comparison

Service ULOC Cyclomatic Complexity

Go-Between ≈ 11(mean); ≈ 21(probability) 2
Location ≈ 10 2
Backup ≈ 13 1

7 Discussion

In this section, we start by discussing the main findings of our approach, comparing it with standard
Android services and other studies. We then illustrate the implications and explanations of the findings
as well as the strengths and limitations of our approach. Finally, we conclude these discussions by
recommending to practitioners how to effectively preserve data privacy within the device and drawing
future directions.
(1) Main findings

Finding-1 The performance and implementation costs of privacy-preserving operations for on-
device data sharing (i.e., data on-loading) are not prohibitively expensive. As per § 6.3-Q1 and
Q4, Go-Between’s differential privacy-based queries and interfaces impose modest perfor-
mance and implementation overheads on the underlying Android system: all queries execute in
< 10 ms, with the extra functionality taking fewer than 21 ULoc with the cyclomatic complexity
of 2 to implement.

Finding-2 It is possible to satisfy data sharing participants’ dissimilar privacy and utility re-
quirements to a large extent. As per § 6.3-Q2, by tuning the privacy, accuracy, and usage
frequency levels, one can trade their data privacy for utility and vice versa.

Finding-3 Defending against the attacks of revealing raw data and contributing spurious data
is possible for data sharing. As per § 6.3-Q3, with a differential privacy-based mechanism, Go-
Between effectively reduces the possibility of guessing the raw data from the shared dataset.
Moreover, guided by Trust-Data Theory,Go-Between can successfully discover untrustworthy
data.
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(2) Comparisons
One could have highlighted our approach’s traits by comparing our evaluation results with existing

works. However, to the best of our knowledge, the relevant data sharing solutions either do not work
on Android or support different data types and queries. Hence, it remains an open question of how
to construct a suite of reasonable and consistent criteria and provide a valid comparison with these
existing works, despite their dissimilar usage scenarios, execution environments, and application scopes.

To mitigate the above problem, we carried out the following comparisons:

– we compared the execution time between our approach’s API operations and the maximal threshold
imposed by the Android platform (response time<5s) and expected by end-users (response<1s).
The evaluation results show that Go-Between’s operations of persisting data and querying the
combined datasets execute within 10 ms, which is far less than the above thresholds;

– we reproduced a classic honest-but-curious attack of revealing raw data as the control group. The
evaluation result shows that, without our approach’s privacy-preserving mechanism, an attacker
can always reveal the combined dataset by executing particular queries;

– we mimicked an attack of contributing spurious data. The evaluation result demonstrates that
Go-Between can successfully detect untrustworthy data;

– we compared the cyclomatic complexity between our approach’s API and two standard Android
APIs (Backup, and Location service) that support usage scenarios similar to ours. The evaluation
result shows that Go-Between’s interfaces add 21 ULoc with the cyclomatic complexity of 2,
similar to these two standard Android APIs above.

(3) Implications & Explanations
(a) App providers’ privacy vs. mobile users’ privacy: Since all deposited data belongs to the device

user, improving the data privacy of app providers also improves user privacy. In contrast to those
privacy preservation approaches that focus exclusively on user privacy without any regard for the
business aspirations of app providers, we strive to take a more holistic approach. We acknowledge that
app providers need to achieve their business objectives of personalizing mobile services and provide
them with a convenient privacy-preserving framework to accomplish that. In essence, our goal is to
take away a major motivation for app providers to illicitly bypass the privacy protection mechanisms
in place. Our middleware enables app providers to accomplish their business objectives in a privacy-
preserving fashion, thus implicitly improving end-user privacy.

(b) Privacy & utility tradeoffs: Our evaluation results in § 6.3 illustrate that, with dissimilar ac-
curacy, privacy, and usage frequency levels (discussed in table 1), the same query will return different
values from the combined dataset. The reason is that the value of these levels directly impacts how to
calculate the noise scale, which controls how much noise will be inserted into the original data. Hence,
by tuning these levels, app providers can balance their mobile service’s utility and data privacy.

(c) About contribution rates: Recall that we introduce the contribution rates for incentivizing app
providers’ data contribution: the more data an app contributes, the more accurate its query results
are (discussed in § 4.2). As shown in Table 3, the noisy value (i.e., 19.49 and 20.39) will be very close
to the actual value (i.e., 20) when the contribution rate is over 90%. This phenomenon implies that an
attacker could intentionally contribute a large amount of data, so they can roughly guess what the raw
data is. To mitigate this risk, other apps can also contribute more data to the combined dataset, which
can dilute their collaborators’ contribution rate and act against the monopolizing of data contribution
by a single party.

(d) About threshold-α: Recall that we introduce α to detect the untrustworthy data: the smaller
α is, the less stringent the trust condition is, the more the out-of-distribution data can be accepted
(as discussed in § 4.3). As shown in Table 4, if α = 0.7, then only the row of SYS value: [110,
130] is considered trustworthy data (i.e., its TS value >0.7), the other two rows will be treated as
untrustworthy data and removed from the combined dataset. However, all the data can be accepted if
α = 0. Since the value of α depends on an app’s trust level (discussed in Table 2), it effectively adjusts
how stringent the spurious data detection is for apps with different trustworthiness.
(4) Limitations

(a) Applicability: Our approach is applicable to scenarios in which different mobile apps collect
the same type of sensor data. Specifically, we designed Go-Between to allow collaborating apps to
deposit their individually collected data. Because the collected datasets are of the same type, Go-
Between can aggregate the deposited data into combined datasets, while differentially privatizing
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the data-sharing process. Such scenarios do frequently occur in real-world mobile apps. For exam-
ple, location-based apps, including Google Maps, Uber, and Yelp, collect geolocations during their
execution. In addition, an empirical study reports that ten different mobile apps, in categories rang-
ing between mapping and navigation to social media (e.g., Facebook) and shopping (e.g., Groupon),
shared geolocations 5,398 times within 14 days [10]. Hence, our approach specifically targets applica-
tion scenarios like that. In the cases in which the collected data happens to be of dissimilar types, our
approach would be inapplicable as is. However, we plan to investigate if our approach can be extended
to provide comparable privacy guarantees even to dissimilar data, exchanged by collaborating apps.

Moreover, our reference implementation,Go-Between, is an Android-based middleware. However,
our approach’s complemented differential privacy (§ 4) and system design (§ 5) can apply to other
mobile platforms. Further, it can benefit other data sharing scenarios, such as sharing data at the
edge, (e.g., smart home, autonomous driving), which often involves mutually distrustful parties that
can apply our approach to personalize their services by sharing data without compromising their data
privacy. Finally, to increase its applicability, our approach can incorporate functional and reactive
query interfaces to express, fuse, and extend queries.

(b) Trust-data theory limitations: Despite its demonstrated benefits, our trust-data theory would
be unable to detect and eliminate all untrustworthy data. In essence, the detection takes advantage
of the difference in distribution between the newly contributed dataset and the original one, as well
as the threshold for that difference. Put another way, a combination of an unreasonable threshold
value and a close similarity between the distributions of the original and the newly contributed data
collections would cause our approach to consider the contributed data trustworthy, keeping it in the
combined dataset. So far, we assumed that the threshold value would be pre-set according to the apps’
reputation score (discussed in § 5.3, Table 2). However, how to select a reasonable threshold value
remains an open research question. As a future work direction, we plan to investigate the thresholds
with different values and scenarios to be able to automatically adjust the threshold values.

(c) Comparing with other studies: As discussed above, we concluded that it would be counterpro-
ductive to try to compare our evaluation results with existing studies, due to the intrinsic differences
in usage scenarios, execution environments, and application scopes. As an alternative, we compared
our results with Android’s built-in execution time threshold, standard Android APIs, and simulated
attacks. Furthermore, the overriding goal of this article is to demonstrate how our approach can help
personalize mobile services while protecting data privacy with affordable overheads (e.g., execution
time is acceptable, data privacy is preserved, etc.). Hence, our evaluation was designed to support the
overriding goal of this article, as explained above.

(5) Recommendations and Future Directions

(a) Set prudent privacy requirements: As mentioned above, privacy requirements (i.e., privacy,
accuracy, and usage frequency levels) determine the utility of query results. In fact, these requirements
directly depend on apps’ specific usage scenarios. For example, a dining app that recommends a
restaurant in an area may not need highly accurate user geolocation, while a health monitor app may
need precise values of the user’s body vitals. Hence, to set prudent privacy requirements, we recommend
app providers carefully review all possible usage scenarios and assess how stringent privacy protection
they would need.

(b) Maintain a reasonable contribution rate: As discussed above, the possibility of revealing raw
data would increase if an attacker’s app contributes most of the data in combined datasets. Such
risk can be mitigated if there is no monopoly on data contributions: all collaborating apps contribute
enough data as compared to others. In the future, we plan to provide interfaces that allow app providers
to check their contribution rates and detect the potential presence of monopolization attempts at
contributing data. Also, we recommend that the providers carefully decide whether or not to share
their data in the presence of risks of monopolization attempts at data contribution.

(c) Be careful in granting data sharing permissions: Because of our on-device data sharing ap-
proach, end-users can always keep in control of their data. Also, Go-Between can be configured to
inform end-users of the details of data sharing events and explicitly allow them to restrict apps to
share data. We recommend that end-users periodically turn on this feature and check if everything
proceeds as expected. Further, it remains the case that end-users should avoid installing apps with
low trust levels from unauthorized app stores.
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8 Related Work

Data Privacy.Differential privacy [29] prevents attackers from discovering private information. Based
on this concept, Airavat [85] provides differential privacy guarantees for cloud-based MapReduce com-
putations. The PINQ [69] and GUPT [75] libraries add a unified amount of noise to raw data for
privacy-preserving data analysis. Vu et al. [96] automatically detect the user’s privacy requirements
by determining the noise scale with a neural network model. Miller et al. [70] provide security proto-
cols for clients to securely communicate with a non-trusted server. Gaboardi et al. [34] enable users,
unaware of differential privacy mechanics, to generate privacy-preserving datasets that support statis-
tical queries. Go-Between differs by inferring user profiles on-device, with its ε-differential privacy
augmented with privacy & utility tradeoffs, spurious data detection, and data contribution incentives.

Collaboration Among Distrustful Parties. By using encryption techniques, Private Set Inter-
section (PSI) enables two parties to find the intersection of their private datasets, without revealing
any data outside the intersection. Kiss et al. [55] applies PSI techniques to find the set intersection of
differently sized datasets in mobile applications, but not on-device as in our approach. PSI protocols
have been also implemented for smartphones [14,21,51]. For example, CrowdShare [14] shares Internet
connectivity and other resources across Android devices. Secure Function Evaluation (SFE) techniques
allow mutually distrustful parties to evaluate the properties of private sets without revealing them.
Previous work on SFE defines the adversarial models, decreases communication complexity, and im-
proves efficiency/security definitions [20,65,76]. In contrast, Go-Between relies neither on encryption
nor on the SFE techniques, allowing distrustful parties to effectively collaborate, while balancing their
privacy/utility requirements by automatically determining the required noise scale.

Applications of user profiles. user profiles are inferred to improve the quality of various services.
Datta et al. [27] infer user profiles from an IoT architecture to personalize health care. Barnaghi et
al. [16] explore how to use IoT architectures for gathering user profiles. Other uses of user profiles
include detecting security threats [15, 48, 73], uncovering safety abnormalities [26, 64], and enhancing
education [32, 68]. Go-Between also improves the quality of mobile services by enabling mutually
distrustful parties to collaborate without having to exchange data under adaptively parameterized
differential privacy. Our approach is likely applicable beyond mobile computing and can benefit the
above domains.

Spurious data detection. Detecting and filtering out spurious data from a data set remains an open
problem. The current solutions can be roughly categorized into two types, which we discuss in turn
next.

(1) statistics-based approaches: a series of classic statistical criteria, such as Benford’s law, 3-σ rule,
Chauvenet Criterion, and Dixon Criterion, can help detect data points that are out of distribution
from a given dataset. However, these approaches either require a specific data distribution or impose
restrictive conditions (e.g., only one outlier exists).

(2) machine learning or deep learning-based approaches: Modern anomaly detection (i.e., outlier
detection) makes use of machine learning or deep learning algorithms to identify outliers that deviate
from the general data distribution. Specifically, OE discovers out-of-distribution data via training
on the so-called “outlier exposure dataset” that contains out-of-distribution samples [50]. Similarly,
ATOM trains on outlier data that is estimated as possible out-of-distribution data by an existing
detector [22]. To improve the quality of training datasets, Li et al. re-sample given datasets and
create an informative outlier dataset [60], while Du et al. create the training dataset by synthesizing
outliers [28]. Furthermore, Ren et al. and Morningstar et al. enhance the deep learning-based detection
performance for outlier data with likelihood ratio [84] and nonparametric density estimators [77],
respectively. Besides, outlier detection (or out of distribution detection) has been proved that can
be applied to gaze estimation [23], cyber-physical systems [19], wireless sensor networks [8], data
streams [78], and Internet of Things [54].

However, all these approaches focus on detecting the outlier data but neither consider taking
advantage of the outliers nor have applied the detection techniques to differential privacy. Our approach
reconsiders the outliers to preserve data privacy while detecting and removing untrustworthy ones,
which is a novel application of a known security exploit for benign purposes.
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9 Conclusion

We have presented an on-device user profiles inference approach that personalizes mobile services while
protecting data privacy via an ε-differentially private mechanism.

Contribution: Our approach augments differential privacy by (1) mitigating the threat of contribut-
ing spurious data, (2) satisfying the dissimilar privacy and utility requirements of the collaborating
apps, (3) incentivizing the apps to keep contributing data, and (4) featuring extensible programming
interfaces and secure operations. The evaluation demonstrates our approach’s feasibility, utility, safety,
and programmability: all queries’ execution time is within 10 ms (feasibility); participants’ dissimi-
lar privacy/utility requirements are satisfied (utility); untrustworthy data are effectively detected and
raw data are hard to reveal (safety); extra 21 ULoc with a cyclomatic complexity of 2 are added
(programmability).

Scientific value: The scientific value of this article is as follows. First, we demonstrate that it
is feasible and useful to personalize mobile services while protecting data privacy on a single device.
Second, we show that it is practical to identify spurious data by leveraging the perturbation of Laplace
distribution between the original dataset and the one with newly added data (i.e., Trust-Data theory).

Limitations: Existing studies’ dissimilar usage scenarios, execution environments, and application
scopes make it difficult to meaningfully compare our approach with prior approaches concerned with
similar problems. To mitigate this limitation, we compared our evaluation results with Android’s
built-in execution time threshold, standard Android APIs, and simulated attacks.

Applicability: Although our reference implementation is Android-based, one can apply our ap-
proach’s complemented differential privacy and system design to any other mobile platforms, as well
as other data-sharing scenarios.

Future directions: As future work, we plan to revise and migrate our privacy-preserving mechanism
to network communication protocols that can benefit edge computing. We also plan to explore whether
it is possible to define reasonable and common privacy criteria in order to meaningfully compare
approaches with different usage scenarios, execution environments, and application scopes.
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A List of Abbreviations

AOSP — Android Open Source Project
ANR — Application Not Responding
DP — Differential Privacy
PSI — Private Set Intersection
SYS — Systolic Blood Pressure
SFE — Secure Function Evaluation
TEE — Trusted Execution Environment
TS — Trust Sensitivity
ULoc — Uncommented Lines of Code

B Calculating Trust Sensitivity – TS

B.1 Probability Density Function of Laplace Distribution [88]

A random variable x has a Laplace(µ, b) distribution if its probability density function is:

p(x) =
1

2b
exp(−|x− µ|

b
) =

{
1
2bexp(

x−µ
b ) x < µ (13)

1
2bexp(−

x−µ
b ) x ≥ µ (14)
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B.2 Cumulative Distribution Function of Laplace Distribution [88]

By integrating the probability density function, the cumulative distribution function becomes:

P (x) =

∫ x

−∞
p(u)du =

{
1
2exp(

x−µ
b ) x < µ (15)

1− 1
2exp(−

x−µ
b ) x ≥ µ (16)

B.3 Calculating TS

According to the Laplace mechanism (formula-5 in § 2.4), the privatized value is: f(Doriginal) +
Lap(∆foriginal/εoriginal). After adding∆D, the privatized value becomes: f(Dnew)+Lap(∆fnew/εnew).
∆D is the the newly contributed data, Doriginal, ∆foriginal, and εoriginal are corresponding values (dis-
cussed in § 2.4) before adding ∆D, and Dnew, ∆fnew, and εnew are those after ∆D.

To simplify the equation, let f(Doriginal) be µ1, f(Dnew) be µ2, ∆foriginal/εoriginal be b1, and
∆fnew/εnew be b2. As shown in Fig 9, when µ1 ≤ µ2, we have five different cases (other cases would
occur when µ1 > µ2).

TS is calculated in three steps: (1) compare the parameters in terms of their respective sizes
(b1 vs. b2 and µ1 vs. µ2); (2) compute the intersection points x1 and x2 (if necessary) by applying
b1,µ1 and b2,µ2 to their probability density functions p(x). Note that, different b1,µ1 and b2,µ2 yield
different probability density functions p(x), thus producing dissimilar intersection points; (3) calculate
the integral of the probability density function p(x), i.e., the overlapped area. The algorithm below
shows the details of calculating TS in the case of µ1 = µ2 and b1 < b2 (Figure 10).

Algorithm 1 get overlap between Lap(µ1, b1) and Lap(µ2, b2)

// step 1: compare µ1 µ2 and b1 b2
if µ1 == µ2 && b1 > b2 then

// step 2: get intersections
get intersection point x1 via equation (13)
get intersection point x2 via equation (14)

// step 3: find the integal
area =

∫ x1

−∞ Lap(µ1, b1) +
∫ x2

x1
Lap(µ2, b2) +

∫∞
x2

Lap(µ1, b1)

//
∫ x2

x1
Lap(µ2, b2) — hatched area (horizontal lines in Figure 10)

//
∫ x1

−∞ Lap(µ1, b1) and
∫∞
x2

Lap(µ1, b1)

// — hatched area (vertical lines in Figure 10)

return area
end if
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（I.） （II.） （III.）

（IV.） （V.）

Lap(μ1,b1)

Lap(μ2,b2)

μ1, μ2 μ1, μ2

μ1 μ2

μ1 μ2μ1 μ2

μ1 = μ2

b1 = b2

μ1 = μ2

b1 < b2

μ1 < μ2

b1 = b2

μ1 < μ2

b1 > b2

μ1 < μ2

b1 < b2

Lap(μ1,b1)

Lap(μ2,b2)

Lap(μ1,b1) Lap(μ2,b2)

Lap(μ1,b1) Lap(μ2,b2)Lap(μ1,b1) Lap(μ2,b2)

Fig. 9. Five Different Cases of µ1 ≤ µ2.

（II.）

μ1 = μ2

b1 < b2

Lap(μ1,b1)

Lap(μ2,b2)

x1 x2

Fig. 10. TS in the case of µ1 = µ2 and b1 < b2.
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